Overwater-Haze: A Large-Scale Overwater Paired Image Dehazing Dataset
Abstract
1. Introduction
- We construct the first publicly available large-scale paired image dehazing dataset specifically designed for overwater scenes: Overwater-Haze. We provide a dedicated resource for dehazing research in maritime and navigation-related applications.
- Our dataset is carefully structured into three subsets corresponding to different haze intensities, effectively addressing the limitations of insufficient data quantity and poor data quality, and providing a reliable foundation for the development and evaluation of dehazing algorithms.
- Based on the Overwater-Haze dataset, we perform extensive comparisons and analyses of representative dehazing algorithms. By employing multiple evaluation metrics, we systematically assess the performance of these methods in overwater environments.
- We validate the effectiveness of the Overwater-Haze dataset in enhancing algorithm adaptation to overwater scenes, highlighting the dataset’s unique value in advancing dehazing research for maritime environments.
2. Related Work
2.1. Dehazing Datasets
2.2. Dehazing Algorithm
3. Dataset
3.1. Data Collection
- Avoiding images generated by generative AI: We ensured that all collected images were sourced from real-world scenes rather than artificially generated by AI, thereby avoiding unnatural textures or unrealistic visual effects that may arise from synthetic images.
- Excluding heavily edited landscape photos: We specifically excluded images that had been excessively retouched or optimized, particularly those that were artificially enhanced or beautified, to ensure that the test images accurately reflected real-world haze effects.
- Verifying image resolution to ensure high-quality images: Each image was carefully checked for resolution to ensure that the collected images possessed sufficient detail and clarity. We prioritized images that exhibited complex degradation issues, ensuring that the test set fully represented the challenges faced in dehazing tasks.
3.2. Data Pre-Processing
3.2.1. Atmospheric Scattering Model
3.2.2. Data Synthesis
- Estimate the transmission map from a haze-free image.
- Estimate the atmospheric light using empirical methods.
- Compute the hazy image based on the atmospheric scattering model.
3.3. Data Enhancement
- Images with discontinuous or uneven haze distribution caused by errors in 2D depth estimation.
- Distorted haze images affected by nighttime perspective effects due to strong light sources.
- Synthesized images that violate basic physical principles.
- Low-resolution or grayscale images that severely degrade visual quality.
4. Results and Discussion
4.1. Implementation Details
4.1.1. Experimental Environment and Parameter Settings
4.1.2. Evaluation Algorithm Description
4.2. Evaluation Metrics
4.3. Results on Synthetic Images
4.3.1. Subjective Comparison
4.3.2. Objective Comparison
4.4. Results on Real Hazy Images
4.4.1. Subjective Comparison
4.4.2. Objective Comparison
4.5. Computational Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Öztürk, Ü.; Akdağ, M.; Ayabakan, T. A Review of Path Planning Algorithms in Maritime Autonomous Surface Ships: Navigation Safety Perspective. Ocean Eng. 2022, 251, 111010. [Google Scholar] [CrossRef]
- Wang, C.; Cai, X.; Li, Y.; Zhai, R.; Wu, R.; Zhu, S.; Guan, L.; Luo, Z.; Zhang, S.; Zhang, J. Research and Application of Panoramic Visual Perception-Assisted Navigation Technology for Ships. J. Mar. Sci. Eng. 2024, 12, 1042. [Google Scholar] [CrossRef]
- Hu, K.; Zeng, Q.; Wang, J.; Huang, J.; Yuan, Q. A Method for Defogging Sea Fog Images by Integrating Dark Channel Prior with Adaptive Sky Region Segmentation. J. Mar. Sci. Eng. 2024, 12, 1255. [Google Scholar] [CrossRef]
