A Comparative Study on Various Pretreatment Methods of Anaerobic Digestion Piggery Effluent for Microalgae Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of ADPE
2.2. Microorganism and Culture Conditions
2.3. Different Pretreatment Processes Before Microalgae Cultivation
2.3.1. Turbidity Reduction
2.3.2. Ammonia Stripping
2.4. Microalgal Cultivation
2.5. Analytical Methods
2.5.1. Determination of Algal Growth
2.5.2. Nutrient Analyses
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of ADPE
3.2. Pretreatment of ADPE for Turbidity and Ammonia Removal
3.3. Algal Growth in ADPE
3.3.1. Algal Growth in Pretreated ADPE with Reduced Turbidity
3.3.2. Algal Growth in ADPE Pretreated by Air Stripping
3.4. Nutrient Removal by Microalgae in Pretreated ADPEs
4. Conclusions and Outlook
- (i)
- Screening of safe strains: prioritize the development of non-pathogenic fungi (e.g., T. versicolor or P. chrysosporium) to eliminate biosafety hazards while maintaining pretreatment efficiency;
- (ii)
- Scale-up challenges: explore scaled-up cultivation processes for fungal-microalgal coupling systems to address engineering issues such as difficulty in separating fungal mycelia and microalgal light limitation.
- (iii)
- Regulatory frameworks and standards: establish a safety assessment system for ADPE biological pretreatment, defining inactivation standards for pathogenic fungi and environmental release thresholds for product applications to ensure compliance with biosafety regulations. Overall, fungal pretreatment coupled with microalgal cultivation offers an innovative approach for ADPE treatment, but industrial application will require safety optimization and engineering breakthroughs.
- (iv)
- Life cycle assessment: Evaluate the environmental footprint of the entire process (e.g., fungal pretreatment, microalgae cultivation, biomass harvesting) compared to conventional ADPE treatment methods (e.g., physical-chemical pretreatment).
- (v)
- Economic analysis: Quantify operational costs (e.g., fungal strain maintenance, reactor construction) and potential revenue from biomass byproducts (e.g., biofuels, animal feed) to verify cost-effectiveness.”
- (vi)
- N/P balance: Adjusting N/P ratios in pretreated ADPE to align with microalgal stoichiometric demands (e.g., Redfield ratio or species-specific requirements) could further improve biomass productivity and nutrient assimilation efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Chemicals | Concentration (mg L−1) |
---|---|
Tris salt | 2420 |
NH4Cl | 375 |
CaCl2•2H2O | 50 |
MgSO4•7H2O | 100 |
K2HPO4 | 288 |
KH2PO4 | 144 |
Na2EDTA•2H2O | 50 |
ZnSO4•7H2O | 22 |
H3BO3 | 11.4 |
MnCl2•4H2O | 5 |
FeSO4•7H2O | 5 |
CoCl2•6H2O | 1.6 |
CuSO4•5H2O | 1.6 |
(NH4)6Mo7O24•4H2O | 1.1 |
Chemicals | Concentration (g L−1) |
---|---|
Potato powder | 5 |
Glucose | 15 |
Peptone | 10 |
NaCl | 50 |
Agar | 15 |
References
