New Eutectic Solvent Based on bis(2,4,4-trimethylpentyl)phosphinic Acid, Tributyl Phosphate and Phenol for the Extraction of Trivalent Rare-Earth Elements from Nitrate Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Hydrophobic Eutectic Solvent Synthesis
2.3. Hydrophobic Eutectic Solvent Characterisation
2.4. Extraction Experiments
3. Results
3.1. Physicochemical Properties of the Hydrophobic Eutectic Solvent BTMPPA/TBP/Phenol
3.2. Stability of the BTMPPA/TBP/Phenol (1:1:2) HES upon Interaction with Water and Mineral Acid Solutions
3.3. REE Extraction from Nitrate Solutions with HES BTMPPA/TBP/Phenol
3.4. The Stripping of Rare-Earth Metals in the BTMPPA/TBP/Phenol System (1:1:2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HES | Hydrophobic eutectic solvent |
REEs | Rare-earth elements |
BTMPPA | Bis(2,4,4-trimethylpentyl)phosphinic acid |
TBP | Tributyl phosphate |
FTIR | Fourier-transform infrared spectroscopy |
NMR | Nuclear magnetic resonance |
UV | Ultraviolet |
References
- Zhang, Y.; Pan, W.; Xie, H.; Li, H.; Chen, L. Deep Eutectic Solvents Inspired Synthesis of Novel Bi-Component Rare Earths Extractants for Neodymium Separation. J. Mol. Liq. 2025, 418, 126730. [Google Scholar] [CrossRef]
- Yang, X.; Xu, L.; Fang, D.; Zhang, A.; Xiao, C. Progress in Phenanthroline-Derived Extractants for Trivalent Actinides and Lanthanides Separation: Where to Next? Chem. Commun. 2024, 60, 11415–11433. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Vovers, J.; Thuan Lu, H.; Stevens, G.W.; Mumford, K.A. Investigation of Green Solvents for the Extraction of Phenol and Natural Alkaloids: Solvent and Extractant Selection. Chem. Eng. J. 2022, 442, 136054. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Burdzy, K.; Hunger, S.; Aurich, A.; Ju, Y. Green Extractants in Assisting Recovery of REEs: A Case Study. Molecules 2023, 28, 965. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J.; Rutkowska, M.; Owczarek, K.; Tobiszewski, M.; Namieśnik, J. Extraction with Environmentally Friendly Solvents. TrAC Trends Anal. Chem. 2017, 91, 12–25. [Google Scholar] [CrossRef]
- Wilson, A.M.; Bailey, P.J.; Tasker, P.A.; Turkington, J.R.; Grant, R.A.; Love, J.B. Solvent Extraction: The Coordination Chemistry behind Extractive Metallurgy. Chem. Soc. Rev. 2013, 43, 123–134. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef]
- Yu, D.; Xue, Z.; Mu, T. Eutectics: Formation, Properties, and Applications. Chem. Soc. Rev. 2021, 50, 8596–8638. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Schaeffer, N.; Vaz, I.C.M.; Pinheiro, M.S.; Olea, F.; Hanada, T.; Dourdain, S.; Coutinho, J.A.P. Examining the Potential of Type V DESs for the Solvent Extraction of Metal Ions. Green Chem. 2025, 27, 4438–4463. [Google Scholar] [CrossRef] [PubMed]
- Riaño, S.; Petranikova, M.; Onghena, B.; Vander Hoogerstraete, T.; Banerjee, D.; Foreman, M.R.S.; Ekberg, C.; Binnemans, K. Separation of Rare Earths and Other Valuable Metals from Deep-Eutectic Solvents: A New Alternative for the Recycling of Used NdFeB Magnets. RSC Adv. 2017, 7, 32100–32113. [Google Scholar] [CrossRef]
- Arrachart, G.; Couturier, J.; Dourdain, S.; Levard, C.; Pellet-Rostaing, S. Recovery of Rare Earth Elements (REEs) Using Ionic Solvents. Processes 2021, 9, 1202. [Google Scholar] [CrossRef]
- Zante, G.; Boltoeva, M. Review on Hydrometallurgical Recovery of Metals with Deep Eutectic Solvents. Sustain. Chem. 2020, 1, 238–255. [Google Scholar] [CrossRef]
- Babu, S.; Kumar, S. Potential of Deep Eutectic Solvents as Green and Sustainable Solvents for the Recovery of Carboxylic Acids from Aqueous Solution: A Review. J. Chem. Technol. Biotechnol. 2025, 100, 1541–1562. [Google Scholar] [CrossRef]