- Sun, Y.; Su, L.; Luo, Y.; Meng, H.; Zhang, Z.; Zhang, W.; Yuan, S. IRDCLNet: Instance Segmentation of Ship Images Based on Interference Reduction and Dynamic Contour Learning in Foggy Scenes. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6029–6043. [Google Scholar] [CrossRef]
- Fu, C.; Li, M.; Zhang, B.; Wang, H. TBiSeg: A Transformer-Based Network with Bi-Level Routing Attention for Inland Waterway Segmentation. Ocean Eng. 2024, 311, 119011. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Meng, H.; Zhang, Z.; Yang, C. Ship Detection in Maritime Scenes under Adverse Weather Conditions. Remote Sens. 2024, 16, 1567. [Google Scholar] [CrossRef]
- Liang, S.; Liu, X.; Yang, Z.; Liu, M.; Yin, Y. Offshore Ship Detection in Foggy Weather Based on Improved YOLOv8. J. Mar. Sci. Eng. 2024, 12, 1641. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, W.; Yang, S.; Wang, H. Lightweight Single-Stage Ship Object Detection Algorithm for Unmanned Surface Vessels Based on Improved YOLOv5. Sensors 2024, 24, 5603. [Google Scholar] [CrossRef]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-One Dehazing Network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4780–4788. [Google Scholar] [CrossRef]
- Engin, D.; Genc, A.; Ekenel, H.K. Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 938–9388. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, X.; Wang, F.L.; Xie, H.; Yang, W.; Zhang, X.-P.; Qin, J.; Wei, M. UCL-Dehaze: Toward Real-World Image Dehazing via Unsupervised Contrastive Learning. IEEE Trans. Image Process. 2024, 33, 1361–1374. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Liu, R.; Zhang, L.; Guo, X.; Tao, D. Self-Augmented Unpaired Image Dehazing via Density and Depth Decomposition. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 2027–2036. [Google Scholar] [CrossRef]
- Wang, C.; Shen, H.-Z.; Fan, F.; Shao, M.-W.; Yang, C.-S.; Luo, J.-C.; Deng, L.-J. EAA-Net: A Novel Edge Assisted Attention Network for Single Image Dehazing. Knowl.-Based Syst. 2021, 228, 107279. [Google Scholar] [CrossRef]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature Fusion Attention Network for Single Image Dehazing. AAAI 2020, 34, 11908–11915. [Google Scholar] [CrossRef]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single-Image Dehazing and Beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Rahim, N.; Anwar, S.; Saqib, M.; Bakshi, S.; Muhammad, K. HazeSpace2M: A Dataset for Haze Aware Single Image Dehazing. In Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 9155–9164. [Google Scholar] [CrossRef]
- Ancuti, C.; Ancuti, C.O.; Timofte, R.; De Vleeschouwer, C. I-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free Indoor Images. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Poitiers, France, 24–27 September 2018; pp. 620–631. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. O-HAZE: A Dehazing Benchmark with Real Hazy and Haze-Free Outdoor Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 867–8678. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Z.; Lei, Z.; Huo, Y.; Wang, S.; Zhao, J.; Zhang, J.; Jin, X.; Zhang, X. An Approach to Ship Target Detection Based on Combined Optimization Model of Dehazing and Detection. Eng. Appl. Artif. Intell. 2024, 127, 107332. [Google Scholar] [CrossRef]
- Zhou, W.; Gao, X. Sat-DehazeGAN: An Efficient Dehazing Model in Water-Sky Background for River-Sea Transport. Multimed. Syst. 2025, 31, 9. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Feng, Y.; Wei, Y. MDD-ShipNet: Math-Data Integrated Defogging for Fog-Occlusion Ship Detection. IEEE Trans. Intell. Transp. Syst. 2024, 25, 15040–15052. [Google Scholar] [CrossRef]
- Moosbauer, S.; Konig, D.; Jakel, J.; Teutsch, M. A Benchmark for Deep Learning Based Object Detection in Maritime Environments. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 916–925. [Google Scholar] [CrossRef]