- Liu, B.; Zhou, H.; Li, L.; Ai, J.; He, H.; Yu, J.; Li, P.; Zhang, W. Environmental Impact and Optimization Suggestions of Pig Manure and Wastewater Treatment Systems from a Life Cycle Perspective. Sci. Total Environ. 2023, 905, 167262. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Pan, J.; Zhang, Y.; Liu, Z.; Lu, H.; Duan, N. Pretreatment of Pig Manure Liquid Digestate for Microalgae Cultivation via Innovative Flocculation-Biological Contact Oxidation Approach. Sci. Total Environ. 2019, 694, 133720. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, J.; Jin, Z.; Cheng, J.; Li, J.; Song, H.; Lu, Q.; Li, H.; Wan, T.; Fu, S.; et al. Enhancing Algal Yield and Nutrient Removal from Anaerobic Digestion Piggery Effluent by an Integrated Process-Optimization Strategy of Fungal Decolorization and Microalgae Cultivation. Appl. Sci. 2022, 12, 4741. [Google Scholar] [CrossRef]
- Hickmann, F.M.W.; Salahshournia, B.; Andretta, I.; Létourneau-Montminy, M.P.; Rajagopal, R. Impact of Lowering Nitrogen Content in Pig Manure through Low Crude Protein Diets on Anaerobic Digestion Process Stability, Biogas Yields, and Digestate Composition. Sci. Total Environ. 2024, 953, 175957. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Li, Y.; Min, M.; Hu, B.; Zhang, H.; Ma, X.; Li, L.; Cheng, Y.; Chen, P.; Ruan, R. Growing Wastewater-Born Microalga Auxenochlorella Protothecoides UMN280 on Concentrated Municipal Wastewater for Simultaneous Nutrient Removal and Energy Feedstock Production. Appl. Energy 2012, 98, 433–440. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, W.; Min, M.; Du, Z.; Chen, P.; Ma, X.; Liu, Y.; Lei, H.; Shi, J.; Ruan, R. Development of an Effective Acidogenically Digested Swine Manure-Based Algal System for Improved Wastewater Treatment and Biofuel and Feed Production. Appl. Energy 2013, 107, 255–263. [Google Scholar] [CrossRef]
- Leng, L.; Wei, L.; Xiong, Q.; Xu, S.; Li, W.; Lv, S.; Lu, Q.; Wan, L.; Wen, Z.; Zhou, W. Use of Microalgae Based Technology for the Removal of Antibiotics from Wastewater: A Review. Chemosphere 2020, 238, 124680. [Google Scholar] [CrossRef]
- Franchino, M.; Tigini, V.; Varese, G.C.; Sartor, R.M.; Bona, F. Microalgae Treatment Removes Nutrients and Reduces Ecotoxicity of Diluted Piggery Digestate. Sci. Total Environ. 2016, 569–570, 40–45. [Google Scholar] [CrossRef]
- Qian, J.; Chen, F.; Zhou, W. Advancements of Application of Microalgae Biotechnology in the Aquaculture Water Quality Control. In Advances in Bioenergy; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 1–44. [Google Scholar] [CrossRef]
- Xia, A.; Murphy, J.D. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends Biotechnol. 2016, 34, 264–275. [Google Scholar] [CrossRef]
- Ledda, C.; Idà, A.; Allemand, D.; Mariani, P.; Adani, F. Production of Wild Chlorella sp. Cultivated in Digested and Membrane-Pretreated Swine Manure Derived from a Full-Scale Operation Plant. Algal Res. 2015, 12, 68–73. [Google Scholar] [CrossRef]
- Garcia, A.; Sibeaux, A.; de Perera, T.B.; Newport, C. A Sensory Approach to Turbidity: How Sources and Levels Shape Aquatic Light Environments and Fish Visual Ecology. bioRxiv 2025. [Google Scholar] [CrossRef]
- Huo, S.; Liu, J.; Zhu, F.; Basheer, S.; Necas, D.; Zhang, R.; Li, K.; Chen, D.; Cheng, P.; Cobb, K.; et al. Post Treatment of Swine Anaerobic Effluent by Weak Electric Field Following Intermittent Vacuum Assisted Adjustment of N:P Ratio for Oil-Rich Filamentous Microalgae Production. Bioresour. Technol. 2020, 314, 123718. [Google Scholar] [CrossRef]
