Numerical Simulation Study of Gas Leakage and Diffusion in Underground Comprehensive Pipe Gallery
Abstract
1. Introduction
2. Mathematical Model
2.1. Gas Flow Governing Equations
- 1.
- Energy Equation:
- 2.
- Continuity Equation:
- 3.
- Momentum Equation:
- 4.
- Gas State Equation:
- 5.
- Species Transport Equation:
2.2. Small Hole Leakage Model and Leakage Rate Calculation
3. Numerical Model
3.1. Model Establishment
3.2. Simulation Settings
3.3. Measuring Point Layout
3.4. Mesh Generation and Grid Sensitivity Analysis
3.5. Model Verification
3.6. Simulation Scenarios
4. Influence of Leak Sources on Gas Dispersion
4.1. Interactions of Gas Leak Parameters
4.2. Influence of Different Leak Apertures
4.2.1. Methane Concentration Change
4.2.2. Impact on Alarm Time
4.2.3. Longitudinal Distribution of Methane
4.2.4. Influence on Methane Dispersion Distance
4.2.5. Influence of Leak Aperture Size on Methane Backflow Length
4.3. Different Pipeline Operating Pressures
4.3.1. Changes in Methane Concentration
4.3.2. Impact on Alarm Time
4.3.3. Longitudinal Distribution of Methane Concentration
4.3.4. Influence on Methane Dispersion Distance
4.3.5. Influence of Pipeline Operating Pressure on Methane Backflow Length
4.4. Establishment of Prediction Models for Leak Dispersion Parameters
4.4.1. Prediction Model for Alarm Time
4.4.2. Prediction Model for Methane Dispersion Distance
5. Conclusions
- (1)
- When the operating pressure of the pipeline remains constant, the leakage rate increases according to a power-law relationship with the leakage aperture size. Conversely, when the leakage aperture size is constant, the leakage rate exhibits a linear relationship with the pipeline operating pressure. Specifically, when the leakage aperture size is 8 mm, and the pipeline operating pressure ranges from 0.4 to 1.6 MPa, the leakage rate doubles uniformly.
- (2)
- The alarm time decreases with the increase in both the leakage aperture and pipeline operating pressure. Meanwhile, the methane diffusion distance increases with the increase in these two factors. Additionally, the methane backflow length increases according to a power-law relationship with the dimensionless leakage aperture and pipeline operating pressure, showing exponents of 0.83 and 0.63, respectively.
- (3)
- A predictive model for alarm time and methane diffusion distance was established, with fitted correlation coefficients of 0.97 and 0.98, and average residuals at each point of 2.53 and 1.97, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Mao, X.; Liang, H.; Yang, D.; Zhang, J.; Liu, S. Experimental research on in-pipe leaks detection of acoustic signature in gas pipelines based on the artificial neural network. Measurement 2021, 183, 109875. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Abbassi, R.; Yang, M.; Zhang, R.; Chen, G. Dynamic probability assessment of urban natural gas pipeline accidents considering integrated external activities. J. Loss Prev. Process Ind. 2021, 69, 104388. [Google Scholar] [CrossRef]
- Valdenebro, J.V.; Gimena, F.N. Urban utility tunnels as a long-term solution for the sustainable revitalization of historic centres: The case study of Pamplona-Spain. Tunn. Undergr. Space Technol. 2018, 81, 228–236. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Yang, X. Enhancing Resilience in Urban Utility Tunnels Power Transmission Systems: Analysing Temperature Distribution in near-Wall Cable Fires for Risk Mitigation. Tunn. Undergr. Space Technol. 2024, 152, 105911. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.; Palacios, A.; Yao, Y. Investigation of the Possible Use of Sound Waves for Fire Safety in Tunnels: A Fundamental Study on Flame Dynamics and the Extinguishment Criteria of Gas Leak Jet Fires. Tunn. Undergr. Space Technol. 2025, 162, 106663. [Google Scholar] [CrossRef]
