Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Carbonization and Activation
2.2. Physical Method
2.3. Adsorption Method
2.4. Physical Method to Characterize Adsorbent Structure, Morphology and Composition
2.5. Data Analysis
3. Results
3.1. Characterization of Adsorbents
Laser Scattering Analysis
3.2. Analysis Using Scanning Electron Microscopy (SEM)
3.3. Elemental Composition Analysis Using Energy-Dispersive Spectroscopy (EDS)
3.4. Analysis of the Physical Composition via Atomic Force Microscopy (AFM)
4. Discussion
4.1. Laser Scattering Analysis
4.2. Analysis by Scanning Electron Microscope (SEM)
4.3. Elemental Composition Analysis by Energy-Dispersive X-Ray Spectrometer (EDS)
4.4. Physical Composition Analysis by Atomic Force Microscope (AFM)
5. Conclusions
- The analyzed adsorbent materials exhibited a complex structure characterized by a diversity of interconnected pore sizes distributed in an irregular (roughness) and random (asymmetry) manner, forming fractures and interconnected alveolar cavities, as well as cracks that separate the different regions. These structural features facilitated the mobilization and trapping of the adsorbate through the pore spaces, which was validated by the adsorption results in IS and MBS. The results suggested that these materials have a considerable adsorbent capacity for various contaminating elements, which makes them potentially applicable in adsorption processes.
- The results obtained provided reliable information on the characterization techniques to confirm the adsorption information of the analyzed materials. This made their uses viable to reduce contaminants of interest in the production of filters on a domestic and commercial scale. In addition, the application of these materials in adsorption processes could be beneficial for the removal of contaminants in various environmental matrices.
- This study revealed that the materials analyzed have a complex porous structure, characterized mainly by a predominance of macropores, together with a limited presence of micropores and mesopores. This porous configuration, together with a high surface roughness, suggested a significant capacity to adsorb contaminants, especially those of larger molecular size. The abundance of macropores facilitates the transport and access of molecules to the active adsorption sites, while micropores, although less abundant, contribute to the retention of small molecules. Despite the demonstrated potential for contaminant removal, the large-scale application of these materials requires consideration of practical aspects such as cost-effectiveness, availability of raw materials and the necessary infrastructure for their production and industrial implementation. In addition, it is essential to evaluate the stability of the material under conditions of prolonged use and its regeneration capacity, aspects that directly impact its efficiency and useful life.
- Throughout the investigation, several challenges and limitations were encountered that were crucial for the development of this study. These included the complexity in optimizing the experimental conditions and interpreting the adsorption data, especially due to the complex porous structure of the materials. Despite these challenges, the research managed to provide valuable information on the potential of the materials for contaminant removal. Future research should focus on overcoming these limitations to improve the efficiency and applicability of these materials in practical contexts.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, Y.; Kumar, R.; Raizada, P.; Khan, A.A.P.; Nguyen, V.-H.; Kim, S.Y.; Van Le, Q.; Selvasembian, R.; Singh, A.; Gautam, S. Recent progress on elemental sulfur based photocatalysts for energy and environmental applications. Chemosphere 2022, 305, 135477. [Google Scholar] [CrossRef]
