Experimental Investigation of Very High Cycle Fatigue and Fatigue Crack Growth Behaviors of X17CrNi15-2 Stainless Steel
Abstract
1. Introduction
2. Experimental
2.1. Test Material and Specimens
2.2. Test Apparatus and Procedure
3. Results and Analyses
3.1. S-N Data for VHCF
3.2. Fatigue Crack Growth
3.3. SEM Morphology Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, J.E. The Reciprocating Pump Theory Design and Use; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Kariya, K.; Kawagoishi, N. Effect of humidity on initiation and propagation properties of a fatigue crack of maraging steel. Res. Rep. 2013, 25, 59–67. [Google Scholar]
- Li, C.; Li, X.; Xu, X.H.; Lv, Z.P.; Cui, T.M.; Pan, D.; Chen, J.J.; Zheng, H.; Yang, S.L.; Zhong, Z.M. Low-Frequency Corrosion Fatigue Crack Propagation Behavior of 316LN Stainless Steel at Different Temperatures. Corros. Prot. 2025, 46, 60–65. [Google Scholar] [CrossRef]
- Li, R.; Wei, W.S.; Li, S.B.; Zhao, R.; Liu, H.; Zhang, J.K.; Ye, J.; Wu, H.G.; Xu, Y.; Xiao, F.; et al. The influence of ceramic coating on fatigue crack growth behaviour of X17CrNi15-2 stainless steel. Engineering 2020, 12, 140–149. [Google Scholar] [CrossRef]
- Milella, P. Fatigue and Corrosion in Metals; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Murakami, Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Krupp, U.; Söker, M.; Giertler, A.; Dönges, B.; Christ, H.J.; Wackermann, K.; Boll, T.; Thuvander, M.; Marinelli, M.C. The potential of spinodal ferrite decomposition for increasing the very high cycle fatigue strength of duplex stainless steel. Int. J. Fatigue 2016, 93, 363–371. [Google Scholar] [CrossRef]
- Sun, C.Q.; Song, Q.Y.; Zhou, L.L.; Pan, X.N. Characteristic of interior crack initiation and early growth for high cycle and very high cycle fatigue of a martensitic stainless steel. Mater. Sci. Eng. A 2019, 758, 112–120. [Google Scholar] [CrossRef]
- Li, X.; Dai, Y.J.; Wang, X.Y.; Liu, Y.J.; Chen, Y.; Wang, C.; Zhang, H.; Li, L.; Liu, H.Q.; He, C.; et al. Effects of local microstructure on crack initiation in super martensitic stainless steel under very-high-cycle fatigue. Int. J. Fatigue 2022, 163, 107019. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, H.L.; Yan, L.C.; Pang, X.L.; Gao, K.W. Effect of aging time on crack initiation mechanism of precipitation hardening stainless steel in very high cycle fatigue regime. Int. J. Fatigue 2023, 170, 107522. [Google Scholar] [CrossRef]
- Karr, U.; Pennings, B.; Tran, D.; Myer, H. Development of nitrided 18Ni maraging steel to optimise the very high cycle fatigue properties. In Proceedings of the Seventh International Conference on Very High Cycle Fatigue, Dresden, Germany, 3–5 July 2017. [Google Scholar]
- Wang, J.L.; Yang, Y.X.; Yu, J.; Wang, J.S.; Du, F.M.; Zhang, Y.L. Fatigue life evaluation considering fatigue reliability and fatigue crack for FV520B-I in VHCF regime based on fracture mechanics. Metals 2020, 10, 371. [Google Scholar] [CrossRef]
- Song, Q.Y.; Sun, C.Q. Mechanism of crack initiation and early growth of high strength steels in very high cycle fatigue regime. Mater. Sci. Eng. A 2020, 771, 138648. [Google Scholar] [CrossRef]
- Fan, F.F.; Kalnaus, S.; Jiang, Y.Y. Modeling of fatigue crack growth of stainless steel 304L. Mech. Mater. 2008, 40, 961–973. [Google Scholar] [CrossRef]
- Nie, D.F.; Mutoh, Y. Fatigue limit prediction of the matrix of 17-4PH stainless steel based on small crack mechanics. J. Press. Vessel Technol. 2013, 135, 021407. [Google Scholar] [CrossRef]
- Chai, M.Y.; Zhang, Z.X.; Duan, Q.; Song, Y. Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy. Int. J. Fatigue 2018, 109, 145–156. [Google Scholar] [CrossRef]
- Kamaya, M. Fatigue crack tolerance design for stainless steel by crack growth analysis. Eng. Fract. Mech. 2017, 177, 14–32. [Google Scholar] [CrossRef]
- Sajith, S.; Shukla, S.S.; Murthy, K.S.R.K.; Robi, P.S. Mixed mode fatigue crack growth studies in AISI 316 stainless steel. Eur. J. Mech. A Solids 2020, 80, 103898. [Google Scholar] [CrossRef]
- GB/T 43896-2024; Metallic Materials-Very High Cycle Fatigue-Ultrasonic Fatigue Test Method. China Standardization Administration: Beijing, China, 2012.
