Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures
Abstract
1. Introduction
2. Theoretical Analysis and Simulation
2.1. Fluid Flow Equation and Model Theory
2.1.1. Flow Control Equation
2.1.2. Turbulence Model
2.1.3. VOF Model
2.2. Finite Element Calculation Model
2.2.1. Geometric Model and Meshing
2.2.2. Calculation Settings and Parameter Values
3. Results
3.1. Pressure and Velocity Distribution Cloud Image
3.1.1. Longitudinal Distribution of Cloud Image Along the Pipeline
3.1.2. Cloud Image of Time-Varying Distribution of Cross-Sectional Pressure and Velocity at Key Parts
3.2. Pipe Fluid Velocity Flow Diagram
3.2.1. Velocity Flow Diagram at the Arc Bend
3.2.2. Velocity Flow Diagram of Horizontal Section of Pipeline
3.3. Influence of Viscosity on Flow Rate
3.3.1. Influence of Horizontal Pipe Section Viscosity on Flow Rate
3.3.2. Influence of Viscosity in Rising/Falling Sections of an Elbow on Flow Rate
3.3.3. Influence of Viscosity on Flow Rate in an Arc Bend Section
3.4. Influence of Viscosity on Pressure
3.5. Influence of Moisture Content on Flow Velocity
3.5.1. Influence of Water Content on Flow Velocity in a Horizontal Section
3.5.2. Influence of Rising Pipe/Falling Pipe Moisture Content on Flow Rate
3.6. Influence of Moisture Content on Pressure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wijayanto, A.P.; Yohana, E.; Tauviqirrahman, M. Impact of Gas-Liquid Two-Phase Flow Patterns in the Suction Chamber of a Centrifugal Pump on Performance Efficiency. Results Eng. 2025, 27, 105718. [Google Scholar] [CrossRef]
- Li, Y. Shale gas seepage model considering stress sensitivity and multi-scale flow. Unconv. Oil Gas 2025, 12, 117–122. [Google Scholar] [CrossRef]
- Kalesh, D.; Merembayev, T.; Omirbekov, S.; Amanbek, Y. Application of physics-informed neural networks for two-phase flow model with variable diffusion and experimental validation. Results Eng. 2025, 26, 105439. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X.; Jing, L.; Li, T.; Zhao, H.; Zhang, B. Research on digital twin modeling method of transformer temperature field based on POD. Energy Rep. 2023, 9, 299–307. [Google Scholar] [CrossRef]
- Basyouny, A. Experimental validation of numerical two-phase flow in a horizontal separator. Results Eng. 2022, 15, 100476. [Google Scholar] [CrossRef]
- Ibrahim, A.Q.; Alturaihi, R.S. Experimental work for single-phase and two-phase flow in Duct banks with vortex generators. Results Eng. 2022, 15, 100497. [Google Scholar] [CrossRef]
- Xiao, B.; Zhou, Y.; Gao, C.; Cao, Y.; Shi, S.; Liu, Z. Analysis of vibration characteristics of pipeline with fluid added mass. J. Vib. Shock 2021, 40, 182–188. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Wang, L.; Lin, D.; Hong, J. Modal characteristics analysis for pipelines considering influence of fluid medium. J. Aerosp. Power 2019, 34, 671–677. [Google Scholar] [CrossRef]
- Meng, D.; Guo, H.; Xu, S. Stability analysis on flow-induced vibation of fluid-conveying pipes. J. Vib. Shock. 2010, 29, 87–90. [Google Scholar]
- Tan, X.; Ding, H.; Chen, L.Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. J. Sound Vib. 2019, 455, 241–255. [Google Scholar] [CrossRef]
- Łuczko, J.; Czerwiński, A. Nonlinear three-dimensional dynamics of flexible pipes conveying fluids. J. Fluids Struct. 2017, 70, 235–260. [Google Scholar] [CrossRef]
- Weng, G.; Xu, C.; Xie, Q.; Wu, X.; Lan, G.; Zhang, Y.; Zhu, X. Dynamic Effect of Fluid-Structure Interaction and Modal Analysis of Crude-Pipeline Interaction System Considering the Fluctuating Pressure of Medium. Transp. Res. Rec. 2024, 2678, 168–188. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, W.; Wang, X.; Sang, Y.; Liu, P. Fluid-structure interaction analysis of the return pipeline in the high-pressure and large-flow-rate hydraulic power system. Prog. Comput. Fluid Dyn. Int. J. 2021, 21, 38. [Google Scholar] [CrossRef]
- Liu, J.B.; Yue, Q.B.; Dong, R.Z.; Zhang, Q. The analysis of vortex induced vibration of the flexible pipe in a cylindrical fluid field with cross flow. J. Vibroeng. 2016, 18, 2403–2417. [Google Scholar] [CrossRef]
- Andrade, D.M.; de Freitas Rachid, F.B.; Tijsseling, A.S. A new model for fluid transients in piping systems taking into account the fluid–structure interaction. J. Fluids Struct. 2022, 114, 103720. [Google Scholar] [CrossRef]