- López Ramírez, M.Á.; Castellanos Onorio, O.P.; Lango Reynoso, F.; Castañeda Chávez, M.d.R.; Montoya Mendoza, J.; Sosa Villalobos, C.A.; Ortiz Muñiz, B. Oxidación avanzada como tratamiento alternativo para las aguas residuales. Una revisión. Enfoque UTE 2021, 12, 76–87. [Google Scholar] [CrossRef]
- Ma, J.; Tong, L.; Yang, H. Progress in electrocatalytic treatment of cyanide-containing wastewater with various electrode materials. Alex. Eng. J. 2025, 121, 558–568. [Google Scholar] [CrossRef]
- Mejía-López, A.; Cabrera, M.; Carrillo, Y. Remoción de contaminantes orgánicos presentes en agua residual doméstica mediante prototipo a escala de laboratorio. La Granja Rev. Cienc. Vida 2017, 26, 64–71. [Google Scholar] [CrossRef]
- Guerra Hernández, J.; Espinoza Jarrin, J. Remoción de metales pesados en agua empleando bioadsorbentes magnéticos. Mundo Nano Rev. Interdiscip. Nanocienc. Nanotecnol. 2025, 18, 34. [Google Scholar] [CrossRef]
- Tichem, T.M.; Wang, Y.; Gameli, R.B.; Mbage, B.; Duwiejuah, A.B.; Wang, N.; Bing, L. Mono and Simultaneous Adsorption of Aldrin and Toxic Metals from Aqueous Solution Using Rice Husk Biochar. BioResources 2024, 19, 257–275. [Google Scholar] [CrossRef]
- Gonzaga, A.; Rimaycuna, J.; Cruz, G.; Herrera, E.L.; Gómez, M.; Solis, J.; Cruz, J.; Keiski, R. Remoción de plomo presente en soluciones acuosas utilizando biocarbón producido a base de coronta de maíz. Manglar 2021, 18, 35–43. [Google Scholar] [CrossRef]
- Gonzalez, K.D.M.; Abril, R.A.M. Uso del carbón activado para el tratamiento de aguas. Revisión y estudios de caso. Rev. Nac. Ing. 2018, 1, 8–21. [Google Scholar]
- Fleig, O.P.; Raymundo, L.M.; Trierweiler, L.F.; Trierweiler, J.O. Study of rice husk continuous torrefaction as a pretreatment for fast pyrolysis. J. Anal. Appl. Pyrolysis 2021, 154, 104994. [Google Scholar] [CrossRef]
- FAO. FAO, Food and Agricultural Organization, Situación Alimentaria Mundial, 6 December 2024. Available online: https://www.fao.org/worldfoodsituation/csdb/es/ (accessed on 2 January 2025).
- Piyathissa, S.; Kahandage, P.; Namgay; Zhang, H.; Noguchi, R.; Ahamed, T. Introducing a Novel Rice Husk Combustion Technology for Maximizing Energy and Amorphous Silica Production Using a Prototype Hybrid Rice Husk Burner to Minimize Environmental Impacts and Health Risk. Energies 2023, 16, 1120. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.; Chen, A.; Xie, X.; Wang, Y.; Yin, C. Mitigating effects of ex situ application of rice straw on CH4 and N2O emissions from paddy-upland coexisting system. Sci. Rep. 2016, 6, 37402. [Google Scholar] [CrossRef]
- Díaz, B.; Sommer-Márquez, A.; Ordoñez, P.E.; Bastardo-González, E.; Ricaurte, M.; Navas-Cárdenas, C. Synthesis methods, properties, and modifications of biochar-based materials for wastewater treatment: A review. Resources 2024, 13, 8. [Google Scholar] [CrossRef]
- Peña Sterling, C.I.; Eguez, A. Hormigón Celular con la Utilización de Materiales Locales. Escuela Superior Politecnica del Litoral, Guayaquil, Ecuador. 2001. Available online: http://www.dspace.espol.edu.ec/handle/123456789/3310 (accessed on 2 January 2025).
- Valverde, A.; Sarria, B.; Monteagudo, J.P. Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz. Sci. Technol. 2007, 13, 255–260. [Google Scholar]
- Varón Camargo, J. Diseño, Construcción y Puesta a Punto de un Prototipo de Quemador Para la Combustión Continua y Eficiente de la Cascarilla de Arroz. Available online: https://www.redalyc.org/articulo.oa?id=47802513 (accessed on 1 January 2025).
