Remediation of Heavy Metals (Arsenic, Cadmium, and Lead) from Wastewater Utilizing Cellulose from Pineapple Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Extraction of Cellulose from Pineapple Leaves
2.3. Functional Group Analysis by Fourier Transform Infrared (FT-IR) Spectroscopy
2.4. Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS)
2.5. ICP-MS Analysis
2.6. Influences of pH on Adsorption
2.7. Influences of Contact Time on Adsorption
2.8. Influences of Adsorbent Dosage on Adsorption
2.9. Statistical Analysis
3. Results and Discussions
3.1. Elemental Analysis Using SEM-EDS
3.2. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis
3.3. ICP-MS Analyses
3.3.1. Effect of pH
3.3.2. Influence of Adsorbent Dosage on Adsorption
3.3.3. Influence of Contact Time on Adsorption
3.4. Analysis of Kinetic Adsorption
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B. Heliyon Review on the Impact of Heavy Metals from Industrial Wastewater Effluent and Removal Technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, A. Persistent Degradation: Global Water Quality Challenges and Required Actions. One Earth 2022, 5, 129–131. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Himeno, S.; Aoshima, K. Cadmium Toxicity Introduction; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9789811336294. [Google Scholar]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M. Cadmium Toxicity and Health Effects—A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef]
- Rahman, A. Promising and Environmentally Friendly Removal of Copper, Zinc, Cadmium, and Lead from Wastewater Using Modified Shrimp-Based Chitosan. Water 2024, 16, 184. [Google Scholar] [CrossRef]
- Badmus, S.O.; Oyehan, T.A.; Saleh, T.A. Synthesis of a Novel Polymer-Assisted AlNiMn Nanomaterial for Efficient Removal of Sulfate Ions from Contaminated Water. J. Polym. Environ. 2021, 29, 2840–2854. [Google Scholar] [CrossRef]
- Elbana, T.A.; Magdi Selim, H.; Akrami, N.; Newman, A.; Shaheen, S.M.; Rinklebe, J. Freundlich Sorption Parameters for Cadmium, Copper, Nickel, Lead, and Zinc for Different Soils: Influence of Kinetics. Geoderma 2018, 324, 80–88. [Google Scholar] [CrossRef]
- Saleh, T.A. Protocols for Synthesis of Nanomaterials, Polymers, and Green Materials as Adsorbents for Water Treatment Technologies. Environ. Technol. Innov. 2021, 24, 101821. [Google Scholar] [CrossRef]
- Abdel Salam, O.E.; Reiad, N.A.; ElShafei, M.M. A Study of the Removal Characteristics of Heavy Metals from Wastewater by Low-Cost Adsorbents. J. Adv. Res. 2011, 2, 297–303. [Google Scholar] [CrossRef]
- He, J.; Chen, J.P. A Comprehensive Review on Biosorption of Heavy Metals by Algal Biomass: Materials, Performances, Chemistry, and Modeling Simulation Tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef]
- Khademian, E.; Salehi, E.; Sanaeepur, H.; Galiano, F.; Figoli, A. A Systematic Review on Carbohydrate Biopolymers for Adsorptive Remediation of Copper Ions from Aqueous Environments-Part A: Classification and Modification Strategies. Sci. Total Environ. 2020, 738, 139829. [Google Scholar] [CrossRef]
