Solving the Scheduling Problem in the Electrical Panel Board Manufacturing Industry Using a Hybrid Atomic Orbital Search Optimization Algorithm
Abstract
1. Introduction
1.1. Hybrid Flow Shop Scheduling Problems
1.2. Atomic Orbital Search Optimization Algorithm (AOSOA)
1.3. Gap Analysis and the Contributions of the Work
- Gap between the theory and practice in solving the scheduling problems. Hence, there is an opportunity for solving scheduling problems in the hybrid flow shop using recently developed algorithms.
- The AOSOA is a newly developed algorithm to handle different optimization problems.
- There is no known use of the AOSOA to handle scheduling problems.
- To apply the newly developed AOSOA to solve a realistic industrial scheduling problem.
- To propose random test problem cases and benchmark problems to validate the efficiency of the planned AOSOA.
- To compare the solution quality of the developed approach with other metaheuristics studied in the literature by performing the statistical analysis.
2. Problem Definition
- Chs The duration required to complete job h at stage s
- ClM The duration required to complete the job l at the stage M
- Cls The duration required to complete the job l at stage s
- Cmax Makespan
- N Number of jobs to be scheduled (index l)
- Psl Operation time of the job l at stage s
- Rl Ready time of the job l
- B A consistent and unchanging value or quantity (B→∞)
- M The quantity of manufacturing stages (index s)
- ms The number of machines that exhibit similarity at a certain stage, denoted as s
- Shs The commencement time for a certain task, denoted as h, at a particular stage, denoted as s
- Sls The commencement time for a certain task, denoted as l, within a particular phase, referred to as s
- Sl1 The commencement time for task l during the first stage
- Whls The binary variable takes the value of 1 when task h is scheduled before job l during processing at stage s, and 0 otherwise
- Ylus The binary variable takes the value of 1 when job l is allocated to machine u during step s, and 0 otherwise.
3. Proposed Algorithm
- By applying Equation, we randomly select the starting points of the electrons in the electron mist:
The AOSOA to Solve the Scheduling Problems
4. Computational Experiments
4.1. Industrial Scheduling Problem
4.2. Random Benchmark Problems
4.2.1. Effectiveness Analysis
- Small-scale instances (jobs × stages × machines: 20 × 5 × 2)
- Medium-scale instances (jobs × stages × machines: 50 × 10 × 3)
- Large-scale instances (jobs × stages × machines: 100 × 20 × 5)
4.2.2. Sensitivity Analysis
4.2.3. Statistical Analysis of Results
4.2.4. Friedman Test
4.2.5. Wilcoxon Signed Rank Test
4.3. Benchmark Problems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Gholami, H.; Sun, H. Toward automated algorithm configuration for distributed hybrid flow shop scheduling with multiprocessor tasks. Knowl. Based Syst. 2023, 264, 110309. [Google Scholar] [CrossRef]
- Lei, D.; Su, B. A multi-class teaching–learning-based optimization for multi-objective distributed hybrid flow shop scheduling. Knowl. Based Syst. 2023, 263, 110252. [Google Scholar] [CrossRef]
- Allaoui, H.; Artiba, A. Scheduling two-stage hybrid flow shop with availability constraints. Comput. Oper. Res. 2006, 33, 1399–1419. [Google Scholar] [CrossRef]
- Jabbarizadeh, F.; Zandieh, M.; Talebi, D. Hybrid flexible flowshops with sequence-dependent setup times and machine availability constraints. Comput. Ind. Eng. 2009, 57, 949–957. [Google Scholar] [CrossRef]