- Ahsaine, H.A.; Zbair, M.; Anfar, Z.; Naciri, Y.; El Haouti, R.; El Alem, N.; Ezahri, M. Cationic dyes adsorption onto high surface area ‘almond shell’activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Mater. Today Chem. 2018, 8, 121–132. [Google Scholar] [CrossRef]
- Khader, E.H.; Mohammed, T.J.; Albayati, T.M. Comparative performance between rice husk and granular activated carbon for the removal of azo tartrazine dye from aqueous solution. Desalination Water Treat. 2021, 229, 372–383. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.-b.; Peng, J.-h.; Li, N.; Zhu, X.-y. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind. Crops Prod. 2008, 27, 341–347. [Google Scholar] [CrossRef]
- Ahmad, W.; Amin, Z.; ur Rehman, T.; Hussain, F.; Ilyas, M. Treatment of dyes contaminated water using surfactants modified activated carbon derived from rice husk. Desalination Water Treat. 2022, 248, 288–299. [Google Scholar] [CrossRef]
- Menya, E.; Olupot, P.W.; Storz, H.; Lubwama, M.; Kiros, Y. Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. Chem. Eng. Res. Des. 2018, 129, 271–296. [Google Scholar] [CrossRef]
- Paredes-Laverde, M.; Salamanca, M.; Diaz-Corrales, J.D.; Flórez, E.; Silva-Agredo, J.; Torres-Palma, R.A. Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. J. Environ. Chem. Eng. 2021, 9, 105685. [Google Scholar] [CrossRef]
- Cavalcante, L.C.; de Carvalho, K.Q.; Bassetti, F.J.; Coral, L.A.A. Kinetic, isothermal and thermodynamic studies of Reactive Black 5 removal using rice husk ashes and powdered activated carbon. Desalination Water Treat. 2024, 320, 100606. [Google Scholar] [CrossRef]
- Dadebo, D.; Ibrahim, M.G.; Fujii, M.; Nasr, M. Sequential treatment of surfactant-laden wastewater using low-cost rice husk ash coagulant and activated carbon: Modeling, optimization, characterization, and techno-economic analysis. Bioresour. Technol. Rep. 2023, 22, 101464. [Google Scholar] [CrossRef]
- Gaikwad, M.S.; Balomajumder, C. Multicomponent isotherm modeling of hexavalent chromium and fluoride ions simultaneous removal using rice husk derived activated carbon (RHDAC) electrode. J. Indian Chem. Soc. 2023, 100, 100900. [Google Scholar] [CrossRef]
- Lilli, B.; Wassersleben, S.; Schulze, T.; Otto, A.; Enke, D. Additive effects of rice husk-based carbon-silica composites on adsorption of diclofenac sodium and carbamazepine from aqueous solutions. Sci. Total Environ. 2024, 954, 176389. [Google Scholar] [CrossRef]
- Nasehir Khan, M.N.; Mohd Arif Zainol, M.R.R.; Mohamad Yusop, M.F.; Ahmad, M.A. Turning waste into wonder: Arsenic removal using rice husk based activated carbon. J. Eng. Res. 2024; in press. [Google Scholar] [CrossRef]
- Satayeva, A.R.; Howell, C.A.; Korobeinyk, A.V.; Jandosov, J.; Inglezakis, V.J.; Mansurov, Z.A.; Mikhalovsky, S.V. Investigation of rice husk derived activated carbon for removal of nitrate contamination from water. Sci. Total Environ. 2018, 630, 1237–1245. [Google Scholar] [CrossRef]
- Shu, X.; Fang, B.; Wu, W.; Song, Y.; Zhao, Z. Acicular or octahedral Fe3O4/rice husk-based activated carbon composites through graphitization synthesis as superior electromagnetic wave absorbers. Compos. Part A Appl. Sci. Manuf. 2021, 151, 106635. [Google Scholar] [CrossRef]
- Tagne, R.F.T.; Ndifor-Angwagor, N.G.; Temgoua, R.C.T.; Tchuifon, D.R.T.; Vintila, T.; Ngueabouo, A.S.; Anagho, S.G. Development of an electroanalytical method using activated rice husk-derived carbon for the detection of a paraquat herbicide. Carbon Trends 2021, 4, 100060. [Google Scholar] [CrossRef]
- Wang, S.; Lee, Y.-R.; Won, Y.; Kim, H.; Jeong, S.-E.; Wook Hwang, B.; Ra Cho, A.; Kim, J.-Y.; Cheol Park, Y.; Nam, H.; et al. Development of high-performance adsorbent using KOH-impregnated rice husk-based activated carbon for indoor CO2 adsorption. Chem. Eng. J. 2022, 437, 135378. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- María Lorena, C.-A.; Verónica Cristina, A.-Y.; Alda, G.L.; Ronald Oswaldo, V.-T.; Lorena, C.C.R.; Sarah, A.C.T.; Javier, F.G.; José, B.H.; Aransiola, S.A.; Maddela, N.R. Use of Modified Activated Carbon in Groundwater Remediation for Human Consumption. Water 2025, 17, 207. [Google Scholar] [CrossRef]
