A Non-Destructive Deep Learning–Based Method for Shrimp Freshness Assessment in Food Processing
Abstract
1. Introduction
2. Materials and Methods
2.1. Shrimp Sample Collection
2.2. Image Acquisition and Preprocessing
2.3. Data Augmentation
2.4. Freshness Level Classification
2.5. Models and Improvements
2.5.1. GoogLeNet Architecture and Applicability Analysis
2.5.2. Enhanced L2 Regularization to Address Overfitting
2.5.3. Fully Connected Layer to Improve Feature Extraction
2.5.4. Activation Function Replacement for Enhanced Gradient Propagation
2.5.5. Optimizer Replacement to Improve Training Stability
2.5.6. Transfer Learning for Improved Adaptability and Robustness
2.5.7. Training and Implementation Details
3. Results and Discussion
3.1. Performance Evaluation Metrics
3.2. Model Performance Comparison and Result Analysis
3.2.1. Optimizer Replacement Experiment
3.2.2. Comparative Analysis of Structural Improvements
3.2.3. Model Performance Comparison
3.3. Visualization Analysis
4. Conclusions
- Constructing a four-category shrimp freshness image dataset rigorously aligned with TVB–N physicochemical indicators, enhancing label reliability and validating the feasibility of image-based non-destructive freshness assessment.
- Proposing an enhanced GoogLeNet model tailored for small-sample learning, incorporating ELU activation, strengthened L2 regularization, an additional fully connected layer, and the RMSProp optimizer, thereby improving sensitivity to subtle features under limited data.
- Introducing a multi-dimensional evaluation framework that systematically validates the effectiveness of model improvements through comprehensive performance metrics and visualization tools.
- Experimentally demonstrating superiority over traditional CNN baselines in convergence speed, robustness, and classification accuracy, showing potential for application in online sorting and real-time monitoring.
- Providing mechanism-oriented interpretability evidence: Grad-CAM visualizations reveal pose-invariant attention concentrated on abdominal segments with complementary cues from the cephalothorax, indicating biologically meaningful decision features rather than orientation or background artifacts and supporting robustness for in-line deployment.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatti, M.B.; Sherzada, S.; Ahmad, S.; Qazi, M.A.; Ayub, A.; Khan, S.A.; Khan, M.J.; Rani, I.; Hussain, N.; Nowosad, J.; et al. Comparative Nutritional Profiling of Economically Important Shrimp Species in Pakistan. J. Mar. Sci. Eng. 2025, 13, 157. [Google Scholar] [CrossRef]
- Barrow, C.J.; Yamaguchi, K.; Lee, K.; Nishina, S.; Wada, S. High Yields of Shrimp Oil Rich in Omega-3 and Natural Astaxanthin from Pink Shrimp Processing By-Products. ACS Omega 2020, 5, 4864–4873. [Google Scholar] [CrossRef]
- Das, S.; Mishra, S. A comprehensive review of the spoilage of shrimp and advances in various indicators/sensors for shrimp spoilage monitoring. Food Control 2023, 145, 109456. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, Y.; Wang, L.; Li, X.; Zhang, M.; Chen, H. Characterization of endogenous enzymes in sword prawn (Parapenaeopsis hardwickii) and their impact on muscle quality during storage. Food Chem. 2023, 405, 134743. [Google Scholar] [CrossRef]