- ISO 12108-2018; Metallic Materials-Fatigue Testing-Fatigue Crack Growth Method. International Organization for Standardization: Geneva, Swiss, 2018.
- Zhang, X.; Zhang, Z.L.; Chen, Y.; Liu, Y.; Yang, X.; Zhou, F.; Rong, P.; Chen, H. Microstructure and mechanical properties of TC11 titanium alloy obtained by laser wire additive manufacturing. J. Sichuan Univ. (Nat. Sci. Ed.) 2025, 62, 785–792. [Google Scholar] [CrossRef]
- Preston, D.; Sanmartin, D.R.; Watts, J.; Wright, J. Controlled seeding of contact cracks in test pieces for the evaluation and validation of non-destructive testing systems. F1000Research 2023, 12, 1103. [Google Scholar] [CrossRef]
- Firdaus, S.M.; Arifin, A.; Abdullah, S.; Singh, S.S.K.; Nor, N.M. Fatigue life assessment of API steel Grade X65 pipeline using a modified Basquin parameter of the magnetic flux leakage signal. Materials 2023, 16, 464. [Google Scholar] [CrossRef] [PubMed]
Mean Stress (MPa) | Fatigue Lives N (Cycles) | ||
---|---|---|---|
100 | 1,728,092,773 | 1,728,067,856 | 1,728,070,000 |
150 | 1,492,734,787 | 1,492,728,658 | 1,492,730,000 |
200 | 1,257,419,343 | 1,257,397,177 | 1,257,400,000 |
250 | 1,022,075,054 | 1,022,058,218 | 1,022,060,000 |
300 | 786,748,915 | 786,719,456 | 786,722,000 |
350 | 415,000,000 | 411,000,000 | 407,000,000 |
400 | 238,000,000 | 237,000,000 | 233,000,000 |
450 | 61,500,000 | 61,300,000 | 60,100,000 |
500 | 7,200,000 | 7,170,000 | 7,040,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Liu, F.; Wu, M.; Wei, W.; Lai, Y.; Liu, H.; Ye, J.; Cao, T.; Li, J.; Li, W. Experimental Investigation of Very High Cycle Fatigue and Fatigue Crack Growth Behaviors of X17CrNi15-2 Stainless Steel. Processes 2025, 13, 3004. https://doi.org/10.3390/pr13093004
Li R, Liu F, Wu M, Wei W, Lai Y, Liu H, Ye J, Cao T, Li J, Li W. Experimental Investigation of Very High Cycle Fatigue and Fatigue Crack Growth Behaviors of X17CrNi15-2 Stainless Steel. Processes. 2025; 13(9):3004. https://doi.org/10.3390/pr13093004
Chicago/Turabian StyleLi, Ran, Fengcai Liu, Mengyu Wu, Wenshu Wei, Yuehua Lai, Hao Liu, Jian Ye, Tianze Cao, Jianfeng Li, and Wenbo Li. 2025. "Experimental Investigation of Very High Cycle Fatigue and Fatigue Crack Growth Behaviors of X17CrNi15-2 Stainless Steel" Processes 13, no. 9: 3004. https://doi.org/10.3390/pr13093004
APA StyleLi, R., Liu, F., Wu, M., Wei, W., Lai, Y., Liu, H., Ye, J., Cao, T., Li, J., & Li, W. (2025). Experimental Investigation of Very High Cycle Fatigue and Fatigue Crack Growth Behaviors of X17CrNi15-2 Stainless Steel. Processes, 13(9), 3004. https://doi.org/10.3390/pr13093004