- Luo, H.; Huang, G.Q.; Zhang, Y.; Dai, Q.; Chen, X. Two-stage hybrid batching flowshop scheduling with blocking and machine availability constraints using genetic algorithm. Robot. Comput. Integr. Manuf. 2009, 25, 962–971. [Google Scholar] [CrossRef]
- Zandieh, M.; Gholami, M. An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. Int. J. Prod. Res. 2009, 47, 6999–7027. [Google Scholar] [CrossRef]
- Behnamian, J.; Ghomi, S.F. Hybrid flowshop scheduling with machine and resource-dependent processing times. Appl. Math. Model. 2011, 35, 1107–1123. [Google Scholar] [CrossRef]
- Choi, S.H.; Wang, K. Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach. Comput. Ind. Eng. 2012, 63, 362–373. [Google Scholar] [CrossRef][Green Version]
- Kianfar, K.; Ghomi, S.F.; Jadid, A.O. Study of stochastic sequence-dependent flexible flow shop via developing a dispatching rule and a hybrid GA. Eng. Appl. Artif. Intell. 2012, 25, 494–506. [Google Scholar] [CrossRef]
- Mirabi, M.; Ghomi, S.F.; Jolai, F. A two-stage hybrid flowshop scheduling problem in machine breakdown condition. J. Intell. Manuf. 2013, 24, 193–199. [Google Scholar] [CrossRef]
- Wang, K.; Choi, S.H.; Qin, H.; Huang, Y. A cluster-based scheduling model using SPT and SA for dynamic hybrid flow shop problems. Int. J. Adv. Manuf. Technol. 2013, 67, 2243–2258. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Ghomi, S.F.; Karimi, B. Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Appl. Math. Model. 2014, 38, 2490–2504. [Google Scholar] [CrossRef]
- Wang, K.; Choi, S.H. A holonic approach to flexible flow shop scheduling under stochastic processing times. Comput. Oper. Res. 2014, 43, 157–168. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Q.; Zhang, L.; Li, H.; Li, F. Joint optimization of integrated mixed maintenance and distributed two-stage hybrid flow-shop production for multi-site maintenance requirements. Expert Syst. Appl. 2023, 215, 119422. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, W.; Zhang, C.; Sun, X. Agent-based simulation and optimization of hybrid flow shop considering multi-skilled workers and fatigue factors. Robot. Comput. Integr. Manuf. 2023, 80, 102478. [Google Scholar] [CrossRef]
- Maciel, I.S.F.; Prata, B.A.; Nagano, M.S.; Abreu, L.R. A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times. J. Proj. Manag. 2022, 7, 201–206. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, M.; Guo, X.; Qi, L. Scheduling Dual-Objective Stochastic Hybrid Flow Shop with Deteriorating Jobs via Bi-Population Evolutionary Algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 5037–5048. [Google Scholar] [CrossRef]
- Deming, L.; Tao, D. An adaptive shuffled frog-leaping algorithm for parallel batch processing machines scheduling with machine eligibility in fabric dyeing process. Int. J. Prod. Res. 2024, 62, 7704–7721. [Google Scholar] [CrossRef]
- Yu, F.; Lu, C.; Zhou, J.; Yin, L. Mathematical model and knowledge-based iterated greedy algorithm for distributed assembly hybrid flow shop scheduling problem with dual-resource constraints. Expert Syst. Appl. 2024, 239, 122434. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Gen, M.; Yang, W.; Zhang, G. A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem. Expert Syst. Appl. 2024, 237, 121570. [Google Scholar] [CrossRef]
- Geetha, M.; Chandra Guru Sekar, R.; Marichelvam, M.K.; Tosun, Ö. A Sequential Hybrid Optimization Algorithm (SHOA) to Solve the Hybrid Flow Shop Scheduling Problems to Minimize Carbon Footprint. Processes 2024, 12, 143. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Ouadfel, S.; Abd El-Latif, A.A.; Ali Ibrahim, R. Feature selection based on modified bio-inspired atomic orbital search using arithmetic optimization and opposite-based learning. Cogn. Comput. 2022, 14, 2274–2295. [Google Scholar] [CrossRef]