- Liu, Z.; Zou, L.; Qiao, J.; Shi, C.; Liu, X. The influence of the viscosity of crude oil on liquid-dynamic noise characteristics in the volute shell of oil transfer pump. Measurement 2022, 197, 111285. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, W.; Liu, Y.; He, Y.; Chen, J.; Qiao, L.; Wang, T. Study on hydrodynamic characteristics of oil-water annular flow in 90° elbow. Chem. Eng. Res. Des. 2020, 153, 443–451. [Google Scholar] [CrossRef]
- Tan, C.; Dong, F. Modification to mass flow rate correlation in oil–water two-phase flow by a V-cone flow meter in consideration of the oil–water viscosity ratio. Meas. Sci. Technol. 2010, 21, 045403. [Google Scholar] [CrossRef]
- Maklakov, D.; Kayumov, I.; Kamaletdinov, R. Stratified laminar flows in a circular pipe: New analytical solutions in terms of elementary functions. Appl. Math. Model. 2018, 59, 147–163. [Google Scholar] [CrossRef]
- Li, Y.; He, G.; Sun, L. Numerical simulation of oil-water non-Newtonian two-phase stratified wavy pipe flow coupled with heat transfer. Appl. Therm. Eng. 2018, 140, 266–286. [Google Scholar] [CrossRef]
- Elfaki, M.; Nasif, M.S.; Muhammad, M. Effect of Changing Crude Oil Grade on Slug Characteristics and Flow Induced Mechanical Stresses in Pipes. Appl. Sci. 2021, 11, 5215. [Google Scholar] [CrossRef]
- Fei, W.; Yang, J.; Sun, L. Analysis Method of Complex Boundary Condition of Fluid-structure Interaction in Piping Systems. Eng. J. Wuhan Univ. 1997, 30, 5. [Google Scholar]
- Yang, J.; Zhang, K.; Dang, H. Dynamic Analysis Method for Fluid-Structure Interaction Based on ANSYS. Ship Ocean Eng. 2008, 37, 4. [Google Scholar] [CrossRef]
- Song, X.; Yang, Y.; Zhang, T.; Xiong, K.; Wang, Z. Studies on water carrying of diesel oil in upward inclined pipes with different inclination angle. J. Pet. Sci. Eng. 2017, 157, 780–792. [Google Scholar] [CrossRef]
- Païdoussis, M.P.; Issid, N.T. Dynamic stability of pipes conveying fluid. J. Sound Vib. 1974, 33, 267–294. [Google Scholar] [CrossRef]
- Hirt CWNichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Lafaurie, B.; Nardone, C.; Scardovelli, R. Modelling Merging and Fragmentation in Multiphase Flows with SURFER. J. Comput. Phys. 1994, 113, 134–147. [Google Scholar] [CrossRef]
- Yang, S. Viscosities of Tahe Heavy Crude Oil and its Emulsions with Water at Various Temperatures and Hydrostatic Pressures. Oilfield Chem. 2004, 21, 3. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, S.; Zhao, J. Numerical study on flow characteristics of 90° bend pipe under different reynolds number. J. Univ. Shanghai Sci. Technol. 2010, 32, 525–529. [Google Scholar] [CrossRef]
- Fan, H.M.; Zhang, D.M.; Zhao, Y.H.; Hu, J.P. Numerical Simulation on Turbulent Flow in a Circular-section 90-degree Bend. J. Beijing Univ. Technol. 2007, 33, 4. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.H.; Huang, T.; Han, K.; Gao, L. Numerically Studying Effects of Reynolds Number and Radius Ratio on Flow Characteristics of 90° Arc Bend Pipe. Mech. Sci. Technol. Aerosp. Eng. 2017, 36, 1491–1497. [Google Scholar] [CrossRef]
Operating Condition | Crude Oil Viscosity/(Pa·s) | Moisture Content/% |
---|---|---|
Operating condition 1 | 0.603 | 10 |
Operating condition 2 | 1.185 | 10 |
Operating condition 3 | 0.306 | 10 |
Operating condition 4 | 0.603 | 30 |
Operating condition 5 | 0.603 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Han, Z.; Ma, B.; Yang, Z.; Liu, Y.; Hu, Y.; Wang, Z.; Zhao, K. Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures. Processes 2025, 13, 2932. https://doi.org/10.3390/pr13092932
Zhang C, Han Z, Ma B, Yang Z, Liu Y, Hu Y, Wang Z, Zhao K. Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures. Processes. 2025; 13(9):2932. https://doi.org/10.3390/pr13092932
Chicago/Turabian StyleZhang, Chengbin, Zhaoyang Han, Bin Ma, Zhaofeng Yang, Yinshan Liu, Yaoqiang Hu, Zhenni Wang, and Kejie Zhao. 2025. "Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures" Processes 13, no. 9: 2932. https://doi.org/10.3390/pr13092932
APA StyleZhang, C., Han, Z., Ma, B., Yang, Z., Liu, Y., Hu, Y., Wang, Z., & Zhao, K. (2025). Coupling Changes in Pressure and Flow Velocity in Oil Pipelines Supported by Structures. Processes, 13(9), 2932. https://doi.org/10.3390/pr13092932