- Salehi, E.; Daraei, P.; Arabi Shamsabadi, A. A Review on Chitosan-Based Adsorptive Membranes. Carbohydr. Polym. 2016, 152, 419–432. [Google Scholar] [CrossRef]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption of Cadmium on Cucumber Peel: Kinetics, Isotherm and Co-Ion Effect. Indian Chem. Eng. 2018, 60, 179–195. [Google Scholar] [CrossRef]
- Basu, S.; Dutta, A.; Mukherjee, S.K.; Hossain, S.T. Isolation and Characterization of an As(III) Oxidizing Bacterium, Acinetobacter Sp. TMKU4 from Paddy Field for Possible Arsenic Decontamination. J. Hazard. Mater. Adv. 2023, 10, 100289. [Google Scholar] [CrossRef]
- Kanamarlapudi, S.L.R.K.; Chintalpudi, V.K.; Muddada, S. Application of Biosorption for Removal of Heavy Metals from Wastewater. Biosorption 2018, 18, 69. [Google Scholar] [CrossRef]
- Sundararaman, S.; Dhanasekaran, S.; Vickram, A.S.; Kumar, J.A.; Priya, M.Y.; Sahana; Soosai, M.R.; Santhanakrishnana, A.; Jangir, P.; Khishe, M.; et al. Strategic Engineering and Functional Mechanism Elucidation of Advanced Materials in Detoxification of Contaminated Water Matrices. Results Eng. 2025, 26, 104851. [Google Scholar] [CrossRef]
- Hossain, M.F. World Pineapple Production: An Overview. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11443–11456. [Google Scholar] [CrossRef]
- Mandal, D.; Lalhruaitluangi, N. Utilization of Pineapple Leaf: An Alternative for Paper and Textile Industries. J. Postharvest Technol. 2024, 12, 1–10. [Google Scholar]
- Hamzah, A.F.A.; Hamzah, M.H.; Man, H.C.; Jamali, N.S.; Siajam, S.I.; Ismail, M.H. Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges. Agronomy 2021, 6, 1630. [Google Scholar]
- Banerjee, R.; Chintagunta, A.D.; Ray, S. A Cleaner and Eco-Friendly Bioprocess for Enhancing Reducing Sugar Production from Pineapple Leaf Waste. J. Clean. Prod. 2017, 149, 387–395. [Google Scholar] [CrossRef]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E.; Deng, Y. A Review on Pineapple Leaves Fibre and Its Composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef]
- Chittappa, H.C.; Preetham, T. A Review of the Pineapple Leaf Fiber Variants, Structure, Physical Properties and Chemical Composition. Int. J. Eng. Res. Technol. 2023, 12, 11. [Google Scholar]
- Meena, L.; Sengar, A.S.; Neog, R.; Sunil, C.K. Pineapple Processing Waste (PPW): Bioactive Compounds, Their Extraction, and Utilisation: A Review. J. Food Sci. Technol. 2021, 59, 4152–4164. [Google Scholar] [CrossRef] [PubMed]
- Motaghi, M.; Ziarati, P. Adsorptive Removal of Cadmium and Lead from Oryza Sativa Rice by Banana Peel as Bio-Sorbent. Biomed. Pharmacol. J. 2016, 9, 739–749. [Google Scholar] [CrossRef]
- Na, Y.; Lee, J.; Lee, S.H.; Kumar, P.; Kim, J.H.; Patel, R. Removal of Heavy Metals by Polysaccharide: A Review. Polym. Technol. Mater. 2020, 59, 1770–1790. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef] [PubMed]
- Ramli, A.N.M.; Manas, N.H.A.; Hamid, A.A.A.; Hamid, H.A.; Illias, R.M. Comparative Structural Analysis of Fruit and Stem Bromelain from Ananas comosus. Food Chem. 2018, 266, 183–191. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of Using Green Adsorbent of Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, Thermodynamic, Mechanism and Economic Analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Angaru, G.K.R.; Pal, C.A.; Koduru, J.R.; Karri, R.R.; Mubarak, N.M.; Chang, Y.Y. Insights into Kinetics, Thermodynamics, and Mechanisms of Chemically Activated Sunflower Stem Biochar for Removal of Phenol and Bisphenol-A from Wastewater. Sci. Rep. 2024, 14, 4267. [Google Scholar] [CrossRef]