- Acevedo, E.; Martínez, E. Sistema de labranza y productividad de los suelos. In Sustentabilidad en Cultivos Anuales; Serie Ciencias Agronómicas; Universidad de Chile: Santiago, Chile, 2003; pp. 13–25. [Google Scholar]
- Barranco, L.M.D.; Mendoza, J.L.P.; Hincapie, J.J.F. Preparación y Caracterización de Carbones Activados a partir de un Carbón Mineral de la Cuenca del Cesar (Colombia). Rev. Politécnica 2018, 14, 75–88. [Google Scholar] [CrossRef]
- Trujillo-Reyes, J.; Peralta-Videa, J.; Gardea-Torresdey, J. Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution? J. Hazard. Mater. 2014, 280, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.A.; Guerreiro, M.C. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Química Nova 2011, 34, 472–476. [Google Scholar] [CrossRef]
- Quijano, C.C.C. Producción de carbón activado y sílice a partir de cascarilla de arroz-una revisión. Sci. Technol. 2013, 18, 422–429. [Google Scholar]
- Alba, C.M.; Argüello, D.F.M.; Correal, S.A. Evaluación y Análisis por Microscopía SEM y AFM de la Topología Superficial de Carbón Activado de Palma de Aceite (Elaeis guineensis) Impregnado con TiO2. Exp. Find. 2019, 1–17. [Google Scholar] [CrossRef]
- Breslow, R. The origin of homochirality in amino acids and sugars on prebiotic earth. Tetrahedron Lett. 2011, 52, 4228–4232. [Google Scholar] [CrossRef]
- Correa, R.; Monsalve, M.; López, E.; Bolívar, F.; Vargas, F.; Ríos, T.; Muñoz, A. Influencia de los parámetros de deposición en la porosidad y adherencia de recubrimientos de biovidrios del sistema 31SiO2-11P2O5-51CaO-7MgO elaborados mediante proyección térmica por combustión oxiacetilénica. Rev. Latinoam. Metal. Mater. 2013, 33, 92–99. [Google Scholar]
- Franco-Rodríguez, F.C.; González-Morales, H.; Heredia-Barbero, A.; Montoya, L.; Reyes-Medina, Y. Quiralidad en las ciencias naturales: Un acercamiento a distintas escalas. La Granja Rev. Cienc. Vida 2023, 37, 8–22. [Google Scholar] [CrossRef]
- Julia, T. ¿Qué es un Carbono Asimétrico? 10 March 2023. Available online: https://www.lifeder.com/carbono-asimetrico/ (accessed on 10 August 2025).
- Suh, I.-H.; Park, K.H.; Jensen, W.P.; Lewis, D.E. Molecules, crystals, and chirality. J. Chem. Educ. 1997, 74, 800. [Google Scholar] [CrossRef]
- Baçaoui, A.; Yaacoubi, A.; Dahbi, A.; Bennouna, C.; Luu, R.P.T.; Maldonado-Hodar, F.; Rivera-Utrilla, J.; Moreno-Castilla, C. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon 2001, 39, 425–432. [Google Scholar] [CrossRef]
- Ebadollahzadeh, H.; Zabihi, M. Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Mater. Chem. Phys. 2020, 248, 122893. [Google Scholar] [CrossRef]
- Díaz-Tovar, D.; Molina, R.; Moreno, S. Towards an understanding of the correlation between the physicochemical and thermal properties of ground rice husks and particle size. Mater. Today Sustain. 2024, 27, 100862. [Google Scholar] [CrossRef]
- Beidaghy Dizaji, H.; Zeng, T.; Hartmann, I.; Enke, D.; Schliermann, T.; Lenz, V.; Bidabadi, M. Generation of high quality biogenic silica by combustion of rice husk and rice straw combined with pre-and post-treatment strategies—A review. Appl. Sci. 2019, 9, 1083. [Google Scholar] [CrossRef]
- Babatunde, E.O.; Gurav, R.; Hwang, S.S. Pistia stratiotes L. Biochar for Sorptive Removal of Aqueous Inorganic Nitrogen. Materials 2024, 17, 3858. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, T.; Tsang, D.C.; Zhao, N.; Wei, H.; Feng, M.; Liu, K.; Zhang, W.; Qiu, R. Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce. Sci. Total Environ. 2020, 714, 136721. [Google Scholar] [CrossRef]
- Odinga, E.S.; Waigi, M.G.; Gudda, F.O.; Wang, J.; Yang, B.; Hu, X.; Li, S.; Gao, Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. Environ. Int. 2020, 134, 105172. [Google Scholar] [CrossRef]
- Rinklebe, J.; Shaheen, S.M.; El-Naggar, A.; Wang, H.; Du Laing, G.; Alessi, D.S.; Ok, Y.S. Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. Environ. Int. 2020, 140, 105754. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, U.d. Manual del Carbón Activo. Aula. Aguapedia Org. 2011, 1–89. Available online: https://www.academia.edu/download/38924321/Manual_del_carbon_activo.pdf (accessed on 2 January 2025).