- Ali, F.; Sarwar, A.; Bakhsh, F.I.; Ahmad, S.; Shah, A.A.; Ahmed, H. Parameter extraction of photovoltaic models using atomic orbital search algorithm on a decent basis for novel accurate RMSE calculation. Energy Convers. Manag. 2023, 277, 116613. [Google Scholar] [CrossRef]
- Azizi, M. Atomic orbital search: A novel metaheuristic algorithm. Appl. Math. Model. 2021, 93, 657–683. [Google Scholar] [CrossRef]
- Azizi, M.; Mohamed, A.W.; Shishehgarkhaneh, M.B. Optimum design of truss structures with atomic orbital search considering discrete design variables. In Handbook of Nature-Inspired Optimization Algorithms: The State of the Art: Volume II: Solving Constrained Single Objective Real-Parameter Optimization Problems; Springer International Publishing: Cham, Switzerland, 2022; pp. 189–214. [Google Scholar]
- Azizi, M.; Talatahari, S.; Giaralis, A. Optimization of engineering design problems using atomic orbital search algorithm. IEEE Access 2021, 9, 102497–102519. [Google Scholar] [CrossRef]
- Azizi, M.; Talatahari, S.; Khodadadi, N.; Sareh, P. Multiobjective atomic orbital search (MOAOS) for global and engineering design optimization. IEEE Access 2022, 10, 67727–67746. [Google Scholar] [CrossRef]
- Baghalzadeh Shishehgarkhaneh, M.; Fardmoradinia, S.; Keivani, A.; Azizi, M. BIM-based resource trade-off in dam project scheduling using Atomic Orbital Search (AOS) algorithm. AUT J. Civ. Eng. 2023, 6, 469–492. [Google Scholar]
- Elaziz, M.A.; Abualigah, L.; Yousri, D.; Oliva, D.; Al-Qaness, M.A.; Nadimi-Shahraki, M.H.; Ewees, A.A.; Lu, S.; Ali Ibrahim, R. Boosting atomic orbit search using dynamic-based learning for feature selection. Mathematics 2021, 9, 2786. [Google Scholar] [CrossRef]
- Hussain, M.T.; Tariq, M.; Sarwar, A.; Urooj, S.; BaQais, A.; Hossain, M.A. Atomic orbital search algorithm for efficient maximum power point tracking in partially shaded solar PV systems. Processes 2023, 11, 2776. [Google Scholar] [CrossRef]
- Karakaş, M.F.; Latifoğlu, F. Metaheuristic FIR filter design with multi-objective atomic orbital search algorithm. Avrupa Bilim Ve Teknol. Derg. 2022, 39, 13–16. [Google Scholar]
- Ke, H.; Bi, J.; Wang, Y.; Zhang, Y. Driving range estimation for electric bus based on atomic orbital search and back propagation neural network. IET Intell. Transp. Syst. 2024, 18, 2884–2895. [Google Scholar] [CrossRef]
- Kiruthiga, B.; Karthick, R.; Manju, I.; Kondreddi, K. Optimizing harmonic mitigation for smooth integration of renewable energy: A novel approach using atomic orbital search and feedback artificial tree control. Prot. Control. Mod. Power Syst. 2024, 9, 160–176. [Google Scholar] [CrossRef]
- Kumar, R.; Bothara, Y.; Ezhilarasi, D.; Mohanavelu, K. Atomic Orbital Search Optimization Based Fractional Order PID Controller for 4 DoF Lower Limb Exoskeleton. In Proceedings of the 2023 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, 19–21 April 2023; pp. 1–6. [Google Scholar]
- Liu, G.; Zhao, T.; Yan, H.; Wu, H.; Wang, F. Evaluation of urban green building design schemes to achieve sustainability based on the projection pursuit model optimized by the atomic orbital search. Sustainability 2022, 14, 11007. [Google Scholar] [CrossRef]
- Mahdi Mudassir, S.M.; Salma, U. A hybrid technique for optimal sizing and performance analysis of hybrid renewable energy sources. Energy Environ. 2023, 36, 1617–1647. [Google Scholar] [CrossRef]