- Song, H.; Li, J.; Zhou, M.; Li, H.; Fan, L.; Xu, P.; Shao, S.; Li, J.; Xu, C.; Zhou, W.; et al. Improving Algal Growth in an Anaerobic Digestion Piggery Effluent by Fungal Pretreatment: Process Optimization, the Underlying Mechanism of Fungal Decolorization, and Nitrogen Removal. Chemosphere 2023, 337, 139416. [Google Scholar] [CrossRef]
- Papadopoulou, K.; Kalagona, I.M.; Philippoussis, A.; Rigas, F. Optimization of Fungal Decolorization of Azo and Anthraquinone Dyes via Box-Behnken Design. Int. Biodeterior. Biodegrad. 2013, 77, 31–38. [Google Scholar] [CrossRef]
- Fu, Y.; Viraraghavan, T. Fungal Decolorization of Dye Wastewaters: A Review. Bioresour. Technol. 2001, 79, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.K.; Raut, S.; Bandyopadhyay, P.; Raut, S. Fungal Decolouration and Degradation of Azo Dyes: A Review. Fungal Biol. Rev. 2016, 30, 112–133. [Google Scholar] [CrossRef]
- Li, J.; Qian, J.; Tang, J.; Jin, Z.; Lu, Q.; Cheng, J.; Zhou, X.; Zhang, X.; Fu, S.; Wan, T.; et al. Enhancement of Ammonium Removal from Landfill Leachate Using Microalgae by an Integrated Strategy of Nutrient Balance and Trophic Mode Conversion. Algal Res. 2022, 61, 102572. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, D.; Hua, X.; Xu, Y.; Guo, Z.; Liang, D. Ammonia Nitrogen Removal and Recovery from Acetylene Purification Wastewater by Air Stripping. Water Sci. Technol. 2017, 75, 2538–2545. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Xu, C.; Song, H.; Zhou, W.; Toda, T.; Li, H.; Yoshiki, T.; Sekine, M.; Koga, S.; Li, J.; et al. Enhancing Algal Growth and Nutrient Recovery from Anaerobic Digestion Piggery Effluent by an Integrated Pretreatment Strategy of Ammonia Stripping and Flocculation. Front. Bioeng. Biotechnol. 2023, 11, 1219103. [Google Scholar] [CrossRef]
- Chen, J.; Ding, L.; Liu, R.; Xu, S.; Li, L.; Gao, L.; Wei, L.; Leng, S.; Li, J.; Li, J.; et al. Hydrothermal Carbonization of Microalgae-Fungal Pellets: Removal of Nutrients from the Aqueous Phase Fungi and Microalgae Cultivation. ACS Sustain. Chem. Eng. 2020, 8, 16823–16832. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic Digested Dairy Manure as a Nutrient Supplement for Cultivation of Oil-Rich Green Microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, Y.; Zhao, G.; Zhang, H. Nutrient Removal and Biogas Upgrading by Integrating Freshwater Algae Cultivation with Piggery Anaerobic Digestate Liquid Treatment. Appl. Microbiol. Biotechnol. 2015, 99, 6493–6501. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, D.; Ficara, E.; Corbellini, V.; Tornotti, G.; Teli, A.; Canziani, R.; Malpei, F. Autotrophic Nitrogen Removal by a Two-Step SBR Process Applied to Mixed Agro-Digestate. Bioresour. Technol. 2015, 176, 98–105. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Latrille, E.; Steyer, J.P. Anaerobic Digestate as Substrate for Microalgae Culture: The Role of Ammonium Concentration on the Microalgae Productivity. Bioresour. Technol. 2014, 152, 437–443. [Google Scholar] [CrossRef]
- Qian, J.; Liu, X.; Ban, S.; Fujiwara, M.; Kodera, T.; Akizuki, S.; Toda, T. PH Treatments in Continuous Cultivation to Maximize Microalgal Production and Nutrient Removal from Anaerobic Digestion Effluent of Aquatic Macrophytes. J. Appl. Phycol. 2020, 32, 3349–3362. [Google Scholar] [CrossRef]