- Nayar, S.K.; Narasimhan, S.G. Vision in Bad Weather. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 820–827. [Google Scholar] [CrossRef]
- Fattal, R. Single Image Dehazing. ACM Trans. Graph. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- Tarel, J.-P.; Hautiere, N.; Cord, A.; Gruyer, D.; Halmaoui, H. Improved Visibility of Road Scene Images under Heterogeneous Fog. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 478–485. [Google Scholar] [CrossRef]
- Tarel, J.-P.; Hautiere, N.; Caraffa, L.; Cord, A.; Halmaoui, H.; Gruyer, D. Vision Enhancement in Homogeneous and Heterogeneous Fog. IEEE Intell. Transport. Syst. Mag. 2012, 4, 6–20. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, J.; Liu, Q.; Qi, Y.; Yan, J. Overwater Image Dehazing via Cycle-Consistent Generative Adversarial Network. Electronics 2020, 9, 1877. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Sbert, M.; Timofte, R. Dense-Haze: A Benchmark for Image Dehazing with Dense-Haze and Haze-Free Images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1014–1018. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Timofte, R. NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1798–1805. [Google Scholar] [CrossRef]
- He, X.; Ji, W. Single Maritime Image Dehazing Using Unpaired Adversarial Learning. SIViP 2023, 17, 593–600. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, H.; Yang, Y.; Fu, Y.; Pan, L. LMHaze: Intensity-Aware Image Dehazing with a Large-Scale Multi-Intensity Real Haze Dataset. In Proceedings of the 6th ACM International Conference on Multimedia in Asia, Auckland, New Zealand, 3–6 December 2024; p. 1. [Google Scholar] [CrossRef]
- Mo, Y.; Li, C.; Ren, W.; Wang, W. Spotlighting on Objects: Prior Knowledge-Driven Maritime Image Dehazing and Object Detection Framework. IEEE J. Ocean. Eng. 2025, 50, 1978–1992. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, H.; Liu, Z.; Wang, X.; Ji, X. SynFog: A Photorealistic Synthetic Fog Dataset Based on End-to-End Imaging Simulation for Advancing Real-World Defogging in Autonomous Driving. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 21763–21772. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, A.; Zhao, S.; Zhou, Y. Simulation of Atmospheric Visibility Impairment. IEEE Trans. Image Process. 2021, 30, 8713–8726. [Google Scholar] [CrossRef]
- Liu, R.W.; Lu, Y.; Guo, Y.; Ren, W.; Zhu, F.; Lv, Y. AiOENet: All-in-One Low-Visibility Enhancement to Improve Visual Perception for Intelligent Marine Vehicles Under Severe Weather Conditions. IEEE Trans. Intell. Veh. 2024, 9, 3811–3826. [Google Scholar] [CrossRef]
- Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video Processing from Electro-Optical Sensors for Object Detection and Tracking in a Maritime Environment: A Survey. IEEE Trans. Intell. Transport. Syst. 2017, 18, 1993–2016. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, W.; Wang, Z.; Du, W.; Li, C. SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection. IEEE Trans. Multimed. 2018, 20, 2593–2604. [Google Scholar] [CrossRef]
- Dwivedi, P.; Chakraborty, S. A Comprehensive Qualitative and Quantitative Survey on Image Dehazing Based on Deep Neural Networks. Neurocomputing 2024, 610, 128582. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1956–1963. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.; Treibitz, T.; Avidan, S. Single Image Dehazing Using Haze-Lines. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, K.; Xue, J.; He, N.; Shao, L. Single Image Dehazing Based on the Physical Model and MSRCR Algorithm. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2190–2199. [Google Scholar] [CrossRef]
- Galdran, A. Image Dehazing by Artificial Multiple-Exposure Image Fusion. Signal Process. 2018, 149, 135–147. [Google Scholar] [CrossRef]