- Manita, G.; Chhabra, A.; Korbaa, O. Efficient e-mail spam filtering approach combining Logistic Regression model and Orthogonal Atomic Orbital Search algorithm. Appl. Soft Comput. 2023, 144, 110478. [Google Scholar] [CrossRef]
- Ozkaya, B. Optimal Parameter Estimation of PEMFC Model Using an Improved Atomic Orbital Search Algorithm. Appl. Model. Simul. 2024, 8, 283–300. [Google Scholar]
- Revanesh, M.; Rudra, B.; Guddeti, R.M.R. An Optimized Question Classification Framework Using Dual-Channel Capsule Generative Adversarial Network and Atomic Orbital Search Algorithm. IEEE Access 2023, 11, 75736–75747. [Google Scholar] [CrossRef]
- Rohit, P.; Datta, A.; Satyanarayana, M. Design of High Gain Metasurface Antennas using Hybrid Atomic Orbital Search and Human Mental Search Algorithm for IoT Application. In Proceedings of the 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 23–24 March 2023; pp. 20–24. [Google Scholar]
- Saravanan, R.; Godwin Ponsam, J.; Sathiya, V.; Saranya, G. Air pollution monitoring approach using atomic orbital search algorithm with deep learning driven. Glob. NEST J. 2024, 26, 1–9. [Google Scholar]
- Zafar, M.H.; Khan, N.M.; Khan, U.A. Short term hybrid PV/Wind power forecasting for smart grid application using feedforward neural network (FNN) trained by a novel atomic orbital search (AOS) optimization algorithm. In Proceedings of the 2021 International conference on frontiers of information technology (FIT), Islamabad, Pakistan, 13–14 December 2021; pp. 72–77. [Google Scholar]
- Bean, B.C. Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 1994, 6, 154–160. [Google Scholar] [CrossRef]
- Geetha, M.; Chandra Guru Sekar, R.; Marichelvam, M.K. A Hybrid Honey Badger Algorithm to Solve Energy-Efficient Hybrid Flow Shop Scheduling Problems. Processes 2025, 13, 174. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, E.E., Jr.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Tosun, Ö. Using artificial bee colony algorithm for permutation flow shop scheduling problem under makespan criterion. Int. J. Math. Model. Numer. Optim. 2014, 5, 191–209. [Google Scholar] [CrossRef]
- Carlier, J.; Neron, E. An exact method for solving the multi-processor flow-shop. RAIRO Oper. Res. Rech. Opérationnelle 2000, 34, 1–25. [Google Scholar] [CrossRef]
- Liao, C.J.; Tjandradjaja, E.; Chung, T.P. An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Appl. Soft Comput. 2012, 12, 1755–1764. [Google Scholar] [CrossRef]
- Niu, Q.; Zhou, T.; Ma, S. A quantum-inspired immune algorithm for hybrid flow shop with makespan criterion. J. Univers. Comput. Sci. 2009, 15, 765–785. [Google Scholar]
- Alaykýran, K.; Engin, O.; Döyen, A. Using ant colony optimization to solve hybrid flow shop scheduling problems. Int. J. Adv. Manuf. Technol. 2007, 35, 541–550. [Google Scholar] [CrossRef]
- Engin, O.; Döyen, A. A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Gener. Comput. Syst. 2004, 20, 1083–1095. [Google Scholar] [CrossRef]
Name of the Stage | Number of Machines |
---|---|
Punching | 4 |
Grinding | 2 |
Bending | 4 |
Tapping | 2 |
Welding | 3 |
Powder Coating | 2 |
Oven Baking | 2 |
Jobs | Stages | ||||||
---|---|---|---|---|---|---|---|
Punching | Grinding | Bending | Tapping | Welding | Powder Coating | Oven Baking | |
1 | 48 | 12 | 16 | 18 | 0 | 0 | 0 |
2 | 72 | 12 | 16 | 0 | 0 | 0 | 0 |
3 | 24 | 6 | 12 | 6 | 0 | 0 | 0 |
4 | 84 | 12 | 20 | 24 | 240 | 60 | 1260 |
5 | 80 | 18 | 32 | 0 | 0 | 0 | 0 |
6 | 48 | 6 | 24 | 12 | 0 | 0 | 0 |
7 | 48 | 6 | 24 | 12 | 180 | 48 | 1230 |
8 | 36 | 6 | 20 | 12 | 0 | 0 | 0 |
9 | 92 | 12 | 32 | 6 | 0 | 0 | 0 |
10 | 40 | 6 | 24 | 0 | 168 | 60 | 1200 |
11 | 48 | 6 | 24 | 0 | 156 | 60 | 1260 |