- Qian, J.; Shimotori, K.; Liu, X.; Ban, S.; Akizuki, S.; Fujiwara, M.; Kodera, T.; Toda, T.; Imai, A. Enhancement of Algal Growth by Mg2+ Released from Anaerobic Digestion Effluent of Aquatic Macrophytes through Photolysis. Biochem. Eng. J. 2021, 172, 108065. [Google Scholar] [CrossRef]
- Depraetere, O.; Foubert, I.; Muylaert, K. Decolorisation of Piggery Wastewater to Stimulate the Production of Arthrospira Platensis. Bioresour. Technol. 2013, 148, 366–372. [Google Scholar] [CrossRef]
- Oliveira, B.R.; Barreto Crespo, M.T.; San Romão, M.V.; Benoliel, M.J.; Samson, R.A.; Pereira, V.J. New Insights Concerning the Occurrence of Fungi in Water Sources and Their Potential Pathogenicity. Water Res. 2013, 47, 6338–6347. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.; Nam, J.H.; Kim, D.M.; Song, C.; Jahng, D. Growth and Nutrient Removal of Chlorella Vulgaris in Ammonia-Reduced Raw and Anaerobically-Digested Piggery Wastewaters. Environ. Eng. Res. 2020, 25, 135–146. [Google Scholar] [CrossRef]
- Hu, B.; Min, M.; Zhou, W.; Du, Z.; Mohr, M.; Chen, P.; Zhu, J.; Cheng, Y.; Liu, Y.; Ruan, R. Enhanced Mixotrophic Growth of Microalga Chlorella sp. on Pretreated Swine Manure for Simultaneous Biofuel Feedstock Production and Nutrient Removal. Bioresour. Technol. 2012, 126, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, B.D.; Tunlid, A. Ectomycorrhizal Fungi-Potential Organic Matter Decomposers, yet Not Saprotrophs. New Phytol. 2015, 205, 1443–1447. [Google Scholar] [CrossRef]
- Song, H.; Li, J.; Su, Q.; Li, H.; Guo, X.; Shao, S.; Fan, L.; Xu, P.; Zhou, W.; Qian, J. Insight into the Mechanism of Nitrogen Sufficiency Conversion Strategy for Microalgae-Based Ammonium-Rich Wastewater Treatment. Chemosphere 2024, 349, 140904. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Lu, Q.; Zhong, H.; Xie, J.; Leng, L.; Li, J.; Fan, L.; Li, J.; Chen, P.; Yan, Y.; et al. Recycling Nutrients from Soy Sauce Wastewater to Culture Value-Added Spirulina Maxima. Algal Res. 2021, 53, 102157. [Google Scholar] [CrossRef]
- Cao, L.; Wang, J.; Xiang, S.; Huang, Z.; Ruan, R.; Liu, Y. Nutrient Removal from Digested Swine Wastewater by Combining Ammonia Stripping with Struvite Precipitation. Environ. Sci. Pollut. Res. 2019, 26, 6725–6734. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiong, H.; Hui, Z.; Zeng, X. Mixotrophic Cultivation of Chlorella Pyrenoidosa with Diluted Primary Piggery Wastewater to Produce Lipids. Bioresour. Technol. 2012, 104, 215–220. [Google Scholar] [CrossRef]
- Kumar, M.S.; Miao, Z.H.; Wyatt, S.K. Influence of Nutrient Loads, Feeding Frequency and Inoculum Source on Growth of Chlorella Vulgaris in Digested Piggery Effluent Culture Medium. Bioresour. Technol. 2010, 101, 6012–6018. [Google Scholar] [CrossRef]
- Mendez, L.; Sialve, B.; Tomás-Pejó, E.; Ballesteros, M.; Steyer, J.P.; González-Fernández, C. Comparison of Chlorella Vulgaris and Cyanobacterial Biomass: Cultivation in Urban Wastewater and Methane Production. Bioprocess Biosyst. Eng. 2016, 39, 703–712. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J.; Ruan, R. Characterization of a Microalga Chlorella sp. Well Adapted to Highly Concentrated Municipal Wastewater for Nutrient Removal and Biodiesel Production. Bioresour. Technol. 2011, 102, 5138–5144. [Google Scholar] [CrossRef]
- Aslan, S.; Kapdan, I.K. Batch Kinetics of Nitrogen and Phosphorus Removal from Synthetic Wastewater by Algae. Ecol. Eng. 2006, 28, 64–70. [Google Scholar] [CrossRef]