- Rahman, A.; Yoshida, K.; Islam, M.M.; Kobayashi, G. Investigation of Efficient Adsorption of Toxic Heavy Metals (Chromium, Lead, Cadmium) from Aquatic Environment Using Orange Peel Cellulose as Adsorbent. Sustainability 2023, 15, 4470. [Google Scholar] [CrossRef]
- Feng, N.C.; Guo, X.Y. Characterization of Adsorptive Capacity and Mechanisms on Adsorption of Copper, Lead and Zinc by Modified Orange Peel. Trans. Nonferrous Met. Soc. China 2012, 22, 1224–1231. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, V.D.; Trinh, M.T.; Han, P.L.; Nguyen, T.H.; Nguyen, M.T.; Vu, A.T. Effective Biosorptive Removal of Pb2+ Ions from Wastewater Using Modified Lettuce Leaves: A Novel Sustainable and Eco-Friendly Biosorbent. J. Hazard. Mater. Adv. 2025, 19, 100770. [Google Scholar] [CrossRef]
- Nathan, R.J.; Barr, D.; Rosengren, R.J. Six Fruit and Vegetable Peel Beads for the Simultaneous Removal of Heavy Metals by Biosorption. Environ. Technol. 2020, 43, 1935–1952. [Google Scholar] [CrossRef]
- Al-Qahtani, K.M. Water Purification Using Different Waste Fruit Cortexes for the Removal of Heavy Metals. J. Taibah Univ. Sci. 2016, 10, 700–708. [Google Scholar] [CrossRef]
- Ayub, A.; Irfan, M.; Rizwan, M.; Irfan, A. Development of Sustainable Magnetic Chitosan Biosorbent Beads for Kinetic Remediation of Arsenic Contaminated Water. Int. J. Biol. Macromol. 2020, 163, 603–617. [Google Scholar] [CrossRef]
- Ashfaq, A.; Nadeem, R.; Bibi, S.; Rashid, U.; Hanif, A.; Jahan, N.; Ashfaq, Z.; Ahmed, Z.; Adil, M.; Naz, M. Efficient Adsorption of Lead Ions from Synthetic Wastewater Using Agrowaste-Based Mixed Biomass (Potato Peels and Banana Peels). Water 2021, 13, 3344. [Google Scholar] [CrossRef]
- He, C.; Lin, H.; Dai, L.; Qiu, R.; Tang, Y.; Wang, Y.; Duan, P.G.; Ok, Y.S. Waste Shrimp Shell-Derived Hydrochar as an Emergent Material for Methyl Orange Removal in Aqueous Solutions. Environ. Int. 2020, 134, 105340. [Google Scholar] [CrossRef] [PubMed]
- Daochalermwong, A.; Chanka, N.; Songsrirote, K.; Dittanet, P.; Niamnuy, C.; Seubsai, A. Removal of Heavy Metal Ions Using Modified Celluloses Prepared from Pineapple Leaf Fiber. ACS Omega 2020, 5, 5285–5296. [Google Scholar] [CrossRef]
- Kainth, S.; Sharma, P.; Pandey, O.P. Green Sorbents from Agricultural Wastes: A Review of Sustainable Adsorption Materials. Appl. Surf. Sci. Adv. 2024, 19, 100562. [Google Scholar] [CrossRef]
- Panahi, S.; Ghaemi, A.; Rahimpour, F. A Sustainable Aminated Cellulose-Based Adsorbent for CO2 Capture: Synthesis, Characterization, and Adsorption Performance. J. Hazard. Mater. Adv. 2025, 19, 100812. [Google Scholar] [CrossRef]
- El Mahdaoui, A.; Radi, S.; Elidrissi, A.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Moura, N.M.M. Progress in the Modification of Cellulose-Based Adsorbents for the Removal of Toxic Heavy Metal Ions. J. Environ. Chem. Eng. 2024, 12, 113870. [Google Scholar] [CrossRef]