12 | 52 | 12 | 8 | 18 | 0 | 0 | 0 |
13 | 52 | 6 | 12 | 0 | 0 | 0 | 0 |
14 | 32 | 6 | 0 | 0 | 0 | 0 | 0 |
15 | 60 | 12 | 24 | 0 | 0 | 0 | 0 |
16 | 36 | 6 | 12 | 6 | 0 | 0 | 0 |
17 | 72 | 18 | 32 | 12 | 132 | 42 | 1260 |
18 | 48 | 12 | 12 | 0 | 0 | 0 | 0 |
19 | 60 | 12 | 16 | 0 | 96 | 30 | 1200 |
20 | 32 | 6 | 0 | 6 | 0 | 0 | 0 |
Factors | Levels |
---|---|
Number of jobs | 20, 50, 100 |
Number of stages | 5, 10, 20 |
Number of machines in each stage | 2, 3, 5 |
Distribution of processing time | Uniform (1–100) |
Population number | 100, 200 |
Iteration number | 200, 500 |
Problem Instances | Number of Jobs | Number of Stages | Number of Machines in Each Stage | Population Size | Number of Iterations |
---|---|---|---|---|---|
1 | 20 | 5 | 2 | 100 | 200 |
2 | 20 | 5 | 2 | 100 | 500 |
3 | 20 | 5 | 2 | 200 | 200 |
4 | 20 | 5 | 2 | 200 | 500 |
5 | 20 | 5 | 3 | 100 | 200 |
6 | 20 | 5 | 3 | 100 | 500 |
7 | 20 | 5 | 3 | 200 | 200 |
8 | 20 | 5 | 3 | 200 | 500 |
9 | 20 | 5 | 5 | 100 | 200 |
10 | 20 | 5 | 5 | 100 | 500 |
11 | 20 | 5 | 5 | 200 | 200 |
12 | 20 | 5 | 5 | 200 | 500 |
13 | 20 | 10 | 2 | 100 | 200 |
14 | 20 | 10 | 2 | 100 | 500 |
15 | 20 | 10 | 2 | 200 | 200 |
16 | 20 | 10 | 2 | 200 | 500 |
17 | 20 | 10 | 3 | 100 | 200 |
18 | 20 | 10 | 3 | 100 | 500 |
19 | 20 | 10 | 3 | 200 | 200 |
20 | 20 | 10 | 3 | 200 | 500 |
21 | 20 | 10 | 5 | 100 | 200 |
22 | 20 | 10 | 5 | 100 | 500 |
23 | 20 | 10 | 5 | 200 | 200 |
24 | 20 | 10 | 5 | 200 | 500 |
25 | 20 | 20 | 2 | 100 | 200 |
26 | 20 | 20 | 2 | 100 | 500 |
27 | 20 | 20 | 2 | 200 | 200 |
28 | 20 | 20 | 2 | 200 | 500 |
29 | 20 | 20 | 3 | 100 | 200 |
30 | 20 | 20 | 3 | 100 | 500 |
31 | 20 | 20 | 3 | 200 | 200 |
32 | 20 | 20 | 3 | 200 | 500 |
33 | 20 | 20 | 5 | 100 | 200 |
34 | 20 | 20 | 5 | 100 | 500 |
35 | 20 | 20 | 5 | 200 | 200 |
36 | 20 | 20 | 5 | 200 | 500 |
37 | 50 | 5 | 2 | 100 | 200 |
38 | 50 | 5 | 2 | 100 | 500 |
39 | 50 | 5 | 2 | 200 | 200 |
40 | 50 | 5 | 2 | 200 | 500 |
41 | 50 | 5 | 3 | 100 | 200 |
42 | 50 | 5 | 3 | 100 | 500 |
43 | 50 | 5 | 3 | 200 | 200 |
44 | 50 | 5 | 3 | 200 | 500 |
45 | 50 | 5 | 5 | 100 | 200 |
46 | 50 | 5 | 5 | 100 | 500 |
47 | 50 | 5 | 5 | 200 | 200 |
48 | 50 | 5 | 5 | 200 | 500 |
49 | 50 | 10 | 2 | 100 | 200 |
50 | 50 | 10 | 2 | 100 | 500 |
51 | 50 | 10 | 2 | 200 | 200 |
52 | 50 | 10 | 2 | 200 | 500 |
53 | 50 | 10 | 3 | 100 | 200 |
54 | 50 | 10 | 3 | 100 | 500 |
55 | 50 | 10 | 3 | 200 | 200 |
56 | 50 | 10 | 3 | 200 | 500 |
57 | 50 | 10 | 5 | 100 | 200 |
58 | 50 | 10 | 5 | 100 | 500 |
59 | 50 | 10 | 5 | 200 | 200 |
60 | 50 | 10 | 5 | 200 | 500 |
61 | 50 | 20 | 2 | 100 | 200 |
62 | 50 | 20 | 2 | 100 | 500 |
63 | 50 | 20 | 2 | 200 | 200 |
64 | 50 | 20 | 2 | 200 | 500 |
65 | 50 | 20 | 3 | 100 | 200 |
66 | 50 | 20 | 3 | 100 | 500 |
67 | 50 | 20 | 3 | 200 | 200 |
68 | 50 | 20 | 3 | 200 | 500 |
69 | 50 | 20 | 5 | 100 | 200 |
70 | 50 | 20 | 5 | 100 | 500 |
71 | 50 | 20 | 5 | 200 | 200 |
72 | 50 | 20 | 5 | 200 | 500 |
73 | 100 | 5 | 2 | 100 | 200 |
74 | 100 | 5 | 2 | 100 | 500 |
75 | 100 | 5 | 2 | 200 | 200 |
76 | 100 | 5 | 2 | 200 | 500 |
77 | 100 | 5 | 3 | 100 | 200 |
78 | 100 | 5 | 3 | 100 | 500 |
79 | 100 | 5 | 3 | 200 | 200 |
80 | 100 | 5 | 3 | 200 | 500 |
81 | 100 | 5 | 5 | 100 | 200 |
82 | 100 | 5 | 5 | 100 | 500 |
83 | 100 | 5 | 5 | 200 | 200 |
84 | 100 | 5 | 5 | 200 | 500 |
85 | 100 | 10 | 2 | 100 | 200 |
86 | 100 | 10 | 2 | 100 | 500 |
87 | 100 | 10 | 2 | 200 | 200 |
88 | 100 | 10 | 2 | 200 | 500 |
89 | 100 | 10 | 3 | 100 | 200 |
90 | 100 | 10 | 3 | 100 | 500 |
91 | 100 | 10 | 3 | 200 | 200 |
92 | 100 | 10 | 3 | 200 | 500 |
93 | 100 | 10 | 5 | 100 | 200 |