- Anstiss, L.; Weber, C.C.; Baroutian, S.; Shahbaz, K. Menthol-Based Deep Eutectic Solvents as Green Extractants for the Isolation of Omega-3 Polyunsaturated Fatty Acids from Perna canaliculus. J. Chem. Technol. Biotechnol. 2023, 98, 1791–1802. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Physicochemical Properties of Deep Eutectic Solvents: A Review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19, 3397–3408. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, H.; Yong, W.F.; She, Q.; Esteban, J. Status and Advances of Deep Eutectic Solvents for Metal Separation and Recovery. Green Chem. 2022, 24, 1895–1929. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Lobovich, D.V.; Milevskii, N.A.; Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. The Use of Organophosphorus Extractants as a Component of Hydrophobic Deep Eutectic Solvents (HDES) for the Processing of Spent Lithium-iron Phosphate Batteries. Hydrometallurgy 2024, 228, 106369. [Google Scholar] [CrossRef]
- Liu, C.; Ma, L.; Xi, X.; Nie, Z. Design Insights into Eutectic Solvents: Selective Recovery of Transition Metal Elements from Laterite Nickel Ore Leachate. Sep. Purif. Technol. 2025, 361, 131409. [Google Scholar] [CrossRef]
- Yu, G.; Ni, S.; Gao, Y.; Mo, D.; Zeng, Z.; Sun, X. Recovery of Rare Earth Metal Oxides from NdFeB Magnet Leachate by Hydrophobic Deep Eutectic Solvent Extraction, Oxalate Stripping and Calcination. Hydrometallurgy 2024, 223, 106209. [Google Scholar] [CrossRef]
- Ni, S.; Gao, Y.; Yu, G.; Zhang, S.; Zeng, Z.; Sun, X. Tailored Ternary Hydrophobic Deep Eutectic Solvents for Synergistic Separation of Yttrium from Heavy Rare Earth Elements. Green Chem. 2022, 24, 7148–7161. [Google Scholar] [CrossRef]
- Shakiba, G.; Saneie, R.; Abdollahi, H.; Ebrahimi, E.; Rezaei, A.; Mohammadkhani, M. Application of Deep Eutectic Solvents (DESs) as a Green Lixiviant for Extraction of Rare Earth Elements from Caustic-Treated Monazite Concentrate. J. Environ. Chem. Eng. 2023, 11, 110777. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Chikineva, T.Y.; Salomatin, A.M.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction of Rare Earth Elements from Nitrate Solutions by Hydrophobic Eutectic Solvents Based on Phosphorus-Containing Compounds. Ind. Eng. Chem. Res. 2024, 63, 21587–21602. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Chikineva, T.Y.; Zakhodyaeva, Y.A.; Voshkin, A.A. Bis(2,4,4-Trimethylpentyl)Phosphinic Acid/Phenol Deep Eutectic Solvent: Physicochemical Properties and Application Prospects for the Extraction of Trivalent Rare Earth Elements. J. Mol. Liq. 2025, 423, 126984. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Chikineva, T.Y.; Yakovleva, S.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction of Rare-Earth Elements with Deep Eutectic Solvent Di(2,4,4-Trimethylpentyl)Phosphinic Acid/Phenol. Theor. Found. Chem. Eng. 2024, 58, 2009–2016. [Google Scholar] [CrossRef]
- Önal, M.A.R.; Aktan, E.; Borra, C.R.; Blanpain, B.; Van Gerven, T.; Guo, M. Recycling of NdFeB Magnets Using Nitration, Calcination and Water Leaching for REE Recovery. Hydrometallurgy 2017, 167, 115–123. [Google Scholar] [CrossRef]
- Yang, Y.; Walton, A.; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O.; Buchert, M.; Steenari, B.M.; Van Gerven, T.; Jones, P.T.; et al. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017, 3, 122–149. [Google Scholar] [CrossRef]
- Hrdlička, A.; Havel, J.; Moreno, C.; Valiente, M. Micellar-Enhanced Highly Sensitive Reaction of Rare Earths with Xylenol Orange and Surfactants. Study of Reaction Conditions and Optimization of Spectrophotometric Method. Anal. Sci. 1991, 7, 925–929. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Kozhevnikova, A.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. New Hydrophobic Eutectic Solvent Based on Bis(2,4,4-Trimethylpentyl)Phosphinic Acid and Menthol: Properties and Application. Eng. Proc. 2023, 37, 68. [Google Scholar] [CrossRef]
- Schaeffer, N.; Conceição, J.H.; Martins, M.A.; Neves, M.C.; Pérez-Sánchez, G.; Gomes, J.R.; Papaiconomou, N.; Coutinho, J.A. Non-Ionic Hydrophobic Eutectics—Versatile Solvents for Tailored Metal Separation and Valorisation. Green Chem. 2020, 22, 2810–2820. [Google Scholar] [CrossRef]