- Kim, Y.; Jeong, D.; Park, K.H.; Yu, J.H.; Jung, S. Efficient Adsorption on Benzoyl and Stearoyl Cellulose to Remove Phenanthrene and Pyrene from Aqueous Solution. Polymers 2018, 10, 1042. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
- Bouramdane, Y.; Fellak, S.; El Mansouri, F.; Boukir, A. Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-Ray Diffraction (XRD). Fermentation 2022, 8, 698. [Google Scholar] [CrossRef]
- Dai, F.; Zhuang, Q.; Huang, G.; Deng, H.; Zhang, X. Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega 2023, 8, 17064–17076. [Google Scholar] [CrossRef]
- Lehto, J.; Louhelainen, J.; Kłosińska, T.; Drożdżek, M.; Alén, R. Characterization of Alkali-Extracted Wood by FTIR-ATR Spectroscopy. Biomass Convers. Biorefin. 2018, 8, 847–855. [Google Scholar] [CrossRef]
- Iamsaard, K.; Weng, C.H.; Yen, L.T.; Tzeng, J.H.; Poonpakdee, C.; Lin, Y.T. Adsorption of Metal on Pineapple Leaf Biochar: Key Affecting Factors, Mechanism Identification, and Regeneration Evaluation. Bioresour. Technol. 2022, 344, 126131. [Google Scholar] [CrossRef]
- Sohail, A.; Javed, S.; Khan, M.U.; Umar, A. Biosorption of Heavy Metals onto the Bark of Prosopis Spicigira: A Kinetic Study for the Removal of Water Toxicity. Am. Eurasian J. Toxicol. Sci. 2015, 7, 300–315. [Google Scholar]
- Król, A.; Mizerna, K.; Bożym, M. An Assessment of PH-Dependent Release and Mobility of Heavy Metals from Metallurgical Slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.G.; Tywabi-Ngeva, Z. Application of Pineapple Waste to the Removal of Toxic Contaminants: A Review. Toxics 2022, 10, 561. [Google Scholar] [CrossRef]
- Sukprom, T.; Chanklang, S.; Roddecha, S.; Niamnuy, C.; Prapainainar, P.; Seubsai, A. Lead Ions Removal Using Pineapple Leaf-Based Modified Celluloses. Appl. Sci. Eng. Prog. 2023, 16, 6002. [Google Scholar] [CrossRef]
- Ayob, A.; Zamre, N.M.; Izzati, N.; Ariffin, M.; Hidayu, N.; Rani, A.; Mohamad, F. Pineapple Waste as an Adsorbent to Remove Lead from Synthetic Wastewater. Int. J. Latest Res. Eng. Manag. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Thakur, H.; Gupta, V. Assessing the Lead Removal Potential of Pineapple Waste Hydrochar in Simulated Wastewater Treatment. Int. J. Sustain. Appl. Sci. 2024, 2, 341–352. [Google Scholar] [CrossRef]
- Khanzada, A.K.; Al-Hazmi, H.E.; Kurniawan, T.A.; Majtacz, J.; Piechota, G.; Kumar, G.; Ezzati, P.; Saeb, M.R.; Rabiee, N.; Karimi-Maleh, H.; et al. Hydrochar as a Bio-Based Adsorbent for Heavy Metals Removal: A Review of Production Processes, Adsorption Mechanisms, Kinetic Models, Regeneration and Reusability. Sci. Total Environ. 2024, 945, 173972. [Google Scholar] [CrossRef] [PubMed]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Vivian Loh, Z.T.; Ping, T.Y.; Abdullah, A.H. Removal of Pb(II) from Aqueous Solution by Pineapple Plant Stem. Malays. J. Anal. Sci. 2019, 23, 219–228. [Google Scholar] [CrossRef]
- Turkmen Koc, S.N.; Kipcak, A.S.; Moroydor Derun, E.; Tugrul, N. Removal of Zinc from Wastewater Using Orange, Pineapple and Pomegranate Peels. Int. J. Environ. Sci. Technol. 2021, 18, 2781–2792. [Google Scholar] [CrossRef]