94 | 100 | 10 | 5 | 100 | 500 |
95 | 100 | 10 | 5 | 200 | 200 |
96 | 100 | 10 | 5 | 200 | 500 |
97 | 100 | 20 | 2 | 100 | 200 |
98 | 100 | 20 | 2 | 100 | 500 |
99 | 100 | 20 | 2 | 200 | 200 |
100 | 100 | 20 | 2 | 200 | 500 |
101 | 100 | 20 | 3 | 100 | 200 |
102 | 100 | 20 | 3 | 100 | 500 |
103 | 100 | 20 | 3 | 200 | 200 |
104 | 100 | 20 | 3 | 200 | 500 |
105 | 100 | 20 | 5 | 100 | 200 |
106 | 100 | 20 | 5 | 100 | 500 |
107 | 100 | 20 | 5 | 200 | 200 |
108 | 100 | 20 | 5 | 200 | 500 |
Problem Instances | HAOSOA | ASFLA [19] | GA [6] | HGA [10] | IMGA [6] | IGA [20] |
---|---|---|---|---|---|---|
1 | 0 | 2.67 | 2.32 | 2.08 | 1.95 | 2.00 |
2 | 0 | 3.28 | 2.41 | 2.34 | 2.39 | 3.49 |
3 | 0 | 1.94 | 2.57 | 2.12 | 2.10 | 2.19 |
4 | 0 | 2.14 | 2.63 | 2.13 | 2.46 | 3.19 |
5 | 0 | 2.90 | 2.49 | 2.33 | 2.13 | 1.96 |
6 | 0 | 1.94 | 1.99 | 2.10 | 1.78 | 2.20 |
7 | 0 | 3.02 | 2.34 | 2.24 | 2.60 | 3.44 |
8 | 0 | 2.17 | 2.08 | 2.26 | 2.62 | 2.91 |
9 | 0 | 2.08 | 2.16 | 2.05 | 2.43 | 3.22 |
10 | 0 | 2.31 | 2.34 | 2.05 | 2.16 | 3.35 |
11 | 0 | 3.14 | 2.22 | 1.98 | 2.02 | 2.49 |
12 | 0 | 2.20 | 2.21 | 2.19 | 2.19 | 2.01 |
13 | 0 | 3.14 | 2.61 | 2.04 | 2.21 | 3.37 |
14 | 0 | 2.20 | 2.52 | 1.90 | 2.17 | 2.69 |
15 | 0 | 3.13 | 1.91 | 2.00 | 2.66 | 2.29 |
16 | 0 | 2.92 | 2.45 | 2.32 | 2.62 | 1.84 |
17 | 0 | 2.71 | 1.88 | 2.08 | 2.11 | 2.84 |
18 | 0 | 2.19 | 2.66 | 2.17 | 2.01 | 2.51 |
19 | 0 | 3.16 | 2.62 | 2.43 | 2.09 | 2.58 |
20 | 0 | 2.43 | 2.47 | 2.28 | 2.08 | 1.99 |
21 | 0 | 3.34 | 2.13 | 2.23 | 2.30 | 2.46 |
22 | 0 | 3.25 | 2.11 | 2.32 | 2.50 | 3.27 |
23 | 0 | 2.47 | 2.39 | 2.33 | 1.71 | 2.39 |
24 | 0 | 2.09 | 2.61 | 2.27 | 1.92 | 2.99 |
25 | 0 | 2.61 | 2.01 | 2.09 | 2.46 | 2.43 |
26 | 0 | 1.97 | 2.15 | 1.91 | 2.47 | 3.34 |
27 | 0 | 2.87 | 2.63 | 2.20 | 2.35 | 1.83 |
28 | 0 | 1.91 | 1.85 | 2.08 | 2.01 | 3.43 |
29 | 0 | 3.09 | 1.96 | 2.04 | 2.43 | 3.04 |
30 | 0 | 2.91 | 1.90 | 2.10 | 1.81 | 3.20 |
31 | 0 | 2.01 | 2.43 | 2.15 | 1.95 | 2.11 |
32 | 0 | 2.99 | 2.11 | 1.86 | 2.28 | 2.13 |
33 | 0 | 2.95 | 2.33 | 2.06 | 2.48 | 3.34 |
34 | 0 | 2.24 | 2.46 | 2.22 | 2.37 | 1.94 |
35 | 0 | 2.36 | 1.91 | 2.38 | 1.96 | 2.90 |
36 | 0 | 3.06 | 2.51 | 1.94 | 2.15 | 3.41 |
37 | 0 | 3.12 | 1.96 | 2.11 | 1.90 | 1.96 |
38 | 0 | 2.34 | 2.35 | 2.12 | 2.61 | 2.22 |
39 | 0 | 2.73 | 2.03 | 1.87 | 1.99 | 3.34 |
40 | 0 | 1.91 | 2.32 | 2.04 | 1.95 | 2.60 |
41 | 0 | 1.98 | 2.29 | 2.11 | 2.35 | 1.90 |
42 | 0 | 1.95 | 2.20 | 2.17 | 2.41 | 3.24 |
43 | 0 | 3.02 | 2.22 | 1.94 | 1.99 | 2.93 |
44 | 0 | 2.47 | 1.91 | 2.15 | 2.02 | 3.49 |
45 | 0 | 2.05 | 2.27 | 1.91 | 1.87 | 1.95 |
46 | 0 | 2.79 | 1.93 | 2.23 | 2.38 | 3.35 |
47 | 0 | 2.31 | 2.18 | 2.18 | 2.57 | 2.68 |
48 | 0 | 2.64 | 2.64 | 2.33 | 2.21 | 2.46 |
49 | 0 | 3.11 | 2.31 | 2.26 | 2.06 | 1.98 |
50 | 0 | 2.79 | 2.53 | 2.13 | 2.11 | 3.20 |
51 | 0 | 2.93 | 1.99 | 2.06 | 1.96 | 3.29 |
52 | 0 | 2.19 | 2.30 | 2.23 | 2.26 | 2.22 |
53 | 0 | 2.93 | 1.82 | 2.16 | 2.12 | 2.57 |
54 | 0 | 2.26 | 2.15 | 2.14 | 2.10 | 2.24 |
55 | 0 | 2.54 | 2.11 | 2.23 | 2.20 | 2.32 |
56 | 0 | 2.52 | 2.26 | 2.20 | 1.95 | 3.44 |
57 | 0 | 2.79 | 2.04 | 2.25 | 2.59 | 3.43 |
58 | 0 | 2.81 | 2.64 | 2.00 | 2.58 | 3.11 |
59 | 0 | 3.30 | 2.55 | 2.33 | 2.09 | 2.95 |
60 | 0 | 1.89 | 2.20 | 2.10 | 1.98 | 2.57 |
61 | 0 | 2.77 | 2.20 | 2.19 | 2.44 | 2.82 |
62 | 0 | 2.39 | 1.86 | 2.05 | 2.26 | 2.81 |
63 | 0 | 3.22 | 2.67 | 2.23 | 2.18 | 3.01 |
64 | 0 | 2.37 | 2.19 | 2.46 | 2.32 | 2.54 |
65 | 0 | 2.75 | 1.99 | 1.95 | 1.83 | 2.90 |
66 | 0 | 3.16 | 1.96 | 2.29 | 1.86 | 2.88 |
67 | 0 | 2.55 | 2.16 | 1.90 | 1.94 | 2.65 |
68 | 0 | 2.93 | 2.45 | 2.13 | 1.75 | 2.01 |
69 | 0 | 3.32 | 2.62 | 2.12 | 1.94 | 2.99 |
