Numerical Investigation on Heat Transfer of Supercritical CO2 in Minichannel with Fins Integrated in Sidewalls
Abstract
1. Introduction
2. Numerical Model and Solution Method
2.1. Computational Domain and Geometric Configurations
2.2. Governing Equations and Boundary Conditions
2.3. Solution Methods and Data Acquisition
3. Model Validation
4. Results and Discussion
4.1. Velocity Contour and Temperature Field
4.2. Local Heat Transfer and Fluid Flow Performance
4.3. Average Heat Transfer and Fluid Flow Performance
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | area, m2 |
cp | specific heat, J/(kg K) |
averaged specific heat over cross-section at constant pressure, J/(kg K) | |
D | hydraulic diameter, m |
f | friction factor |
average friction factor | |
G | mass flux, kg/(m2·s) |
Gk | turbulence kinetic energy due to mean velocity gradients, J/kg |
Gb | turbulence kinetic energy due to buoyancy, J/kg |
h | heat transfer coefficient, W/(m2·K) |
average heat transfer coefficient, W/(m2·K) | |
k | turbulent kinetic energy, m2/s2 |
L | length, m |
m | mass flow rate, kg/s |
n | exponent in Equation (14) |
Nu | Nusselt number |
average Nusselt number | |
p | pressure, Pa |
averaged Prandtl number over cross-section at constant pressure | |
q | heat flux, W/m2 |
Q | heat transfer rate, W |
Re | Reynolds number |
average Reynolds number | |
SST | Shear Stress Transport |
T | temperature, K |
u | velocity, m/s |
x, y, z | three coordinates shown in Figure 2, m |
pressure gradient due to friction, Pa/m | |
Greek letters | |
αk | inverse effective Prandtl numbers for turbulent kinetic energy |
αε | inverse effective Prandtl numbers for turbulent dissipation |
ρ | density, kg·m−3 |
λ | thermal conductivity, W/(m K) |
ε | turbulent dissipation, m2/s3 |
μ | dynamic viscosity, Pa·s |
Subscripts | |
in | inlet |
f | fluid |
out | outlet |
w | wall |
z | local |
References
- Austin, B.T.; Sumathy, K. Trans-critical carbon dioxide heat pump systems: A review. Renew. Sustain. Energy Rev. 2011, 15, 4013–4029. [Google Scholar] [CrossRef]
- Cavallini, A.; Cecchinato, L.; Corradi, M.; Fornasieri, E.; Zilio, C. Two-stage trans-critical carbon dioxide cycle optimisation: A theoretical and experimental analysis. Int. J. Refrig. 2005, 28, 1274–1283. [Google Scholar] [CrossRef]
- Lorentzen, G. Trans-Critical Vapour Compression Cycle Device. International Patent Publication, Patent Number WO90/07683, 12 July 1990. [Google Scholar]
- Pettersen, J.; Hafner, A.; Skaugen, G.; Rekstad, H. Development of compact heat exchangers for CO2 air-conditioning systems. Int. J. Refrig. 1998, 21, 180–193. [Google Scholar] [CrossRef]
- Chai, L.; Tassou, S.A. A review of heat transfer of CO2 at supercritical pressure in the critical and pseudo-critical region. J. Enhanc. Heat Transf. 2022, 29, 1–40. [Google Scholar] [CrossRef]
- Yin, J.M.; Bullard, C.W.; Hrnjak, P.S. R-744 gas cooler model development and validation. Int. J. Refrig. 2001, 24, 692–701. [Google Scholar] [CrossRef]
- Asinari, P.; Cecchinato, L.; Fornasieri, E. Effects of thermal conduction in microchannel gas coolers for carbon dioxide. Int. J. Refrig. 2004, 27, 577–586. [Google Scholar] [CrossRef]
- Ge, Y.T.; Cropper, R.T. Simulation and performance evaluation of finned-tube CO2 gas coolers for refrigeration systems. Appl. Therm. Eng. 2009, 29, 957–965. [Google Scholar] [CrossRef]
- Gupta, D.K.; Dasgupta, M.S. Simulation and performance optimization of finned tube gas cooler for trans-critical CO2 refrigeration system in Indian context. Int. J. Refrig. 2014, 38, 153–167. [Google Scholar] [CrossRef]
- Marcinichen, J.B.; Thome, J.R.; Pereira, R.H. Working fluid charge reduction. Part II: Supercritical CO2 gas cooler designed for light commercial appliances. Int. J. Refrig. 2016, 65, 273–286. [Google Scholar] [CrossRef]
- Chai, L.; Tsamos, K.M.; Tassou, S.A. Modelling and evaluation of the thermohydraulic performance of finned-tube supercritical carbon dioxide gas coolers. Energies 2020, 13, 1031. [Google Scholar] [CrossRef]
- Zendehboudi, A.; Ye, Z.; Hafner, A.; Andresen, T.; Skaugen, G. Heat transfer and pressure drop of supercritical CO2 in brazed plate heat exchangers of the tri-partite gas cooler. Int. J. Heat Mass Transf. 2021, 178, 121641. [Google Scholar] [CrossRef]
