Sustainability Evaluation and Process Optimization of Mechanical Manufacturing Systems Based on Emergy Theory
Abstract
1. Introduction
2. Literature Review
2.1. The Connotation of Sustainable Manufacturing
2.2. System and Method for Sustainability Evaluation of Mechanical Manufacturing Systems
2.3. Pathways to Sustainable Implementation in Mechanical Manufacturing Systems
3. Research Methods and Indicator System Construction
3.1. Emergy Theory
3.2. Emergy Flow Diagram Construction
3.3. Data Collection, Processing and Emergy Measurement
3.4. Establish an Emergy Evaluation Indicator System
3.4.1. Economic Benefit Index
3.4.2. Social Benefit Index
3.4.3. Ecological Benefit Index
3.4.4. Improved Emergy Sustainable Index
4. Sustainability Evaluation of Mechanical Manufacturing Systems
4.1. Case Background
4.2. Data Collection and Processing
4.3. Results and Analysis
5. Sustainability Optimization and Improvement of Mechanical Manufacturing Systems
5.1. Optimization of Precision Processing Technology
5.2. Casting Process Optimization
5.3. Post-Optimization Simulation and Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anonymous. Innovation and service: Essentials lead to great success—A visit to some Swiss textile machinery manufacturers and testing company. China Text. Lead. 2008, 5, 16+18+20–29. [Google Scholar]
- Jeong, H.-Y. The Korean Shipbuilding Industries: Retrospect and Prospect. J. Marit. Bus. 2015, 30, 79–115. [Google Scholar]
- Sun, J.Y. Comparative Study of Automobile Industry Competitive Strength between China and Korea. Glob. Bus. Adm. Rev. 2011, 8, 43–59. [Google Scholar]
- Zhao, M.H. Behaviors of Korean Government on High-Tech Industries and Illuminations to China. Master’s Thesis, Tsinghua University, Beijing, China, 2006. [Google Scholar]
- Redkva, O. Methodological prerequisites for ensuring the economic security of the machine-building complex of Ukraine. Econ. Ecol. Soc. 2022, 6, 22–29. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2024. [Google Scholar]
- Yadegari, M.J.; Martucci, A.; Biamino, S.; Ugues, D.; Montanaro, L.; Fino, P.; Lombardi, M. Aluminum laser additive manufacturing: A review on challenges and opportunities through the lens of sustainability. Appl. Sci. 2025, 15, 4. [Google Scholar] [CrossRef]
- Cai, W.; Liu, F.; Xie, J.; Zhou, X. An energy management approach for the mechanical manufacturing industry through developing a multi-objective energy benchmark. Energy Convers. Manag. 2016, 132, 361–371. [Google Scholar] [CrossRef]
- Daniel, N.A.; Sindhwani, R.; Kumar, R.; Mathiyazhagan, K. Identifying the drivers and barriers for the implementation of sustainable manufacturing. Int. J. Logist. Syst. Manag. 2024, 48, 532–559. [Google Scholar] [CrossRef]
- Acquah, I.S.K.; Quaicoe, J.; Gatsi, J.G. Modelling circular economy capabilities and sustainable manufacturing practices for environmental performance: Assessing linear and non-linear effects. Technol. Forecast. Soc. Change 2024, 205, 123501. [Google Scholar] [CrossRef]
- Aminuddin, A.S.A.; Nawawi, M.K.M.; Mohamed, N.M.Z.N. Analytic network process model for sustainable lean and green manufacturing performance indicator. AIP Conf. Proc. 2013, 1613, 32–38. [Google Scholar]
- Bilge, P.; Badurdeen, F.; Seliger, G.; Jawahir, I.S. A novel manufacturing architecture for sustainable value creation. CIRP Ann. 2016, 65, 455–458. [Google Scholar] [CrossRef]
- Thirupathi, R.M.; Vinodh, S.; Dhanasekaran, S. State-of-art review on strategies, tools and indicators of sustainable manufacturing. Int. J. Serv. Oper. Manag. 2021, 40, 68–86. [Google Scholar] [CrossRef]