- Fan, Y.; Odabasi, A.; Sims, C.A.; Schneider, K.R.; Gao, Z.; Sarnoski, P.J. Determination of aquacultured whiteleg shrimp (Litopenaeus vannamei) quality using a sensory method with chemical standard references. J. Sci. Food Agric. 2021, 101, 5236–5244. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jung, E.-J.; Hong, D.-L.; Lee, S.-E.; Lee, Y.-B.; Cho, S.-M.; Kim, S.-B. Quality assessment and acceptability of whiteleg shrimp (Litopenaeus vannamei) using biochemical parameters. Fish. Aquat. Sci. 2020, 23, 21. [Google Scholar] [CrossRef]
- Yildiz, M.B.; Yasin, E.T.; Koklu, M. Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed mobile application. Eur. Food Res. Technol. 2024, 250, 1919–1932. [Google Scholar] [CrossRef]
- Banwari, A.; Joshi, R.C.; Sengar, N.; Dutta, M.K. Computer vision technique for freshness estimation from segmented eye of fish image. Ecol. Inform. 2022, 69, 101602. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Recent Applications of Machine Vision in Fish Quality Assessment: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 730–747. [Google Scholar] [CrossRef]
- Mjahad, A.; Polo-Aguado, A.; Llorens-Serrano, L.; Rosado-Muñoz, A. Optimizing Image Feature Extraction with Convolutional Neural Networks for Chicken Meat Detection Applications. Appl. Sci. 2025, 15, 733. [Google Scholar] [CrossRef]
- Prema, K.; Visumathi, J. Hybrid Approach of CNN and SVM for Shrimp Freshness Diagnosis in Aquaculture Monitoring System using IoT Based Learning Support System. Int. J. Electr. Electron. Res. 2022, 11, 801–805. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Tang, C.X.; Li, E.B.; Zhao, C.Z.; Li, C. Monitoring the Change Process of Banana Freshness by GoogLeNet. IEEE Access 2020, 8, 223890–223899. [Google Scholar] [CrossRef]
- Moncera, C.J.A.; Portillano, G.M.; Agduma, J.T.; Dionson, M.G.D.; Bibangco, E.P. Enhancing Fish Freshness Assessment for Sustainable Fisheries: A Deep Learning Approach with MobileNetV1. Philipp. J. Sci. Eng. Technol. 2024, 1, 10–17. [Google Scholar] [CrossRef]
- Shao, Y.; Shi, Y.; Wang, K.; Li, F.; Zhou, G.; Xuan, G. Detection of small yellow croaker freshness by hyperspectral imaging. J. Food Compos. Anal. 2023, 115, 104980. [Google Scholar] [CrossRef]
- Tsagkatakis, G.; Nikolidakis, S.; Petra, E.; Kapantagakis, A.; Grigorakis, K.; Katselis, G.; Vlahos, N.; Tsakalides, P. Fish Freshness Estimation through Analysis of Multispectral Images with Convolutional Neural Networks. Electron. Imaging 2020, 2020, 171-1–171-5. [Google Scholar] [CrossRef]
- Ye, R.; Chen, Y.; Guo, Y.; Duan, Q.; Li, D.; Liu, C. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Identify Shrimp Freshness. Appl. Sci. 2020, 10, 5498. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, Z.; Sun, L.; Ju, M. Dual-Branch Attention-Assisted CNN for Hyperspectral Image Classification. Remote Sens. 2022, 14, 6158. [Google Scholar] [CrossRef]
- Choompol, A.; Gonwirat, S.; Wichapa, N.; Sriburum, A.; Thitapars, S.; Yarnguy, T.; Thongmual, N.; Warorot, W.; Charoenjit, K.; Sangmuenmao, R. Evaluating Optimal Deep Learning Models for Freshness Assessment of Silver Barb Through Technique for Order Preference by Similarity to Ideal Solution with Linear Programming. Computers 2025, 14, 105. [Google Scholar] [CrossRef]
- Li, D.; Bai, L.; Wang, R.; Ying, S. Research Progress of Machine Learning in Extending and Regulating the Shelf Life of Fruits and Vegetables. Foods 2024, 13, 3025. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, X.; Chen, W.; Liu, T. Hybrid modeling for fish freshness evaluation using image and physicochemical fusion based on deep learning and regression ensemble. J. Food Eng. 2023, 352, 111488. [Google Scholar] [CrossRef]