- Ali, M.H.H.; Abdel-Satar, A.M. Removal of Some Heavy Metals from Aqueous Solutions Using Natural Wastes Orange Peel Activated Carbon. IJRDO-J. Appl. Sci. 2017, 3, 13–30. [Google Scholar]
- Akinhanmi, T.F.; Ofudje, E.A.; Adeogun, A.I.; Aina, P.; Joseph, I.M. Orange Peel as Low-Cost Adsorbent in the Elimination of Cd(II) Ion: Kinetics, Isotherm, Thermodynamic and Optimization Evaluations. Bioresour. Bioprocess. 2020, 7, 34. [Google Scholar] [CrossRef]
- Singh, R.J.; Martin, C.E.; Barr, D.; Rosengren, R.J. Immobilised Apple Peel Bead Biosorbent for the Simultaneous Removal of Heavy Metals from Cocktail Solution. Cogent Environ. Sci. 2019, 5, 1673116. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Gonzalez-Delgado, A.D.; Villabona-Ortiz, A. Removal of Cr (VI) from Aqueous Solution Using Orange Peel-Based Biosorbents. Indian J. Sci. Technol. 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Gönen, F.; Serin, D.S. Adsorption Study on Orange Peel: Removal of Ni(II) Ions from Aqueous Solution. Afr. J. Biotechnol. 2012, 11, 1250–1258. [Google Scholar] [CrossRef]
- Khumnuan, C.; Moung-On, A.; Mougin, K.; Amornsakchai, P. Effect of Preparation Conditions on Heavy Metal Adsorption Characteristics of Activated Carbon Prepared from Non-Fibrous Material of Pineapple Leaves. Key Eng. Mater. 2019, 824, 114–120. [Google Scholar] [CrossRef]
- Subki, N.S.; Hashim, R.; Muslim, N.Z.M. Heavy Metals Adsorption by Pineapple Wastes Activated Carbon: KOH and ZnCl2 Activation. AIP Conf. Proc. 2019, 2068, 020035. [Google Scholar] [CrossRef]
- Mopoung, R.; Kengkhetkit, N. Lead and Cadmium Removal Efficiency from Aqueous Solution by NaOH Treated Pineapple Waste. Int. J. Appl. Chem. 2016, 12, 23–35. [Google Scholar]
- Deewan, R.; Tanboonchuy, V.; Khamdahsag, P.; Yan, D.Y.S. Utilization of Agricultural Waste: Mango Peels and Pineapple Crown Leaves as Precursors for Nanomaterial Production for Arsenate Remediation. Environ. Sci. Pollut. Res. 2025, 32, 14508–14526. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Zhang, S.; Cao, Y.; Zhong, Q.; Wang, G.; Li, T.; Xu, X. Remediation of Cadmium, Lead and Zinc in Contaminated Soil with CETSA and MA/AA. J. Hazard. Mater. 2019, 366, 177–183. [Google Scholar] [CrossRef]
- Ouyang, K.; Li, K.; Tang, Y.; Yang, H.; Chen, X.; Li, Q.; You, P.; Zhou, R.; Ning, P.; Bao, S. Sustainable Immobilization of Cadmium, Lead, and Arsenic in Contaminated Soils Using Iron–Phosphorus–Thiol-Functionalized Trachycarpus Fortunei Hydrochar. Sustainability 2025, 17, 2759. [Google Scholar] [CrossRef]
- Ahmad, A.; Khatoon, A.; Mohd-Setapar, S.H.; Kumar, R.; Rafatullah, M. Chemically Oxidized Pineapple Fruit Peel for the Biosorption of Heavy Metals from Aqueous Solutions. Desalin. Water Treat. 2016, 57, 6432–6442. [Google Scholar] [CrossRef]
- García-Rosales, G.; Longoria-Gándara, L.C.; Cruz-Cruz, G.J.; Olayo-González, M.G.; Mejía-Cuero, R.; Pérez, P.Á. Fe-TiOx Nanoparticles on Pineapple Peel: Synthesis, Characterization and As(V) Sorption. Environ. Nanotechnol. Monit. Manag. 2018, 9, 112–121. [Google Scholar] [CrossRef]