- Abdul-Rashid, S.H.; Sakundarini, N.; Ariffin, R.; Ramayah, T. Drivers for the adoption of sustainable manufacturing practices: A Malaysia perspective. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 1619–1631. [Google Scholar] [CrossRef]
- Niewiadomski, P.; Stachowiak, A. Identification of barriers to sustainable manufacturing implementation—The perspective of manufacturers of parts and components for agricultural transport. Sustainability 2024, 16, 2244. [Google Scholar] [CrossRef]
- Li, Y.B.; Palaniappan, M.; Alsaleh, N.; Kumar, D.T.; Elfar, A.A.; Pinto, M.C.B.; Torres, A.M. Decision analysis on sustainable manufacturing practices: Cross-country perspective. Ann. Oper. Res. 2025, 345, 277–315. [Google Scholar] [CrossRef]
- Cai, W.; Liu, C.H.; Lai, K.H.; Li, L.; Cunha, J.; Hu, L.K. Energy performance certification in mechanical manufacturing industry: A review and analysis. Energy Convers. Manag. 2019, 186, 415–432. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Wang, X. Quantitative evaluation model of the quality of remanufactured product. IEEE Trans. Eng. Manag. 2023, 71, 7413–7424. [Google Scholar] [CrossRef]
- Hidimoglu, M.B.; Feyzioglu, A.; Haliloglu, H.; Gok, A.E. Prioritizing sustainability innovation in machinery manufacturing: A multi-criteria decision-making case study. Sustainability 2025, 17, 5499. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhang, C.X.; Wang, C. An emergy-based sustainability method for mechanical production process—A case study. Processes 2022, 10, 1692. [Google Scholar] [CrossRef]
- Sun, H.M.; Liu, C.H.; Chen, J.Q.; Gao, M.D.; Shen, X.H. A novel method of sustainability evaluation in machining processes. Processes 2019, 7, 275. [Google Scholar] [CrossRef]
- Xu, S.; Murugesan, T.M.; Elfar, A.A.A.; Durairaj, M.P.R. Evaluation of sustainable manufacturing performance—A case illustration with multistakeholder perspective. J. Clean Prod. 2024, 458, 142368. [Google Scholar] [CrossRef]
- Dickcha, B.; Callychurn, D.S.; Hurreeram, D.K. Developing a sustainability index for Mauritian manufacturing companies. Ecol. Indic. 2019, 96, 250–257. [Google Scholar] [CrossRef]
- Hegab, H.A.; Darras, B.; Kishawy, H.A. Towards sustainability assessment of machining processes. J. Clean. Prod. 2018, 170, 694–703. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Wei, Z.; Gupta, M.K.; Khan, A.M. A novel quantifiable approach of estimating energy consumption, carbon emissions and cost factors in manufacturing of bearing steel based on triple bottom-line approach. Sustain. Mater. Technol. 2023, 36, e00593. [Google Scholar] [CrossRef]
- de Bezerra Araujo, J.; de Gores Oliveira, J.F. Towards a balanced scoreboard for assessing manufacturing process sustainability. Int. J. Bus. Perform. Manag. 2012, 13, 198–221. [Google Scholar] [CrossRef]
- Rathi, R.; Kaswan, M.S.; Garza-Reyes, J.A.; Antony, J.; Cross, J. Green Lean Six Sigma for improving manufacturing sustainability: Framework development and validation. J. Clean. Prod. 2022, 345, 131130. [Google Scholar] [CrossRef]
- Selicati, V.; Cardinale, N.; Dassisti, M. The interoperability of exergy and life cycle thinking in assessing manufacturing sustainability: A review of hybrid approaches. J. Clean. Prod. 2021, 286, 124932. [Google Scholar] [CrossRef]
- Hasrulnizzam Wan Mahmood, W.; Abdullah, I.; Fauadi, M.H.F.M. Translating OEE measure into manufacturing sustainability. Appl. Mech. Mater. 2015, 761, 555–559. [Google Scholar] [CrossRef]