- Ju, M.; Ding, C.; Zhang, D.; Guo, Y.J. Gamma-Correction-Based Visibility Restoration for Single Hazy Images. IEEE Signal Process. Lett. 2018, 25, 1084–1088. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef]
- Single Image Dehazing via Multi-Scale Convolutional Neural Networks. In Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 154–169. ISBN 978-3-319-46474-9. [CrossRef]
- Ma, L.; Feng, Y.; Zhang, Y.; Liu, J.; Wang, W.; Chen, G.-Y.; Xu, C.; Su, Z. Coa: Towards Real Image Dehazing via Compression-and-Adaptation. In Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville, TN, USA, 10–17 June 2025; pp. 11197–11206. [Google Scholar] [CrossRef]
- Su, X.; Li, S.; Cui, Y.; Cao, M.; Zhang, Y.; Chen, Z.; Wu, Z.; Wang, Z.; Zhang, Y.; Yuan, X. Prior-Guided Hierarchical Harmonization Network for Efficient Image Dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 Febreary–4 March 2025; Volume 39, pp. 7042–7050. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, Z.; Wang, C.; Gong, L.; Yi, Z. PriorNet: A Novel Lightweight Network with Multidimensional Interactive Attention for Efficient Image Dehazing. arXiv 2024, arXiv:2404.15638. [Google Scholar] [CrossRef]
- Ullah, H.; Muhammad, K.; Irfan, M.; Anwar, S.; Sajjad, M.; Imran, A.S.; de Albuquerque, V.H.C. Light-DehazeNet: A Novel Lightweight CNN Architecture for Single Image Dehazing. IEEE Trans. Image Process. 2021, 30, 8968–8982. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yan, Q.; Anwar, S.; Cong, R.; Ren, W.; Li, C. Image Dehazing Transformer with Transmission-Aware 3D Position Embedding. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5802–5810. [Google Scholar] [CrossRef]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision Transformers for Single Image Dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kang, B.; Huang, Z.; Xu, X.; Feng, J.; Zhao, H. Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 10371–10381. [Google Scholar] [CrossRef]
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine Fog: A Review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Luo, J.; Xie, S.; Sun, Y. Efficient Obstacle Detection Based on Prior Estimation Network and Spatially Constrained Mixture Model for Unmanned Surface Vehicles. J. Field Robot. 2021, 38, 212–228. [Google Scholar] [CrossRef]
- Yao, S.; Guan, R.; Wu, Z.; Ni, Y.; Huang, Z.; Liu, R.W.; Yue, Y.; Ding, W.; Lim, E.G.; Seo, H.; et al. Waterscenes: A Multi-Task 4d Radar-Camera Fusion Dataset and Benchmarks for Autonomous Driving on Water Surfaces. IEEE Trans. Intell. Transp. Syst. 2024, 25, 16584–16598. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Wei, Y.; Han, B.; Feng, Y. Marine Vessel Detection Dataset and Benchmark for Unmanned Surface Vehicles. Appl. Ocean Res. 2024, 142, 103835. [Google Scholar] [CrossRef]
- Kristan, M.; Sulić Kenk, V.; Kovačič, S.; Perš, J. Fast Image-Based Obstacle Detection From Unmanned Surface Vehicles. IEEE Trans. Cybern. 2016, 46, 641–654. [Google Scholar] [CrossRef]
- Žust, L.; Perš, J.; Kristan, M. Lars: A Diverse Panoptic Maritime Obstacle Detection Dataset and Benchmark. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 20304–20314. [Google Scholar] [CrossRef]
- Rajapaksha, U.; Sohel, F.; Laga, H.; Diepeveen, D.; Bennamoun, M. Deep Learning-Based Depth Estimation Methods from Monocular Image and Videos: A Comprehensive Survey. ACM Comput. Surv. 2024, 56, 1–51. [Google Scholar] [CrossRef]
- Arampatzakis, V.; Pavlidis, G.; Mitianoudis, N.; Papamarkos, N. Monocular Depth Estimation: A Thorough Review. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 2396–2414. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Xiong, C.; Yao, H.; Qin, C. A Survey of Perceptual Hashing for Multimedia. ACM Trans. Multimed. Comput. Commun. Appl. 2025, 21, 1–28. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Shi, Z.; Chen, J. Griddehazenet: Attention-Based Multi-Scale Network for Image Dehazing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7314–7323. [Google Scholar] [CrossRef]