- Carbotecnica. Carbón Poroso ¿Cómo Purifica el Carbón Activado? 8 February 2023. Available online: https://www.carbotecnia.info/aprendizaje/carbon-activado/carbon-poroso-como-purifica-el-carbon-activado/ (accessed on 2 January 2025).
- Palacios-Zambrano, J.J.; Vera-Vera, Á.R.; Arce-Santana, I.E.; Lucero-Álvarez, M.G.; Barzola-Miranda, S.E.; Gutierrez-Lara, V.E. Análisis fisicoquímico de tres variedades de carbón activado de cascarilla de arroz. Rev. Científica Ingeniar Ing. Tecnol. E Investig. 2024, 7, 214–226. [Google Scholar]
- Longoria Gandara, L.C. Gamma Ray Spectroscopy and Decay Scheme Studies of 65Ni and 75Se; University of London: London, UK, 1990. [Google Scholar]
- Tovar, D.D. Usos Potenciales de Cascarilla de Arroz en el Departamento de Casanare. 22 October 2019. Universidad Nacional Abierta y a Distancia UNAD de Colombia. Available online: https://repository.unad.edu.co/handle/10596/30131 (accessed on 2 January 2025).
- Carbotecnica. El Carbón Activado en el Tratamiento de Intoxicaciones. 7 February 2023. Available online: https://www.carbotecnia.info/aprendizaje/aplicaciones-carbon/el-carbon-activado-en-el-tratamiento-de-intoxicaciones/ (accessed on 2 January 2025).
- Etteieb, S.; Braghiroli, F.; Robert, É.; Magdouli, S.; Kaur Brar, S.; Blais, J.-F. Activated Biochar-Amended Phytoextraction of Selenium in Contaminated Soil under Cold Climate in Northern Québec (Canada). Appl. Sci. 2024, 14, 5596. [Google Scholar] [CrossRef]
- Kurtis, K.E.; Rodrigues, F.A. Early age hydration of rice hull ash cement examined by transmission soft X-ray microscopy. Cem. Concr. Res. 2003, 33, 509–515. [Google Scholar] [CrossRef]
- Mata-Cabrera, F.; Hanafi, I.; Khamlichi, A.; Jabbouri, A.; Bezzazi, M. Predicción de rugosidad en maquinado de compuestos con base de Peek usando metodología de superficie de respuesta. Ing. Investig. Y Tecnol. 2013, 14, 463–474. [Google Scholar]
- Abouelatta, O.; Madl, J. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. J. Mater. Process. Technol. 2001, 118, 269–277. [Google Scholar] [CrossRef]
- Amen, R.; Bashir, H.; Bibi, I.; Shaheen, S.M.; Niazi, N.K.; Shahid, M.; Hussain, M.M.; Antoniadis, V.; Shakoor, M.B.; Al-Solaimani, S.G. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chem. Eng. J. 2020, 396, 125195. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, R.; Feng, L. Preparation and application of straw activated carbon. IOP Conf. Ser. Earth Environ. Sci. 2019, 330, 042035. [Google Scholar] [CrossRef]
- Surculento Villalobos, R.; Marín, G.M.; Lopez, L. Obtención de carbón activado a partir de mezclas de residuos de plásticos PET por activación con ácido fosfórico. Rev. Boliv. Química 2023, 40, 20–28. [Google Scholar] [CrossRef]
- Flores Fores, R.E.; Ernesto, Q.S. Diseño de Horno Tipo Retorta Para la Elaborar Carbón Vegetal. Tesis de Ingeniería. Antiguo Cuscatlán, El Salvador, C.A.: Universidad Centroamericana José Someón Cañas, Facultad de Ingeniería y Arquitectura. 2008. Available online: https://www.scribd.com/doc/120756974/DISENO-DE-HORNO-TIPO-RETORTA-PARA-ELABORAR-CARBON-VEGETAL (accessed on 15 February 2024).