- Liu, C.; Cai, W.; Zhang, C.; Jia, S.; Zhang, M.; Guo, H.; Hu, L. Data-driven intelligent control system in remanufacturing assembly for production and resource efficiency. Int. J. Adv. Manuf. Technol. 2023, 128, 3531–3544. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Cai, W. Data-driven remanufacturability evaluation method of waste parts. IEEE Trans. Ind. Inform. 2022, 18, 4587–4595. [Google Scholar] [CrossRef]
- Xia, T.B.; An, X.X.; Yang, H.Q.; Jiang, Y.M.; Xu, Y.H.; Zheng, M.M.; Pan, E.R. Efficient energy use in manufacturing systems—Modeling, assessment, and management strategy. Energies 2023, 16, 1095. [Google Scholar] [CrossRef]
- Alimuzzaman, S.M.; Jahan, M.P.; Rakurty, C.S.; Rangasamy, N.; Ma, J.F. Cutting fluids in metal AM: A review of sustainability and efficiency. J. Manuf. Process. 2023, 106, 51–87. [Google Scholar] [CrossRef]
- May, G.; Psarommatis, F. Maximizing energy efficiency in additive manufacturing: A review and framework for future research. Energies 2023, 16, 4179. [Google Scholar] [CrossRef]
- Lodha, S.; Song, B.; Park, S.I.; Choi, H.J.; Lee, S.W.; Park, H.W.; Choi, S.K. Sustainable 3D printing with recycled materials: A review. J. Mech. Sci. Technol. 2023, 37, 5481–5507. [Google Scholar] [CrossRef]
- Srivastava, M.; Aftab, J.; Tyll, L. The influence of artificial intelligence and additive manufacturing on sustainable manufacturing practices and their effect on performance. Sustain. Futures 2025, 10, 100820. [Google Scholar] [CrossRef]
- Sefene, E.M.; Hailu, Y.M.; Tsegaw, A.A. Metal hybrid additive manufacturing: State-of-the-art. Prog. Addit. Manuf. 2022, 7, 737–749. [Google Scholar] [CrossRef]
- Wu, M.M. The application of artificial intelligence technology in mechanical manufacturing and automation. Scalable Comput. Pract. Exp. 2024, 25, 5383–5390. [Google Scholar] [CrossRef]
- Wang, K.Y.; Zhang, P.Y.; Pang, B. Process and mechanism of agricultural irrigation benefit allocation coefficient based on emergy analysis—A case study of Henan, China. Sustainability 2018, 10, 4436. [Google Scholar] [CrossRef]
- Hu, M.; Bian, Y.T.; Ji, G.X. Assessing the sustainability of China’s coastal regions: A perspective on local coupling and telecoupling. Ecol. Model. 2024, 501, 110974. [Google Scholar] [CrossRef]
- Si, X.X.; Zhang, C.X.; Liu, F. Assessment and suggestions on sustainable development of regional ecological economy based on emergy theory: A case study of Henan Province. Sustainability 2023, 15, 12495. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Y.L.; Liu, C.H.; Xu, G.W.; Guo, Y.X.; Liu, F.; Wang, Y. Sustainability of regional agro-ecological economic system based on emergy theory: A case study of Anhui Province, China. Sustainability 2021, 13, 8317. [Google Scholar] [CrossRef]
- De La Fuente, G.; Asnaghi, V.; Chiantore, M.; Thrush, S.; Povero, P.; Vassallo, P.; Petrillo, M.; Paoli, C. The effect of Cystoseira canopy on the value of mid-littoral habitats in NW Mediterranean, an emergy assessment. Ecol. Model. 2019, 404, 1–11. [Google Scholar] [CrossRef]
- Ren, S.Y.; Feng, X.; Yang, M.B. Solution of issues in emergy theory caused by pathway tracking: Taking China’s power generation system as an example. Energy 2022, 262, 125596. [Google Scholar] [CrossRef]
- Liu, C.; Cai, W.; Jia, S.; Zhang, M.; Guo, H.; Hu, L.; Jiang, Z. Emergy-based evaluation and improvement for sustainable manufacturing systems considering resource efficiency and environmental performance. Energy Convers. Manag. 2018, 177, 176–189. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhang, J.H. Progress and its enlightenments in application research on emergy theory. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011. [Google Scholar]