- Li, Y.; Qian, X.; Zhang, S.; Sheng, J.; Hou, L.; Yuan, M. Assessment of gas explosion risk in underground spaces adjacent to a gas pipeline. Tunn. Undergr. Space Technol. 2023, 131, 104785. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Li, Y.; Hu, Q.; Liu, C.; Liu, C. Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks. Reliab. Eng. Syst. Saf. 2022, 218, 108150. [Google Scholar] [CrossRef]
- Bonnaud, C.; Cluzel, V.; Corcoles, P.; Dubois, J.P.; Louvet, V.; Maury, M.; Poenou, J. Experimental study and modelling of the consequences of small leaks on buried transmission gas pipeline. J. Loss Prev. Process Ind. 2018, 55, 303–312. [Google Scholar] [CrossRef]
- Gao, B.; Mitton, M.K.; Bell, C.; Zimmerle, D.; Deepagoda, T.C.; Hecobian, A.; Smits, K.M. Study of methane migration in the shallow subsurface from a gas pipe leak. Elem. Sci. Anthr. 2021, 9, 00008. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, J.; Huang, X.; Zhang, J.; Guo, X. Trend of soil temperature during pipeline leakage of high-pressure natural gas: Experimental and numerical study. Measurement 2020, 153, 107440. [Google Scholar] [CrossRef]
- Tian, Y.; Qin, C.; Yang, Z.; Hao, D. Numerical simulation study on the leakage and diffusion characteristics of high-pressure hydrogen gas in different spatial scenes. Int. J. Hydrogen Energy 2024, 50, 1335–1349. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Ma, T.; Ma, R.; Bao, Y.; Fan, Z. Numerical study of leakage characteristics of hydrogen-blended natural gas in buried pipelines. Int. J. Hydrogen Energy 2024, 49, 1166–1179. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Yan, X.; Malekian, R.; Li, Z. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship. Renew. Sustain. Energy Rev. 2018, 97, 177–185. [Google Scholar] [CrossRef]
- Qian, J.Y.; Li, X.J.; Gao, Z.X.; Jin, Z.J. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station. Int. J. Hydrogen Energy 2020, 45, 14428–14439. [Google Scholar] [CrossRef]
- Ebrahimi-Moghadam, A.; Farzaneh-Gord, M.; Arabkoohsar, A.; Moghadam, A.J. CFD analysis of natural gas emission from damaged pipelines: Correlation development for leakage estimation. J. Clean. Prod. 2018, 199, 257–271. [Google Scholar] [CrossRef]
- Zeng, F.; Jiang, Z.; Zheng, D.; Si, M.; Wang, Y. Study on numerical simulation of leakage and diffusion law of parallel buried gas pipelines in tunnels. Process Saf. Environ. Prot. 2023, 177, 258–277. [Google Scholar] [CrossRef]
- Kang, Y.; Ma, S.; Song, B.; Xia, X.; Wu, Z.; Zhang, X.; Zhao, M. Simulation of hydrogen leakage diffusion behavior in confined space. Int. J. Hydrogen Energy 2024, 53, 75–85. [Google Scholar] [CrossRef]
- Zhang, P.; Lan, H. Effects of ventilation on leakage and diffusion law of gas pipeline in utility tunnel. Tunn. Undergr. Space Technol. 2020, 105, 103557. [Google Scholar] [CrossRef]
- Ebrahimi-Moghadam, A.; Farzaneh-Gord, M.; Deymi-Dashtebayaz, M. Correlations for estimating natural gas leakage from above-ground and buried urban distribution pipelines. J. Nat. Gas Sci. Eng. 2016, 34, 185–196. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, J.; Qin, J.; Xu, Z.; Zhu, J.; Liu, G.; Yuan, H. Numerical simulation of hydrogen leakage and diffusion in a ship engine room. Int. J. Hydrogen Energy 2024, 55, 42–54. [Google Scholar] [CrossRef]
- Dong, G.; Xue, L.; Yang, Y.; Yang, J. Evaluation of hazard range for the natural gas jet released from a high-pressure pipeline: A computational parametric study. J. Loss Prev. Process Ind. 2010, 23, 522–530. [Google Scholar] [CrossRef]
- Dormohammadi, R.; Farzaneh-Gord, M.; Ebrahimi-Moghadam, A.; Ahmadi, M.H. Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels. J. Mol. Liq. 2018, 269, 229–240. [Google Scholar] [CrossRef]
- GB 50838-2015; Technical Specification for Urban Comprehensive Pipeline Corridor Engineering (In Chinese). China Planning Press: Beijing, China, 2015.