70 | 0 | 3.10 | 2.39 | 2.21 | 2.39 | 2.13 |
71 | 0 | 2.51 | 2.04 | 2.13 | 1.72 | 1.90 |
72 | 0 | 1.95 | 2.49 | 1.96 | 2.21 | 2.41 |
73 | 0 | 3.16 | 2.22 | 2.01 | 2.24 | 2.10 |
74 | 0 | 2.54 | 1.94 | 1.94 | 2.46 | 2.48 |
75 | 0 | 2.44 | 2.61 | 1.96 | 2.51 | 1.91 |
76 | 0 | 1.96 | 2.41 | 2.14 | 2.17 | 2.15 |
77 | 0 | 2.43 | 2.05 | 2.36 | 2.06 | 2.48 |
78 | 0 | 2.08 | 2.02 | 2.14 | 1.73 | 2.91 |
79 | 0 | 3.28 | 2.19 | 2.29 | 2.08 | 3.06 |
80 | 0 | 2.20 | 2.52 | 2.28 | 2.32 | 2.75 |
81 | 0 | 2.34 | 2.39 | 2.23 | 2.18 | 2.31 |
82 | 0 | 2.90 | 2.53 | 2.08 | 1.75 | 2.80 |
83 | 0 | 1.99 | 2.15 | 2.27 | 2.49 | 1.99 |
84 | 0 | 2.39 | 2.17 | 2.14 | 2.55 | 2.70 |
85 | 0 | 3.27 | 2.11 | 2.39 | 2.12 | 3.50 |
86 | 0 | 3.12 | 1.94 | 2.01 | 1.94 | 2.65 |
87 | 0 | 2.39 | 1.87 | 2.14 | 2.01 | 2.71 |
88 | 0 | 2.33 | 2.37 | 2.07 | 2.24 | 2.11 |
89 | 0 | 3.21 | 2.66 | 2.38 | 2.49 | 2.68 |
90 | 0 | 2.01 | 2.22 | 2.11 | 2.54 | 3.35 |
91 | 0 | 2.67 | 1.99 | 2.18 | 1.95 | 1.99 |
92 | 0 | 1.99 | 2.61 | 2.17 | 2.27 | 3.22 |
93 | 0 | 2.62 | 2.52 | 1.87 | 2.61 | 2.22 |
94 | 0 | 2.29 | 2.65 | 1.89 | 2.19 | 3.53 |
95 | 0 | 2.09 | 1.88 | 2.16 | 2.11 | 2.91 |
96 | 0 | 1.94 | 2.11 | 2.11 | 2.20 | 2.21 |
97 | 0 | 2.44 | 2.17 | 2.15 | 2.06 | 2.70 |
98 | 0 | 3.02 | 2.57 | 2.09 | 2.26 | 2.42 |
99 | 0 | 2.26 | 2.24 | 1.95 | 1.93 | 1.82 |
100 | 0 | 2.57 | 2.31 | 2.19 | 2.64 | 2.34 |
101 | 0 | 2.13 | 2.40 | 2.20 | 2.42 | 2.31 |
102 | 0 | 2.89 | 1.91 | 2.30 | 2.10 | 3.50 |
103 | 0 | 2.35 | 2.24 | 2.18 | 2.32 | 2.44 |
104 | 0 | 3.21 | 1.86 | 2.09 | 2.57 | 1.82 |
105 | 0 | 2.89 | 2.26 | 2.37 | 1.77 | 3.29 |
106 | 0 | 1.93 | 1.82 | 2.21 | 1.83 | 3.02 |
107 | 0 | 2.22 | 2.52 | 1.86 | 2.46 | 2.87 |
108 | 0 | 2.66 | 2.44 | 2.20 | 2.03 | 2.09 |
Methods | Rank |
---|---|
HAOSOA | 1.00 |
ASFLA | 4.67 |
GA | 3.88 |
HGA | 3.22 |
IMGA | 3.42 |
IGA | 4.81 |
p-value | <0.01 |
Comparison | R+ | R− | p-Value |
---|---|---|---|
HAOSOA versus ASFLA | 108 | 0 | <0.01 |
HAOSOA versus GA | 108 | 0 | <0.01 |
HAOSOA versus HGA | 108 | 0 | <0.01 |
HAOSOA versus IMGA | 108 | 0 | <0.01 |
HAOSOA versus IGA | 108 | 0 | <0.01 |
Problem | LB | PSO [49] | QIA [50] | ACO [51] | AIS [52] | AOSOA | HAOSOA |
---|---|---|---|---|---|---|---|
j10c5a2 | 88 | 88 | 88 | 88 | 88 | 88 | 88 |
j10c5a3 | 117 | 117 | 117 | 117 | 117 | 117 | 117 |
j10c5a4 | 121 | 121 | 121 | 121 | 121 | 121 | 121 |
j10c5a5 | 122 | 122 | 122 | 124 | 122 | 122 | 122 |
j10c5a6 | 110 | 110 | 110 | 110 | 110 | 110 | 110 |
j10c5b1 | 130 | 130 | 130 | 131 | 130 | 130 | 130 |
j10c5b2 | 107 | 107 | 107 | 107 | 107 | 107 | 107 |
J10c5b3 | 109 | 109 | 109 | 109 | 109 | 109 | 109 |
j10c5b4 | 122 | 122 | 122 | 124 | 122 | 122 | 122 |
j10c5b5 | 153 | 153 | 153 | 153 | 153 | 153 | 153 |
j10c5b6 | 115 | 115 | 115 | 115 | 115 | 115 | 115 |
j10c5c1 | 68 | 68 | 69 | 68 | 68 | 68 | 68 |
j10c5c2 | 74 | 74 | 76 | 76 | 74 | 74 | 74 |
j10c5c3 | 71 | 71 | 74 | 72 | 72 | 73 | 71 |
j10c5c4 | 66 | 66 | 75 | 66 | 66 | 66 | 66 |
j10c5c5 | 78 | 78 | 79 | 78 | 78 | 78 | 78 |
j10c5c6 | 69 | 69 | 72 | 69 | 69 | 69 | 69 |
j10c5d1 | 66 | 66 | 69 | - | 66 | 68 | 66 |
j10c5d2 | 73 | 73 | 76 | - | 73 | 74 | 73 |
j10c5d3 | 64 | 64 | 68 | - | 64 | 66 | 64 |
j10c5d4 | 70 | 70 | 75 | - | 70 | 72 | 70 |
j10c5d5 | 66 | 66 | 71 | - | 66 | 68 | 66 |
j10c5d6 | 62 | 62 | 64 | - | 62 | 62 | 62 |
j10c10a1 | 139 | 139 | 139 | - | 139 | 139 | 139 |
j10c10a2 | 158 | 158 | 158 | - | 158 | 158 | 158 |
j10c10a3 | 148 | 148 | 148 | - | 148 | 148 | 148 |
j10c10a4 | 149 | 149 | 149 | - | 149 | 149 | 149 |
j10c10a5 | 148 | 148 | 148 | - | 148 | 148 | 148 |
j10c10a6 | 146 | 146 | 146 | - | 146 | 146 | 146 |