- Cao, M.L.; Fang, M.; Li, Y.; Zhang, H.X. Evaluation of sustainability of cement manufactory based on emergy theory. J. Dalian Univ. Technol. 2013, 53, 766–771. [Google Scholar]
- Odum, H.T. Environmental Accounting. In Emergy and Environmental Decision Making; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Lan, S.F.; Qin, P.; Lu, H.F. Emergy Analysis of Ecological Economic Systems; Chemical Industry Press: Beijing, China, 2002. [Google Scholar]
- Lan, S.F.; Qin, P. Emergy Analysis of Ecosystems. J. Appl. Ecol. 2001, 12, 129–131. [Google Scholar]
CK6140 CNC Lathe | Special Machine | Z3050 Radial Drilling Machine | |
---|---|---|---|
Unit Price (CNY) | 120,000 | 80,000 | 55,000 |
Power (kw) | 2.2 | 1.8 | 3 |
Emergy (sej) | 1.84 × 105 | 5.68 × 104 | 3.69 × 107 |
Collection Object | Unit | Transformity (sej/unit) | Raw Data | Solar Emergy (sej) |
---|---|---|---|---|
Renewable resources input | ||||
1. Solar energy | J | 1 | 1.80 × 105 | 1.80 × 105 |
2. Wind power | J | 1.90 × 103 | 1.00 × 102 | 1.90 × 105 |
3. Rainwater potential energy | J | 3.54 × 104 | 4.14 × 101 | 1.47 × 106 |
4. Rainwater chemical energy | J | 2.31 × 104 | 9.21 × 100 | 2.13 × 105 |
5. Geothermal energy | J | 4.37 × 104 | 4.25 × 101 | 1.86 × 106 |
6. Industry water | g | 4.10 × 106 | 4.69 × 1010 | 1.92 × 1017 |
Total | 1.92 × 1017 | |||
Non-renewable resources input | ||||
7. Thermal power | J | 2.78 × 105 | 2.18 × 108 | 6.06 × 1013 |
8. Diesel fuel | J | 1.07 × 105 | 3.59 × 107 | 3.84 × 1012 |
9. Coke | J | 6.44 × 104 | 3.48 × 107 | 2.24 × 1012 |
Total | 6.67 × 1013 | |||
Purchase emergy input | ||||
Casting process | ||||
10. Sand mixer | CNY | 8.61 × 1011 | 1.13 × 104 | 9.73 × 1015 |
11. Shovel | CNY | 8.61 × 1011 | 1.17 × 101 | 1.01 × 1013 |
12. Metal mold | CNY | 8.61 × 1011 | 2.48 × 101 | 2.14 × 1013 |
13. Film-coated sand | CNY | 8.61 × 1011 | 5.23 × 100 | 4.50 × 1012 |
14. Styling machine | CNY | 8.61 × 1011 | 4.98 × 104 | 4.29 × 1016 |
15. Sandbox | CNY | 8.61 × 1011 | 3.32 × 102 | 2.86 × 1014 |
16. Electric furnace | CNY | 8.61 × 1011 | 1.46 × 104 | 1.26 × 1016 |
17. Iron | g | 2.00 × 1010 | 5.23 × 104 | 1.05 × 1015 |
18. Aluminum | g | 5.40 × 109 | 2.20 × 105 | 1.19 × 1015 |
19. Scrap steel | g | 1.96 × 1010 | 4.50 × 103 | 8.82 × 1013 |
20. Sandblasting machine | CNY | 8.61 × 1011 | 3.32 × 103 | 2.86 × 1015 |
21. Grinding wheel | CNY | 8.61 × 1011 | 5.88 × 101 | 5.06 × 1013 |
22. Cutting machine | CNY | 8.61 × 1011 | 1.08 × 104 | 9.30 × 1015 |
Total | 8.00 × 1016 | |||
Normalization process | ||||
23. Normalizing furnace | CNY | 8.61 × 1011 | 1.24 × 104 | 1.07 × 1016 |
24. Melting Furnace | CNY | 8.61 × 1011 | 2.07 × 104 | 1.78 × 1016 |
Total | 2.85 × 1016 | |||
Rough and fine machining process | ||||
25. CK6140 CNC lathe | CNY | 8.61 × 1011 | 4.40 × 104 | 3.79 × 1016 |
26. Special Machine | CNY | 8.61 × 1011 | 2.17 × 104 | 1.87 × 1016 |
27. Z3050 Radial drilling machine | CNY | 8.61 × 1011 | 6.09 × 104 | 5.24 × 1016 |
28. Coolant | CNY | 8.61 × 1011 | 2.45 × 104 | 2.11 × 1016 |
29. Cutting fluid | CNY | 8.61 × 1011 | 2.27 × 101 | 1.95 × 1013 |
30. Cleaning solution | CNY | 8.61 × 1011 | 1.43 × 104 | 1.23 × 1016 |
31. Fixtures | CNY | 8.61 × 1011 | 1.76 × 101 | 1.52 × 1013 |
Total | 1.11 × 1017 | |||
Inspection process | ||||
32. CCD detector | CNY | 8.61 × 1011 | 5.01 × 104 | 4.31 × 1016 |
33. Quality inspection machine | CNY | 8.61 × 1011 | 2.30 × 104 | 1.98 × 1016 |
Total | 6.29 × 1016 | |||
Spray painting packaging process | ||||
34. Spray painting machine | CNY | 8.61 × 1011 | 1.48 × 104 | 1.27 × 1016 |