| Models | Parameters | As5+ | Cd2+ | Pb2+ |
|---|---|---|---|---|
| Langmuir | qmax (mg/g) | 16.27 | 37.23 | 63.45 |
| KL (L/mg) | 0.3963 | 0.2949 | 0.3221 | |
| RL | 0.6126 | 0.3951 | 0.4132 | |
| R2 | 0.9687 | 0.9999 | 0.9999 | |
| Freundlich | KF (mg/g) | 14.36 | 25.69 | 69.63 |
| 1/n | 0.4423 | 0.3041 | 0.4851 | |
| R2 | 0.9929 | 0.9896 | 0.9998 | |
| Pseudo-first order | qe,cal (mg/g) | 1.9321 | 2.1291 | 2.1568 |
| k1 (min−1) | 3.05 × 10−4 | 5.20 × 10−4 | 5.32 × 10−4 | |
| r2 | 0.9898 | 0.8993 | 0.9937 | |
| Pseudo-second order | qe,cal (mg/g) | 4.1132 | 4.8562 | 6.5264 |
| k2 (g mg−1 min−1) | 0.0925 | 0.0563 | 0.0825 | |
| r2 | 0.9761 | 0.9916 | 0.9995 |
| Biosorbents | As5+ | Cd2+ | Pb2+ | Optical Conditions | Reference |
|---|---|---|---|---|---|
| Pineapple waste biochar | NA | NA | 55.68% | Time: 60 min; pH: 4.0 Temperature: 60 °C | [55] |
| Pineapple waste | NA | >95% | >95% | Time: 30–60 min; pH: 4.0 Temperature: 30–60 °C | [67] |
| Activated carbon of pineapple leaf | NA | NA | 92.67% | Time: 120 min; pH: 6.0 Adsorbent mass: 100 mg Carbonization temperature: 500 °C | [65] |
| Pineapple core activated carbon | NA | NA | 51.47% | Time: 24 h pH: 6.0–8.0 Temperature: 30 °C | [66] |
| Modified pineapple waste | NA | NA | 85.88% | Time: 60 min; pH: 4.0 Temperature: 60 °C | [54] |
| Pineapple leaves modified with EDTA | NA | 33.2 mg/g | 41.2 mg/g | Time: 90 min; pH: 6. Temperature: 25 °C | [40] |
| Pineapple leaves modified with carboxymethyl | NA | 23.0 mg/g | 63.4 mg/g | Time: 90 min; pH: 6. Temperature: 25 °C | [40] |
| Chemically oxidized pineapple fruit peel | NA | 42.10 mg/g | 28.55 mg/g | Time: 30 min; pH: 4.0 Temperature: 25 °C | [71] |
| Natural pineapple plant stem | NA | NA | 14.25 mg/g | Time: 60 min; pH: 5.0 Temperature: 25 °C | [58] |
| Oxylic acid pineapple plant stem | NA | NA | 30.47 mg/g | Time: 60 min; pH: 4.0 Temperature: 25 °C | [58] |
| Fe-TiOx magnetic nanoparticles of pineapple peel | 40 mg/g | NA | NA | Time: 900 min; pH: 5.5 Temperature: 20 °C | [72] |
| Pineapple leaves cellulose | 5.48 mg/g | NA | NA | Lower pH, higher adsorbent dose, and lower initial arsenate concentration enhanced removal efficiency | [68] |
| Pineapple leaves cellulose | 42.40% (16.27 mg/g) | 98.44% (37.23 mg/g) | 99.53% (63.45 mg/g) | Time: 120 min; pH: 6.0 Temperature: 28 ± 1 °C | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rahman, A. Remediation of Heavy Metals (Arsenic, Cadmium, and Lead) from Wastewater Utilizing Cellulose from Pineapple Leaves. Processes 2026, 14, 159. https://doi.org/10.3390/pr14010159
Rahman A. Remediation of Heavy Metals (Arsenic, Cadmium, and Lead) from Wastewater Utilizing Cellulose from Pineapple Leaves. Processes. 2026; 14(1):159. https://doi.org/10.3390/pr14010159
Chicago/Turabian StyleRahman, Aminur. 2026. "Remediation of Heavy Metals (Arsenic, Cadmium, and Lead) from Wastewater Utilizing Cellulose from Pineapple Leaves" Processes 14, no. 1: 159. https://doi.org/10.3390/pr14010159
APA StyleRahman, A. (2026). Remediation of Heavy Metals (Arsenic, Cadmium, and Lead) from Wastewater Utilizing Cellulose from Pineapple Leaves. Processes, 14(1), 159. https://doi.org/10.3390/pr14010159