- Dannette Bernice, R.U.; Torres Martínez, D.U.; Vílchez Pérez, H.J. Uso sostenible de la cascarilla de arroz para productos de valor añadido/sustainable use of rice husk for value-added products. Rev. Cienc. Tecnol. Higo 2022, 12, 2–27. [Google Scholar]
- Sánchez, K.; Giplberto, C.; Pire, M.; Díaz, A.; Carrasquero, S. Adsorption capacity of activated carbon on total chromium from tannery waste. Rev. Técnica De La Fac. De Ing. Univ. Del Zulia 2013, 36, 45–52. Available online: https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0254-07702013000100007 (accessed on 15 July 2022).
- Farrera, R.; Marroquín, C.A.; Cid, M.; Dávila, E.; García, H.; Méndez, M.A. Producción de carbón activado a escala de laboratorio a partir de residuos de café. Rev. Pakbal 2017, 40, 40–44. [Google Scholar]
- Álvarez Merino, M.Á.; Carrasco Marín, F.; Maldonado Hódar, F.J. Desarrollo y Aplicaciones de Materiales Avanzados de Carbón; Universidad Internacional de Andalucía: Sevilla, Spain, 2014; Available online: https://dspace.unia.es/handle/10334/3621 (accessed on 2 January 2025).
ID | Iodine Solution (IS) | Methylene Blue Solution (MBS) | ||||||
---|---|---|---|---|---|---|---|---|
mAC * (g) | Volume (mL) | Iodine (mg/g) | ID | mAC (g) | Volume (mL) | Value (%) | Adsorption Capacity ‘q’ (mg/g) | |
CaDH162-CADH53 | 1.18 | 5.8 | 1094.8 | CaDM561-CADM52 | 0.5 | 1000 | 96.8 | 193.7 |
CaDM542-CADM62 | 1.19 | 5.8 | 1085.6 | CaDM542-CADM53 | 0.5 | 1000 | 94.6 | 189.3 |
CaDM263-CADM61 | 1.15 | 6.7 | 1074.0 | CaDM541-CADM43 | 0.5 | 1000 | 93.9 | 187.8 |
CaDM541-CADM43 | 1.21 | 6.1 | 1051.5 | CaDH152-CADH53 | 0.5 | 1000 | 93.2 | 186.3 |
CaDM162-CADM53 | 1.16 | 7.1 | 1043.2 | CaDM162-CADM53 | 0.5 | 1000 | 92.3 | 184.6 |
CaDM263-CADM43 | 1.20 | 6.5 | 1039.1 | CaDH162-CADH53 | 0.5 | 1000 | 91.2 | 182.5 |
CaDH252-CADH53 | 1.0 | 5.1 | 1031.2 | CaDM542-CADM62 | 0.5 | 1000 | 88.7 | 177.4 |
CaDM541-CADM53 | 1.23 | 5.5 | 1013.8 | CaDH252-CADH53 | 0.5 | 1000 | 88.4 | 176.8 |
CaDH252-CADH52 | 1.20 | 7.2 | 1003.5 | CaDM263-CADM43 | 0.5 | 1000 | 88.0 | 176.0 |
CaDH152-CADH61 | 1.40 | 4.3 | 1001.9 | CART1 | 0.5 | 1000 | 87.8 | 175.7 |
CaDH162-CAD162 | 1.27 | 6.1 | 1001.9 | CaDH162-CADH62 | 0.5 | 1000 | 85.9 | 171.8 |
CaDH252-CADH51 | 1.17 | 8 | 989.7 | -- | -- | -- | -- | -- |
CaDH152-CADH53 | 1.19 | 8 | 973 | -- | -- | -- | -- | -- |
CaDM542-CADM53 | 1.20 | 8 | 964 | -- | -- | -- | -- | -- |
RSF Range (µm) | Feature |
---|---|
0.7–2.5 | Very small particle size, high adsorption capacity and filtration efficiency. Greater surface area per unit volume. They increase the pressure drop in filtration systems and hinder the flow of liquid through the activated carbon bed. They are inefficient in filtration with high flow. At slow flow, it improves adsorption kinetics and speed. |