- Barbato, F.; Venditti, A.; Bianco, A.; Guarcini, L.; Bottari, E.; Festa, M.R.; Cogliani, E.; Pignatelli, V. Scenedesmus Dimorphus (Turpin) Kützing Growth with Digestate from Biogas Plant in Outdoor Bag Photobioreactors. Nat. Prod. Res. 2016, 30, 185–191. [Google Scholar] [CrossRef]
Experimental Conditions | Temperature Experiment | pH Experiment | Air Flow Rate Experiment |
---|---|---|---|
ADPE dilution ratio (%) | 7.5 | 7.5 | 7.5 |
Initial pH of ADPE | 9.5 | 8.0, 8.5, 9.0, 9.5 * | 9.5 |
Temperature (°C) | 25, 40 | 25 | 25 |
Air flow rate (L min−1) | 1.5 | 1.5 | 0, 0.5, 1.0, 1.5, 2.0, 2.5 |
Stripping time (h) | 6 | 6 | 6 |
Raw ADPE | 10%ADPE | 10%F | 10%M | 10%S | NS24h | NS48h | 10%AF | |
---|---|---|---|---|---|---|---|---|
pH | 8.34 | 9.25 | 9.24 | 9.22 | 9.21 | 9.18 | 9.16 | 6.10 |
NH4-N (mg L−1) | 4497.1 ± 16.3 | 428.5 ± 1.2 | 401.3 ± 2.4 | 386.1 ± 2.1 | 360.4 ± 1.5 | 413.8 ± 0.6 | 406.5 ± 1.2 | 346.1 ± 0.8 |
TN (mg L−1) | 5100.0 ± 101.4 | 449.0 ± 1.7 | 410.4 ± 2.7 | 391.2 ± 6.1 | 376.8 ± 3.2 | 432.6 ± 5.1 | 426.2 ± 3.5 | 349 ± 3.1 |
TP (mg L−1) | 202.0 ± 3.5 | 24.4 ± 0.6 | 20.4 ± 0.1 | 19.6 ± 0.1 | 19.3 ± 0.3 | 20.2 ± 0.1 | 20.0 ± 0.2 | 17.6 ± 0.5 |
COD (mg L−1) | 24,210.2 ± 224.0 | 2310.2 ± 23.0 | 1540.0 ± 18.0 | 1320.0 ± 64.1 | 1050 ± 66.3 | 2230 ± 42.2 | 2060 ± 34.3 | 672 ± 23.1 |
SS (mg L−1) | 20,300.0 ± 136.3 | 2010.1 ± 3.1 | 1461.3 ± 0.8 | 1130.1 ± 1.6 | 982.6 ± 3.4 | 1966.1 ± 6.1 | 1814.6 ± 9.4 | 866.1 ± 10.1 |
Turbidity (NTU) | 14,210.1 ± 182.5 | 1330.3 ± 2.3 | 765.1 ± 1.1 | 612.5 ± 0.6 | 466.3 ± 4.1 | 1210.2 ± 2.6 | 1102.8 ± 8.6 | 443.3 ± 5.1 |
Pretreatment | Specific Growth Rate (d−1) | Biomass Productivity (g L−1 d−1) |
---|---|---|
Dilution, filtration, and sedimentation | ||
5%ADPE | 0.079 | 0.011 |
10%F | 0.024 | 0.002 |
10%M | 0.035 | 0.003 |
10%S | 0.044 | 0.005 |
10%AF | 0.094 | 0.014 |
Air stripping at temperature (°C) | ||
25 | 0.079 | 0.011 |
40 | 0.088 | 0.013 |
Air stripping at pH | ||
8 | 0.060 | 0.007 |
8.5 | 0.080 | 0.011 |
9 | 0.085 | 0.011 |
9.5 | 0.087 | 0.013 |
10 | 0.072 | 0.009 |
Air stripping at air flow rate (L min−1) | ||
0.5 | 0.052 | 0.006 |
1 | 0.077 | 0.011 |
1.5 | 0.082 | 0.013 |
2 | 0.076 | 0.012 |
2.5 | 0.070 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Peng, Q.; Qian, J.; Wei, L.; Han, P.; Lou, Q. A Comparative Study on Various Pretreatment Methods of Anaerobic Digestion Piggery Effluent for Microalgae Cultivation. Processes 2025, 13, 2703. https://doi.org/10.3390/pr13092703
He T, Peng Q, Qian J, Wei L, Han P, Lou Q. A Comparative Study on Various Pretreatment Methods of Anaerobic Digestion Piggery Effluent for Microalgae Cultivation. Processes. 2025; 13(9):2703. https://doi.org/10.3390/pr13092703
Chicago/Turabian StyleHe, Tao, Qi Peng, Jun Qian, Liang Wei, Pei Han, and Qian Lou. 2025. "A Comparative Study on Various Pretreatment Methods of Anaerobic Digestion Piggery Effluent for Microalgae Cultivation" Processes 13, no. 9: 2703. https://doi.org/10.3390/pr13092703
APA StyleHe, T., Peng, Q., Qian, J., Wei, L., Han, P., & Lou, Q. (2025). A Comparative Study on Various Pretreatment Methods of Anaerobic Digestion Piggery Effluent for Microalgae Cultivation. Processes, 13(9), 2703. https://doi.org/10.3390/pr13092703