- Shahbaz, K.; Mjalli, F.S.; Hashim, M.A.; Alnashef, I.M. Prediction of Deep Eutectic Solvents Densities at Different Temperatures. Thermochim. Acta 2011, 515, 67–72. [Google Scholar] [CrossRef]
- Su, H.Z.; Yin, J.M.; Liu, Q.S.; Li, C.P. Properties of Four Deep Eutectic Solvents: Density, Electrical Conductivity, Dynamic Viscosity and Refractive Index. Acta Phys. Chim. Sin. 2015, 31, 1468–1473. [Google Scholar] [CrossRef]
- Yao, C.; Ma, H.; Zhao, Q.; Liu, Y.; Zhao, Y.; Chen, G. Mass Transfer in Liquid-Liquid Taylor Flow in a Microchannel: Local Concentration Distribution, Mass Transfer Regime and the Effect of Fluid Viscosity. Chem. Eng. Sci. 2020, 223, 115734. [Google Scholar] [CrossRef]
- Nguyen, V.N.H.; Nguyen, T.H.; Lee, M.S. Review on the Comparison of the Chemical Reactivity of Cyanex 272, Cyanex 301 and Cyanex 302 for Their Application to Metal Separation from Acid Media. Metals 2020, 10, 1105. [Google Scholar] [CrossRef]
- Jensen, M.P.; Bond, A.H. Influence of Aggregation on the Extraction of Trivalent Lanthanide and Actinide Cations by Purified Cyanex 272, Cyanex 301, and Cyanex 302. Radiochim. Acta 2002, 90, 205–209. [Google Scholar] [CrossRef]
HES | Aqueous Phase | Cphenol (mol/L) | Entrainment of the Organic Phase (%) |
---|---|---|---|
BTMPPA/phenol (1:3) | H2O | 6.1∙10−4 | 0.012 |
0.5 mol/L HNO3 | 6.3∙10−4 | 0.012 | |
0.5 mol/L HCl | 5.2∙10−4 | 0.010 | |
0.5 mol/L H2SO4 | 4.4∙10−4 | 0.009 | |
BTMPPA/TBP/phenol (1:1:2) | H2O | 1.7∙10−4 | 0.005 |
0.5 mol/L HNO3 | 2.1∙10−4 | 0.006 | |
0.5 mol/L HCl | 1.2∙10−4 | 0.003 | |
0.5 mol/L H2SO4 | 1.2∙10−4 | 0.003 |
Metal Ion | Pr3+ | Nd3+ | Dy3+ |
---|---|---|---|
E (%) | 32.9 | 38.75 | 81.26 |
D | 0.49 | 0.63 | 9.75 |
Metal Ion | S (%) |
---|---|
Pr3+ | 99.63 |
Nd3+ | 95.01 |
Dy3+ | 97.67 |
Composition | Viscosity at 25 °C (mPa·s) | Water Content (wt %) | ENd (%) | Extraction Conditions | Stripping (%) | References |
---|---|---|---|---|---|---|
BTMPPA/TBP/phenol (1/1/2) | 17.7 | 0.97 | 38.75 | Nitrate media pH = 3.5, O/A = 1, 15 min, CNd(in) = 0.01 mol/L | 0.5 mol/L HNO3 95.01% | Present work |
BTMPPA/phenol (1/3) | 27.3 | 0.345 | 20.29 | Nitrate media, pH = 3.5, O/A = 1, 15 min, CNd(in) = 0.01 mol/L | 0.5 mol/L HNO3 88.83% 0.5 mol/L HCL 89.01% | [26,27] |
Cyanex 272/lauric acid | - | - | ~60 | Chloride media, pH = 3, O/A = 1, CNd(in) = 0.4 mmol/L | 1 mol/L HCl ~40% | [1] |
Cyanex 272/DL-menthol | - | - | ~60 | Chloride media, pH = 3, O/A = 1, CNd(in) = 0.4 mmol/L | 1 mol/L HCl ~50% | [1] |
Cyanex 272/thymol | - | - | ~70 | Chloride media, pH = 3, O/A = 1, CNd(in) = 0.4 mmol/L | 1 mol/L HCl ~50% | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chikineva, T.Y.; Zinov’eva, I.V.; Yakovleva, S.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. New Eutectic Solvent Based on bis(2,4,4-trimethylpentyl)phosphinic Acid, Tributyl Phosphate and Phenol for the Extraction of Trivalent Rare-Earth Elements from Nitrate Solutions. Processes 2025, 13, 2830. https://doi.org/10.3390/pr13092830
Chikineva TY, Zinov’eva IV, Yakovleva SA, Zakhodyaeva YA, Voshkin AA. New Eutectic Solvent Based on bis(2,4,4-trimethylpentyl)phosphinic Acid, Tributyl Phosphate and Phenol for the Extraction of Trivalent Rare-Earth Elements from Nitrate Solutions. Processes. 2025; 13(9):2830. https://doi.org/10.3390/pr13092830
Chicago/Turabian StyleChikineva, Tatiana Yu., Inna V. Zinov’eva, Sofya A. Yakovleva, Yulia A. Zakhodyaeva, and Andrey A. Voshkin. 2025. "New Eutectic Solvent Based on bis(2,4,4-trimethylpentyl)phosphinic Acid, Tributyl Phosphate and Phenol for the Extraction of Trivalent Rare-Earth Elements from Nitrate Solutions" Processes 13, no. 9: 2830. https://doi.org/10.3390/pr13092830
APA StyleChikineva, T. Y., Zinov’eva, I. V., Yakovleva, S. A., Zakhodyaeva, Y. A., & Voshkin, A. A. (2025). New Eutectic Solvent Based on bis(2,4,4-trimethylpentyl)phosphinic Acid, Tributyl Phosphate and Phenol for the Extraction of Trivalent Rare-Earth Elements from Nitrate Solutions. Processes, 13(9), 2830. https://doi.org/10.3390/pr13092830