2.6–4.5 | Size from small to medium. Moderate adsorption capacity and filtration efficiency. They facilitate interaction with contaminants during adsorption. They have a moderate surface area (500–1000 m2/g). It maintains a greater effective adsorption capacity, but less than that of very small particles. They present a combination of micropores (<2 nm) and mesopores (2–50 nm). |
4.6–6.5 | Intermediate to large size, low adsorption capacity and low filtration efficiency. It limits its effectiveness in eliminating certain contaminants. They usually have a specific surface area of 500–1000 m2/g with good adsorption capacity. It has micropores of <2 nm and mesopores of 250 nm. |
>6.5 | Very large particle size, very low adsorption capacity and low filtration efficiency. They have a lower surface area, with a predominance of mesopores and a limited number of micropores (<2 nm), affecting their adsorption capacity of smaller compounds. |
Adsorbent Code | D10 (µm) | D50 (µm) | D90 (µm) | RSF (µm) |
---|---|---|---|---|
CADM542-CADM62 | 11.6 | 60.9 | 131.5 | 2.0 |
CaDM263-CADM61 | 77.6 | 232.7 | 570.3 | 2.1 |
CaDM541-CADM3 | 24.9 | 73.3 | 502.4 | 6.5 |
CaDM263-CADM43 | 18.2 | 153.5 | 403.1 | 2.5 |
CaDH252-CADH53 | 50.2 | 121.9 | 639.4 | 4.8 |
CaDM541-CADM53 | 3.1 | 8.9 | 13.2 | 1.1 |
CaDH252-CADH52 | 52.4 | 137.6 | 714.1 | 4.8 |
CaDH152-CADH61 | 48.8 | 81.0 | 419.4 | 4.6 |
CaDH162-CADH62 | 46.9 | 71.51 | 524.7 | 6.7 |
CaDH252-CADH51 | 41.5 | 65.9 | 85.2 | 0.7 |
CaDH152-CADH53 | 49.1 | 97.6 | 403.5 | 3.6 |
CaDM542-CADH53 | 4.9 | 28.0 | 58.2 | 1.9 |
RHAC ID | Average Weight (%) | Activation Performance (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | O | Na | Mg | Si | K | P | Ca | ||
CaDM542-CADM62 | 12.31 | 52.35 | 4.0 | 0.56 | 28.02 | - | 1.35 | 1.42 | 61.42 |
CaDM263-CADM61 | 70.60 | 20.88 | - | 0.76 | 5.7 | - | - | 2.50 | 92.83 |
CaDM541-CADM43 | 36.11 | 43.07 | 1.74 | 0.33 | 17.43 | - | 0.62 | 0.70 | 67.73 |
CaDM263-CADM43 | 11.63 | 34.19 | - | - | 54.18 | - | - | - | 60.36 |
CaDH252-CADH53 | 70.24 | 24.09 | 0.22 | - | 4.13 | - | 0.45 | 0.87 | 94.86 |
CaDM541-CADM53 | 15.62 | 50.25 | 1.13 | 4.21 | 15.26 | - | - | 13.53 | 79.57 |
CaDH252-CADH52 | 91.42 | 8.16 | 0.04 | 0.10 | 0.06 | - | - | 0.21 | 97.08 |
CaDH152-CADH61 | 71.72 | 26.54 | 1.05 | - | 0.29 | 0.06 | - | 0.35 | 91.36 |
CaDH162-CADH62 | 55.67 | 32.52 | 1.25 | - | 10.56 | - | - | - | 95.47 |
CaDH252-CADH51 | 39.32 | 55.42 | 0.05 | 0.09 | 4.85 | 0.21 | - | 0.07 | 94.49 |
CaDH152-CADH53 | 48.90 | 36.65 | - | - | 13.82 | 0.63 | - | - | 96.52 |
CaDM542-CADM53 | 17.38 | 48.50 | 6.22 | 2.13 | 19.21 | - | - | 6.56 | 90.66 |