- Liu, X.X. Theoretical and Experimental Study of Gas Pipeline Leakage Diffusion in Comprehensive Pipeline Corridors (In Chinese). Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2018. [Google Scholar]
Gas Type | Density (kg·m−3) | Specific Heat at Constant Pressure (J·kg−1·K−1) | (Pa·s) | Heat Transfer Coefficient (W·m−1·K) | (g·mol−1) | |
---|---|---|---|---|---|---|
Methane | 0.6597 | 2237.2 | 1.306 | 1.111 × 10−5 | 0.03302 | 16.04 |
Parameter | Settings |
---|---|
Gravity | 0 (X); 0 (Y); −9.81 m/s2 (Z) |
Turbulence model | standard k-ε model; considering buoyancy effects |
Near-wall treatment | standard wall function |
Pressure-velocity coupling | SIMPLE algorithm |
Momentum spatial discretization | second-order upwind |
Gradient spatial discretization | least squares cell |
Pressure spatial discretization | Second-order scheme |
Pipeline Pressure (MPa) | Initial Pressure (MPa) |
---|---|
0.4 | 0.274 |
0.8 | 0.493 |
1.2 | 0.713 |
1.4 | 0.822 |
1.6 | 0.932 |
Leakage Aperture Type | Aperture Range (mm) |
---|---|
Minitype | 0~1/4 |
Mesotype | 1/4~2 |
Large | 2~6 |
Rupture | >6 |
Test Point | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
X (m) | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
Y (m) | 2 | 10 | 25 | 40 | 55 | 70 | 85 | 100 |
Z (m) | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 |
Test point | 8* | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
X (m) | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
Y (m) | 107.5 | 115 | 130 | 145 | 160 | 175 | 190 | 198 |
Z (m) | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 |
Leakage Condition | (mm) | (MPa) | (kg/s) | (Times/h) | (°C) | (%) |
---|---|---|---|---|---|---|
1 | 4 | 0.8 | 0.019 | 6/12 | 15 | 70% |
2 | 5 | 0.8 | 0.030 | 6/12 | 15 | 70% |
3 | 6 | 0.8 | 0.044 | 6/12 | 15 | 70% |
4 | 8 | 0.8 | 0.066 | 6/12 | 15 | 70% |
5 | 10 | 0.8 | 0.103 | 6/12 | 15 | 70% |
6 | 5 | 0.4 | 0.017 | 6/12 | 15 | 70% |
7 | 5 | 1.2 | 0.040 | 6/12 | 15 | 70% |
8 | 5 | 1.4 | 0.045 | 6/12 | 15 | 70% |
9 | 5 | 1.6 | 0.057 | 6/12 | 15 | 70% |
(mm) | Relational Expression | (m) | |||
---|---|---|---|---|---|
Alarm Time 30 s | Alarm Time 60 s | Alarm Time 90 s | Alarm Time 120 s | ||
6 mm | 19.24 | 39.93 | 60.62 | 81.31 | |
8 mm | 23.58 | 48.58 | 73.58 | 98.58 | |
10 mm | 26.39 | 54.17 | 81.94 | 109.72 |
(mm) | Relational Expression | (s) | |||
---|---|---|---|---|---|
Dispersion Distance 30 m | Dispersion Distance 50 m | Dispersion Distance 70 m | Dispersion Distance 90 m | ||
4 mm | 30.00 | 53.26 | 76.51 | 99.77 | |
5 mm | 29.02 | 52.28 | 75.53 | 98.79 | |
6 mm | 28.15 | 50.88 | 73.60 | 96.33 | |
8 mm | 26.22 | 48.20 | 70.18 | 92.15 | |
10 mm | 25.76 | 47.50 | 69.24 | 90.98 |
(MPa) | Relational Expression | (m) | |||
---|---|---|---|---|---|
Alarm Time 30 s | Alarm Time 60 s | Alarm Time 90 s | Alarm Time 120 s | ||
1.2 | 16.05 | 34.01 | 51.98 | 69.94 | |
1.4 | 18.90 | 39.59 | 60.28 | 80.97 | |
1.6 | 20.97 | 43.36 | 65.75 | 88.13 |
(MPa) | Relational Expression | (s) | |||
---|---|---|---|---|---|
Dispersion Distance 30 m | Dispersion Distance 50 m | Dispersion Distance 70 m | Dispersion Distance 90 m | ||
0.4 | 29.08 | 52.34 | 75.59 | 98.85 | |
0.8 | 29.02 | 52.27 | 75.53 | 98.79 | |
1.2 | 26.46 | 47.73 | 69.01 | 90.29 | |
1.4 | 25.45 | 46.72 | 68.00 | 89.28 | |
1.6 | 24.84 | 45.68 | 66.51 | 87.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, R.; Zhang, Y.; Lv, Z.; Wang, X. Numerical Simulation Study of Gas Leakage and Diffusion in Underground Comprehensive Pipe Gallery. Processes 2025, 13, 2886. https://doi.org/10.3390/pr13092886
Wang Y, Li R, Zhang Y, Lv Z, Wang X. Numerical Simulation Study of Gas Leakage and Diffusion in Underground Comprehensive Pipe Gallery. Processes. 2025; 13(9):2886. https://doi.org/10.3390/pr13092886
Chicago/Turabian StyleWang, Yunlong, Rui Li, Youjia Zhang, Zhengxiu Lv, and Xu Wang. 2025. "Numerical Simulation Study of Gas Leakage and Diffusion in Underground Comprehensive Pipe Gallery" Processes 13, no. 9: 2886. https://doi.org/10.3390/pr13092886
APA StyleWang, Y., Li, R., Zhang, Y., Lv, Z., & Wang, X. (2025). Numerical Simulation Study of Gas Leakage and Diffusion in Underground Comprehensive Pipe Gallery. Processes, 13(9), 2886. https://doi.org/10.3390/pr13092886