- Chu, W.; Li, X.; Chen, Y.; Wang, Q.; Ma, T. Experimental study on small scale printed circuit heat exchanger with zigzag channels. Heat Transf. Eng. 2021, 42, 723–735. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, L.; Zhao, C.-R.; Jiang, P.-X.; Bo, H.-L. Local Flow and Heat Transfer of Supercritical CO2 in Semicircular Zigzag Channels of Printed Circuit Heat Exchanger during Cooling. Heat Transf. Eng. 2021, 42, 1889–1913. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Y.; Lin, S.; Li, C.; Jiang, P. Study of convection heat transfer of CO2 at supercritical pressures during cooling in fluted tube-in-tube heat exchangers. Int. J. Refrig. 2019, 104, 161–170. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, Y.; Zendehboudi, A.; Hafner, A.; Cao, F. Investigation on the performance of fluted tube-in-tube gas cooler in trans-critical CO2 heat pump water heater. Int. J. Refrig. 2022, 135, 208–220. [Google Scholar] [CrossRef]
- Fronk, B.M.; Garimella, S. Water-coupled carbon dioxide microchannel gas cooler for heat pump water heaters: Part I—Experiments. Int. J. Refrig. 2011, 34, 7–16. [Google Scholar] [CrossRef]
- Fronk, B.M.; Garimella, S. Water-coupled carbon dioxide microchannel gas cooler for heat pump water heaters: Part II—Model development and validation. Int. J. Refrig. 2011, 34, 17–28. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Wang, K.; Ma, Y. Study of multi-twisted-tube gas cooler for CO2 heat pump water heaters. Appl. Therm. Eng. 2016, 102, 204–212. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Q.; Meier, D.; Warnecke, H.-J. Convective heat transfer and pressure loss in rectangular ducts with drop-shaped pin fins. Heat Mass Transf. 1997, 33, 219–224. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Wang, S. Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins. Propuls. Power Res. 2012, 1, 64–70. [Google Scholar] [CrossRef]
- Bai, J.; Pan, J.; He, X.; Wang, K.; Tang, L.; Yang, R. Numerical investigation on thermal hydraulic performance of supercritical LNG in sinusoidal wavy channel based printed circuit vaporizer. Appl. Therm. Eng. 2020, 175, 115379. [Google Scholar] [CrossRef]
- Chai, L.; A Tassou, S. Effect of cross-section geometry on the thermohydraulic characteristics of supercritical CO2 in minichannels. Energy Procedia 2019, 161, 446–453. [Google Scholar] [CrossRef]
- Krasonshchekov, E.A.; Protopopov, V.S. Experimental study of heat exchange in carbon dioxide in the supercritical range at high temperature drops. High. Temp. 1966, 4, 375–382. [Google Scholar]
- Jackson, J. Fluid flow and convective heat transfer to fluids at supercritical pressure. Nucl. Eng. Des. 2013, 264, 24–40. [Google Scholar] [CrossRef]
- Petukhov, B.S. About heat transfer at turbulent fluid flow in tubes. Therm. Eng. 1958, 4, 63–68. [Google Scholar]
m, kg/s | 0.0005 | 0.001 | 0.0015 | 0.002 | 0.0025 | 0.003 |
q, W/m2 | −107,310 | −214,620 | −321,930 | −429,240 | −536,550 | −643,860 |
Cell Number, Million | pin − pout, (kPa) | , (kW/(m2·K)) |
---|---|---|
Channel with aligned fins | ||
0.319 | 31.59 | 12.66 |
0.638 | 30.24 | 12.18 |
1.668 | 29.06 | 11.83 |
3.335 | 28.91 | 11.77 |
Channel with offset fins | ||
0.319 | 17.02 | 9.65 |
0.637 | 16.30 | 9.29 |
1.667 | 15.51 | 8.93 |
3.334 | 15.36 | 8.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, L. Numerical Investigation on Heat Transfer of Supercritical CO2 in Minichannel with Fins Integrated in Sidewalls. Processes 2025, 13, 2630. https://doi.org/10.3390/pr13082630
Chai L. Numerical Investigation on Heat Transfer of Supercritical CO2 in Minichannel with Fins Integrated in Sidewalls. Processes. 2025; 13(8):2630. https://doi.org/10.3390/pr13082630
Chicago/Turabian StyleChai, Lei. 2025. "Numerical Investigation on Heat Transfer of Supercritical CO2 in Minichannel with Fins Integrated in Sidewalls" Processes 13, no. 8: 2630. https://doi.org/10.3390/pr13082630
APA StyleChai, L. (2025). Numerical Investigation on Heat Transfer of Supercritical CO2 in Minichannel with Fins Integrated in Sidewalls. Processes, 13(8), 2630. https://doi.org/10.3390/pr13082630