RHAC Id | 3D Image | 2D Image | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Survey Area (µm) | Pore Size (µm) | Survey Area (µm) | Average (nm) | Standard Deviation (nm) | Surface (µm2) | Projected Surface (µm2) | Rugosity (nm) | Asymmetry | Kurtosis | |
CaDM542-CADM62 | 3.0 × 3.0 | 0.035–0.070 | 3.0 × 0.22 | 74.4 | 17.5 | 0.0198 | 0.00931 | 79.5 | 0.00583 | 2.73 |
CaDM263-CADM61 | 1.0 × 1.0 | 0.0017–0.0 | 1.0 × 1.7 | 0.0074 | 0.43 | 764.0 | 744.1 | 4.1 | −000399 | 3.13 |
CaDM541-CADM43 | 5.0 × 5.0 | 0.2–0.4 | 5.0 × 0.5 | 101 | 19.2 | 0.0625 | 0.0422 | 528 | −0.626 | 2.62 |
CaDM263-CADM43 | 4.0 × 3.8 | 1.5–3.0 | 4.0 × 3.0 | 269 | 37.8 | 0.104 | 00570 | 215 | −0.586 | 3.74 |
CaDH252-CADH53| | 5.0 × 5.0 | 0.38–0.75 | 5.0 × 0.75 | 81.5 | 38.4 | 0.645 | 0.532 | 174 | 0.474 | 3.34 |
CaDM541-CADM53 | 10.0 × 7.0 | 0.37–0.75 | 10.0 × 3.0 | 532 | 199 | 0.121 | 0.0510 | 488 | −0.549 | 6.38 |
CaDH252-CADH52 | 10.0 × 12.0 | 0.25–0.5 | 10.0 × 0.5 | 21.8 | 10.3 | 2.60 | 2.53 | 116 | 5.2 | 44 |
CaDH152-CADH61 | 10.0 × 10.0 | 1.0–5.0 | 10.0 × 5 | 774 | 359 | 0.616 | 0.239 | 1206 | −1.09 | 5.29 |
CaDH162-CADH62 | 10.0 × 10.0 | 0.8–1.5 | 10.0 × 1.5 | 342 | 125 | 0.810 | 0.330 | 586 | 0.243 | 3.55 |
CaDH252-CADH51 | 5.0 × 5.0 | 0.35–0.7 | 10 × 0.7 | 173 | 31.9 | 0.584 | 0.508 | 180 | 0.316 | 3.13 |
CaDH152-CADH53 | 10.0 × 10.0 | 0.6–1.2 | 3.0 × 1.2 | 189 | 59.5 | 0.321 | 0.217 | 292 | −0.164 | 2.81 |
CaDM542-CADM53 | 10.0 × 6.0 | 0.35–0.7 | 3.0 × 0.7 | 77.2 | 15.7 | 0.118 | 0.105 | 80.7 | −1.66 | 8.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cadme Arévalo, M.L.; Campisi Cadme, R.L.; Arreaga Cadme, T.S.; Villamar-Torres, R.O.; Fernández González, J.; Benavente Herrera, J.; Geijo López, A.; Aransiola, S.A.; Maddela, N.R. Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions. Processes 2025, 13, 2748. https://doi.org/10.3390/pr13092748
Cadme Arévalo ML, Campisi Cadme RL, Arreaga Cadme TS, Villamar-Torres RO, Fernández González J, Benavente Herrera J, Geijo López A, Aransiola SA, Maddela NR. Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions. Processes. 2025; 13(9):2748. https://doi.org/10.3390/pr13092748
Chicago/Turabian StyleCadme Arévalo, María Lorena, Raisha Lorena Campisi Cadme, Thais Sarah Arreaga Cadme, Ronald Oswaldo Villamar-Torres, Javier Fernández González, José Benavente Herrera, Alda Geijo López, Sesan Abiodun Aransiola, and Naga Raju Maddela. 2025. "Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions" Processes 13, no. 9: 2748. https://doi.org/10.3390/pr13092748
APA StyleCadme Arévalo, M. L., Campisi Cadme, R. L., Arreaga Cadme, T. S., Villamar-Torres, R. O., Fernández González, J., Benavente Herrera, J., Geijo López, A., Aransiola, S. A., & Maddela, N. R. (2025). Characterization of Rice Husk-Based Adsorbent for Iodine and Methylene Blue Solutions. Processes, 13(9), 2748. https://doi.org/10.3390/pr13092748