- Fourure, D.; Emonet, R.; Fromont, E.; Muselet, D.; Tremeau, A.; Wolf, C. Residual Conv-Deconv Grid Network for Semantic Segmentation. arXiv 2017, arXiv:1707.07958. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar] [CrossRef]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef]
Dataset | Year | Scale | Paired | Availability | Scene |
---|---|---|---|---|---|
Fattal [24] | 2008 | 11 | Yes | Yes | C |
FRIDA [25] | 2010 | 90 | Yes | Yes | C |
FRIDA2 [26] | 2012 | 330 | Yes | Yes | C |
RESIDE-ITS [15] | 2018 | 13,990 | Yes | Yes | I |
RESIDE-OTS [15] | 2018 | 72,135 | Yes | Yes | C |
I-HAZE [17] | 2018 | 35 | Yes | Yes | I |
O-HAZE [18] | 2018 | 45 | Yes | Yes | C |
HazyWater [27] | 2019 | 4531 | No | Yes | O |
Dense-HAZE [28] | 2019 | 55 | Yes | Yes | C and I |
NH-HAZE [29] | 2020 | 55 | Yes | Yes | C |
REMIDE [30] | 2023 | 2098 | No | No | O |
LMHaze [31] | 2024 | 5040 | Yes | Yes | C and I |
MORH [32] | 2025 | 13,280 | Yes | No | O |
Name | Year | Classes | Annotated Frames | Adverse Lighting | Similar Image |
---|---|---|---|---|---|
MODD [58] | 2016 | 2 | 4454 | YES | YES |
SMD [36] | 2017 | 10 | 31,653 | YES | YES |
Seaship [37] | 2018 | 6 | 7000 | NO | YES |
MID [55] | 2021 | 2 | 2655 | YES | YES |
LaRS [59] | 2023 | 11 | 4006 | NO | NO |
WaterScenes [56] | 2023 | 7 | 54,120 | YES | YES |
MVDD13 [57] | 2024 | 13 | 35,474 | YES | NO |
Overwater-Haze | |||||
---|---|---|---|---|---|
Subset | Number of Image | Real/Synthetic | |||
Train | Val | Test | All | ||
Mist | 7134 | 883 | 896 | 8913 | Synthetic |
Moderate | 7314 | 902 | 924 | 9140 | Synthetic |
Dense | 7248 | 911 | 888 | 9047 | Synthetic |
Real Test | - | - | 500 | 500 | Real |
Methods | Mist | Moderate | Dense | |||
---|---|---|---|---|---|---|
PSNR ↑ | SSIM ↑ | PSNR ↑ | SSIM ↑ | PSNR ↑ | SSIM ↑ | |
DCP | 17.213 | 0.891 | 14.291 | 0.819 | 12.360 | 0.751 |
AOD-Net | 18.905 | 0.864 | 15.431 | 0.784 | 14.115 | 0.722 |
GridDehazeNet | 23.395 | 0.916 | 22.255 | 0.888 | 19.562 | 0.833 |
FFA-Net | 26.023 | 0.922 | 22.411 | 0.882 | 17.300 | 0.816 |
Dehamer | 29.649 | 0.934 | 26.103 | 0.904 | 25.235 | 0.877 |
DCP | AOD-Net | GridDehazeNet | FFA-Net | Dehamer | ||
---|---|---|---|---|---|---|
NIQE ↓ | Retrained | 5.377 | 5.380 (↓ 10.15%) | 5.202 (↓ 9.04%) | 5.196 (↓ 7.13%) | 4.827 (↓ 13.51%) |
Pre-trained | - | 5.988 | 5.719 | 5.595 | 5.581 | |
BRISQUE ↓ | Retrained | 43.392 | 46.700 (↓ 4.99%) | 40.607 (↓ 11.72%) | 40.253 (↓ 12.11%) | 38.253 (↓ 13.04%) |
Pre-trained | - | 49.152 | 45.999 | 45.800 | 43.990 |
Method | Platform | Params(M) | FLOPs(G) | Average Time (s) |
---|---|---|---|---|
DCP | Python 3.9.1 (CPU) | - | - | 1.41 |
AOD-Net | PyTorch (GPU) | 0.002 | 0.458 | 0.11 |
GridDehazeNet | PyTorch (GPU) | 0.956 | 85.715 | 0.32 |
FFA-Net | PyTorch (GPU) | 4.456 | 701.985 | 0.97 |
Dehamer | PyTorch (GPU) | 29.443 | 237.853 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Li, M.; Wang, S.; Wang, H. Overwater-Haze: A Large-Scale Overwater Paired Image Dehazing Dataset. Processes 2025, 13, 2628. https://doi.org/10.3390/pr13082628
Xie Y, Li M, Wang S, Wang H. Overwater-Haze: A Large-Scale Overwater Paired Image Dehazing Dataset. Processes. 2025; 13(8):2628. https://doi.org/10.3390/pr13082628
Chicago/Turabian StyleXie, Yuhang, Meng Li, Siqi Wang, and Hongbo Wang. 2025. "Overwater-Haze: A Large-Scale Overwater Paired Image Dehazing Dataset" Processes 13, no. 8: 2628. https://doi.org/10.3390/pr13082628
APA StyleXie, Y., Li, M., Wang, S., & Wang, H. (2025). Overwater-Haze: A Large-Scale Overwater Paired Image Dehazing Dataset. Processes, 13(8), 2628. https://doi.org/10.3390/pr13082628