35. Paint | CNY | 8.61 × 1011 | 9.56 × 100 | 8.23 × 1012 |
36. Packaging box | CNY | 8.61 × 1011 | 1.42 × 100 | 1.23 × 1012 |
Total | 1.28 × 1016 | |||
Others | ||||
37. Population | pop | 7.80 × 1015 | 1.80 × 101 | 1.40 × 1017 |
38. Employee salary | CNY | 8.61 × 1011 | 7.03 × 102 | 6.05 × 1014 |
39. Labor Service Information | CNY | 8.61 × 1011 | 1.73 × 101 | 1.49 × 1013 |
40. Equipment management | CNY | 8.61 × 1011 | 1.87 × 100 | 1.61 × 1012 |
Total | 1.41 × 1017 | |||
Waste Stream Output | ||||
Casting process | ||||
41. Waste gas | g | 7.24 × 108 | 1.59 × 101 | 1.15 × 1010 |
42. Waste water | g | 9.16 × 109 | 3.91 × 106 | 3.58 × 1016 |
43. Waste residue | g | 2.52 × 108 | 2.27 × 106 | 5.72 × 1014 |
44. Waste liquid | g | 1.24 × 109 | 5.00 × 104 | 6.20 × 1013 |
Total | 3.64 × 1016 | |||
Normalization Process | ||||
45. Waste gas | g | 7.24 × 108 | 3.60 × 10−1 | 2.61 × 108 |
46. Waste residue | g | 2.52 × 108 | 1.00 × 100 | 2.52 × 108 |
47. Waste liquid | g | 1.24 × 109 | 4.23 × 106 | 5.25 × 1015 |
48. Waste water | g | 9.16 × 109 | 7.86 × 105 | 7.20 × 1015 |
Total | 1.24 × 1016 | |||
Rough and fine machining process | ||||
49. Cooling waste liquid | g | 1.24 × 109 | 4.58 × 106 | 5.68 × 1015 |
50. Cutting waste liquid | g | 1.24 × 109 | 1.16 × 107 | 1.43 × 1016 |
51. Cleaning waste liquid | g | 1.24 × 109 | 3.85 × 106 | 4.77 × 1015 |
52. Waste oil | CNY | 8.61 × 1011 | 3.50 × 103 | 3.01 × 1015 |
53. Waste residue | g | 2.52 × 108 | 3.00 × 106 | 7.56 × 1014 |
Total | 2.85 × 1016 | |||
Spray painting packaging process | ||||
54. Waste paint | CNY | 8.61 × 1011 | 4.69 × 100 | 4.04 × 1012 |
55. Total daily output value | CNY | 8.61 × 1011 | 7.06 × 105 | 6.08 × 1017 |
Cutting Speed (mm/min) | Cutting Depth (mm) | Feeding Speed (mm/r) | Feed Rate (mm) | Machining Allowance (mm) | |
---|---|---|---|---|---|
Before optimization | 300 | 0.5 | 0.38 | 0.5 | 0.25 |
After optimization | 250 | 0.3 | 0.22 | 0.4 | 0.18 |
MRR (%) | Yield (%) | Waste Discharge Volume (sej) | Processing Time (s) | |
---|---|---|---|---|
Before optimization | 10 | 90.2 | 1.17 × 1016 | 600 |
After optimization | 7.5 | 95.8 | 1.25 × 1015 | 300 |
Pouring Method | Type of Riser | Pouring Time (s) | Riser Filet (mm) | Coating Method | |
---|---|---|---|---|---|
Before optimization | Enclosed | Conventional riser | 60 | 25 | Artificial paint |
After optimization | Developmental | Insulation Riser | 30 | 28 | Paint machine paint |
Yield (%) | Riser Cost (CNY) | Cost of Casting Coating (CNY) | Waste Liquid Volume (g) | Productivity (%) | |
---|---|---|---|---|---|
Before optimization | 79 | 6.25 | 65 | 5000 | 72 |
After optimization | 85 | 5 | 45 | 2000 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Si, X.; Zhang, Y. Sustainability Evaluation and Process Optimization of Mechanical Manufacturing Systems Based on Emergy Theory. Processes 2025, 13, 2963. https://doi.org/10.3390/pr13092963
Wang Y, Si X, Zhang Y. Sustainability Evaluation and Process Optimization of Mechanical Manufacturing Systems Based on Emergy Theory. Processes. 2025; 13(9):2963. https://doi.org/10.3390/pr13092963
Chicago/Turabian StyleWang, Yuan, Xiaoxiao Si, and Yingyan Zhang. 2025. "Sustainability Evaluation and Process Optimization of Mechanical Manufacturing Systems Based on Emergy Theory" Processes 13, no. 9: 2963. https://doi.org/10.3390/pr13092963
APA StyleWang, Y., Si, X., & Zhang, Y. (2025). Sustainability Evaluation and Process Optimization of Mechanical Manufacturing Systems Based on Emergy Theory. Processes, 13(9), 2963. https://doi.org/10.3390/pr13092963