- Moosavi-Nasab, M.; Khoshnoudi-Nia, S.; Azimifar, Z.; Khademi, B.; Nejati-Farashah, H.; Jafari, H.; Mohammadi-Dehcheshmeh, M. Evaluation of the total volatile basic nitrogen (TVB-N) content in fish fillets using hyperspectral imaging coupled with deep learning neural network and meta-analysis. Sci. Rep. 2021, 11, 5094. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, C.; Zhong, Y.; Wang, H.; Luo, H.; Weng, Z. Deep learning detection of shrimp freshness via smartphone pictures. J. Food Meas. Charact. 2022, 16, 2669–2680. [Google Scholar] [CrossRef]
- Kim, S.S.; Yun, D.-Y.; Lee, G.; Park, S.-K.; Lim, J.-H.; Choi, J.-H.; Park, K.-J.; Cho, J.-S. Prediction and visualization of total volatile basic nitrogen in yellow croaker (Larimichthys polyactis) using shortwave infrared hyperspectral imaging. Foods 2024, 13, 3228. [Google Scholar] [CrossRef]
- He, H.-J.; Wu, D.; Sun, D.-W. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products. Crit. Rev. Food Sci. Nutr. 2015, 55, 864–886. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Pu, H.; Zhu, Z. Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem. 2015, 185, 245–253. [Google Scholar] [CrossRef]
- Qin, J.; Vasefi, F.; Hellberg, R.S.; Akhbardeh, A.; Isaacs, R.B.; Yilmaz, A.G.; Hwang, C.; Baek, I.; Schmidt, W.F.; Kim, M.S. Detection of fish fillet substitution and mislabeling using multimode hyperspectral imaging techniques. Food Control 2020, 114, 107234. [Google Scholar] [CrossRef]
- SC/T 3113–2002; Frozen Shrimp. Aquatic Industry Standard; Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2002. Available online: https://yyj.moa.gov.cn/kjzl/201904/t20190419_6210548.htm (accessed on 16 March 2025).
- GB 2733–2015; National Food Safety Standard—Fresh and Frozen Aquatic Products of Animal Origin. National Health and Family Planning Commission of the People’s Republic of China: Bejing, China, 2015. Available online: https://www.nhc.gov.cn/ewebeditor/uploadfile/2016/05/20160504145248971.pdf (accessed on 16 March 2025).
Freshness Level | Training Set | Test Set | Total |
---|---|---|---|
First-class | 2039 | 523 | 2616 |
Second-class | 1104 | 276 | 1380 |
Qualified | 1469 | 367 | 1836 |
Non-conforming | 1239 | 309 | 1548 |
Total | 5851 | 1475 | 7380 |
Activation Function | Accuracy (%) | Loss | Training Time (s) |
---|---|---|---|
ELU | 93.0 | 0.20 | 22.1 |
SiLU | 84.7 | 0.40 | 22.0 |
Tanh | 85.9 | 0.35 | 22.8 |
Sigmoid | 87.6 | 0.33 | 24.6 |
Model | Accuracy (%) | Loss | Training Time (s) |
---|---|---|---|
VGG19 | 65.5 | 0.8 | 46.8 |
AlexNet | 81.2 | 0.8 | 15.5 |
GoogLeNet | 85.9 | 0.4 | 27.3 |
Improved GoogLeNet | 93.0 | 0.2 | 22.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, D.; Zhang, C.; Wang, R.; Qiao, Q.; Gao, L.; Liu, J.; Lin, R. A Non-Destructive Deep Learning–Based Method for Shrimp Freshness Assessment in Food Processing. Processes 2025, 13, 2895. https://doi.org/10.3390/pr13092895
Hao D, Zhang C, Wang R, Qiao Q, Gao L, Liu J, Lin R. A Non-Destructive Deep Learning–Based Method for Shrimp Freshness Assessment in Food Processing. Processes. 2025; 13(9):2895. https://doi.org/10.3390/pr13092895
Chicago/Turabian StyleHao, Dongyu, Cunxi Zhang, Rui Wang, Qian Qiao, Linsong Gao, Jin Liu, and Rongsheng Lin. 2025. "A Non-Destructive Deep Learning–Based Method for Shrimp Freshness Assessment in Food Processing" Processes 13, no. 9: 2895. https://doi.org/10.3390/pr13092895
APA StyleHao, D., Zhang, C., Wang, R., Qiao, Q., Gao, L., Liu, J., & Lin, R. (2025). A Non-Destructive Deep Learning–Based Method for Shrimp Freshness Assessment in Food Processing. Processes, 13(9), 2895. https://doi.org/10.3390/pr13092895