j10c10b1 | 163 | 163 | - | 163 | 163 | 163 | 163 |
j10c10b2 | 157 | 157 | - | 157 | 157 | 157 | 157 |
j10c10b3 | 169 | 169 | - | 169 | 169 | 169 | 169 |
j10c10b4 | 159 | 159 | - | 159 | 159 | 159 | 159 |
j10c10b5 | 165 | 165 | - | 165 | 165 | 165 | 165 |
j10c10b6 | 165 | 165 | - | 165 | 165 | 165 | 165 |
j10c10c1 | 113 | 115 | - | 118 | 115 | 116 | 115 |
j10c10c2 | 116 | 117 | - | 117 | 119 | 118 | 117 |
j10c10c3 | 98 | 116 | - | 108 | 116 | 116 | 114 |
j10c10c4 | 103 | 120 | - | 112 | 120 | 116 | 118 |
j10c10c5 | 121 | 125 | - | 126 | 126 | 125 | 124 |
j10c10c6 | 97 | 106 | - | 102 | 106 | 105 | 104 |
j15c5a1 | 178 | 178 | - | 178 | 178 | 178 | 178 |
j15c5a2 | 165 | 165 | - | 165 | 165 | 165 | 165 |
j15c5a3 | 130 | 130 | - | 132 | 130 | 132 | 130 |
j15c5a4 | 156 | 156 | - | 156 | 156 | 156 | 156 |
j15c5a5 | 164 | 164 | - | 166 | 164 | 165 | 164 |
j15c5a6 | 178 | 178 | - | 178 | 178 | 178 | 178 |
j15c5b1 | 170 | 170 | - | 170 | 170 | 170 | 170 |
j15c5b2 | 152 | 152 | - | 152 | 152 | 152 | 152 |
j15c5b3 | 157 | 157 | - | 157 | 157 | 157 | 157 |
j15c5b4 | 147 | 147 | - | 149 | 147 | 148 | 147 |
j15c5b5 | 166 | 166 | - | 166 | 166 | 166 | 166 |
j15c5b6 | 175 | 175 | - | 176 | 175 | 175 | 175 |
j15c5c1 | 85 | 85 | - | 85 | 85 | 85 | 85 |
j15c5c2 | 90 | 90 | - | 90 | 91 | 91 | 90 |
j15c5c3 | 87 | 87 | - | 87 | 87 | 87 | 87 |
j15c5c4 | 89 | 89 | - | 89 | 89 | 89 | 89 |
j15c5c5 | 73 | 74 | - | 73 | 74 | 74 | 74 |
j15c5c6 | 91 | 91 | - | 91 | 91 | 91 | 91 |
j15c5d1 | 167 | 167 | - | 167 | 167 | 167 | 167 |
j15c5d2 | 82 | 84 | - | 86 | 84 | 84 | 83 |
j15c5d3 | 77 | 82 | - | 83 | 83 | 82 | 81 |
j15c5d4 | 61 | 84 | - | 84 | 84 | 84 | 80 |
j15c5d5 | 67 | 79 | - | 80 | 80 | 80 | 75 |
j15c5d6 | 79 | 81 | - | 79 | 82 | 81 | 80 |
j15c10a1 | 236 | 236 | 236 | 236 | 236 | 236 | 236 |
j15c10a2 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
j15c10a3 | 198 | 198 | 198 | 198 | 198 | 198 | 198 |
j15c10a4 | 225 | 225 | 225 | 228 | 225 | 226 | 225 |
j15c10a5 | 182 | 182 | 182 | 182 | 182 | 182 | 182 |
j15c10a6 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
j15c10b1 | 222 | 222 | 222 | 222 | 222 | 222 | 222 |
j15c10b2 | 187 | 187 | 187 | 188 | 187 | 187 | 187 |
j15c10b3 | 222 | 222 | 222 | 224 | 222 | 222 | 222 |
j15c10b4 | 221 | 221 | 221 | 221 | 221 | 221 | 221 |
j15c10b5 | 200 | 200 | 200 | - | 200 | 200 | 200 |
j15c10b6 | 219 | 219 | 219 | - | 219 | 219 | 219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marichelvam, M.K.; Ayyavoo, G.; Manimaran, P.; Tosun, Ö. Solving the Scheduling Problem in the Electrical Panel Board Manufacturing Industry Using a Hybrid Atomic Orbital Search Optimization Algorithm. Processes 2025, 13, 2930. https://doi.org/10.3390/pr13092930
Marichelvam MK, Ayyavoo G, Manimaran P, Tosun Ö. Solving the Scheduling Problem in the Electrical Panel Board Manufacturing Industry Using a Hybrid Atomic Orbital Search Optimization Algorithm. Processes. 2025; 13(9):2930. https://doi.org/10.3390/pr13092930
Chicago/Turabian StyleMarichelvam, Mariappan Kadarkarainadar, Gurusamy Ayyavoo, Parthasarathy Manimaran, and Ömür Tosun. 2025. "Solving the Scheduling Problem in the Electrical Panel Board Manufacturing Industry Using a Hybrid Atomic Orbital Search Optimization Algorithm" Processes 13, no. 9: 2930. https://doi.org/10.3390/pr13092930
APA StyleMarichelvam, M. K., Ayyavoo, G., Manimaran, P., & Tosun, Ö. (2025). Solving the Scheduling Problem in the Electrical Panel Board Manufacturing Industry Using a Hybrid Atomic Orbital Search Optimization Algorithm. Processes, 13(9), 2930. https://doi.org/10.3390/pr13092930