Fast History Matching and Flow Channel Identification for Polymer Flooding Reservoir with a Physics-Based Data-Driven Model
Abstract
1. Introduction
2. Polymer Flooding GPSNet Model
2.1. Polymer Flooding Mathematical Model
2.2. GPSNet Model
2.3. History Matching Method
3. Flow Channel Characterization Method
3.1. Channel Characterization Key Parameters
3.2. Channel Characterization Method
4. Field Application
4.1. Field History Matching
4.2. Quantification of Flow Channels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zhang, G.C.; Ge, J.-J.; Li, G.H.; Zhang, J.; Ding, B.D. Preparation of microgel nanospheres and their application in EOR. In Proceedings of the SPE International Oil and Gas Conference and Exhibition in China, Beijing, China, 8–10 June 2010; p. SPE-130357. [Google Scholar]
- Scott, A.J.; Romero-Zerón, L.; Penlidis, A. Evaluation of polymeric materials for chemical enhanced oil recovery. Processes 2020, 8, 361. [Google Scholar] [CrossRef]
- Cui, Y.; Zhou, W.; Liu, C. Integrated Modeling of Time-Varying Permeability and Non-Darcy Flow in Heavy Oil Reservoirs: Numerical Simulator Development and Case Study. Processes 2025, 13, 1683. [Google Scholar] [CrossRef]
- Jiang, R.; Zhang, W.; Zhao, P.; Jiang, Y.; Cai, M.; Tao, Z.; Zhao, M.; Ni, T.; Xu, J.; Cui, Y.; et al. Characterization of the reservoir property time-variation based on ‘surface flux’ and simulator development. Fuel 2018, 234, 924–933. [Google Scholar] [CrossRef]
- Yang, R.; Jiang, R.; Guo, S.; Chen, H.; Tang, S.; Duan, R. Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement. Energy 2021, 214, 119012. [Google Scholar] [CrossRef]
- Lin, J.; Jiang, R.; Shen, Z.; Wang, Q.; Cui, Y.; Ni, Q.; Zhang, F. Comprehensive characterization investigation of multiple time-varying rock-fluid properties in waterflooding development. J. Energy Resour. Technol. 2022, 144, 073001. [Google Scholar] [CrossRef]
- Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A. Review on polymer flooding: Rheology, adsorption, stability, and field applications of various polymer systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
- Song, K.; Tao, J.; Lyu, X.; Xu, Y.; Liu, S.; Wang, Z.; Liu, H.; Zhang, Y.; Fu, H.; Meng, E.; et al. Recent advances in polymer flooding in China. Molecules 2022, 27, 6978. [Google Scholar] [CrossRef]
- Seright, R.S. Potential for polymer flooding reservoirs with viscous oils. SPE Reserv. Eval. Eng. 2010, 13, 730–740. [Google Scholar] [CrossRef]
- Amirian, E.; Dejam, M.; Chen, Z. Performance forecasting for polymer flooding in heavy oil reservoirs. Fuel 2018, 216, 83–100. [Google Scholar] [CrossRef]
- Saboorian-Jooybari, H.; Dejam, M.; Chen, Z. Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: Half-century studies. J. Pet. Sci. Eng. 2016, 142, 85–100. [Google Scholar] [CrossRef]
- Zhong, D.; Zhu, X. Characteristics and controlling factors of high capacity channels of reservoirs at high water cut stage: A case from Block Hu 12 of Huzhuangji Oilfield. Pet. Explor. Dev. 2007, 34, 207. [Google Scholar]
- Ding, S.; Jiang, H.; Liu, G.; Sun, L.; Lu, X.A.; Zhao, L. Determining the levels and parameters of thief zone based on automatic history matching and fuzzy method. J. Pet. Sci. Eng. 2016, 138, 138–152. [Google Scholar] [CrossRef]
- Peng, S.; Shi, Y.; Han, T.; Yao, T.; Huang, J.; Li, H.; Li, X.; Hu, H. A quantitative description method for channeling-path of reservoirs during high water cut period. Acta Pet. Sin. 2007, 28, 79. [Google Scholar]
- Zhao, H.; Kang, Z.; Zhang, Y.; Sun, H.; Li, Y. An interwell connectivity numerical method for geological parameter characterization and oil-water two-phase dynamic prediction. Acta Pet. Sin. 2014, 35, 922. [Google Scholar]
- Latrach, A.; Malki, M.L.; Morales, M.; Mehana, M.; Rabiei, M. A critical review of physics-informed machine learning applications in subsurface energy systems. Geoenergy Sci. Eng. 2024, 239, 212938. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Chen, S.; Lv, Z.; Huang, J.; Chang, Z.; Catani, F. Slope stability prediction based on a long short-term memory neural network: Comparisons with convolutional neural networks, support vector machines and random forest models. Int. J. Coal Sci. Technol. 2023, 10, 18. [Google Scholar] [CrossRef]
- Yousef, A.A.; Gentil, P.; Jensen, J.L.; Lake, L.W. A capacitance model to infer interwell connectivity from production-and injection-rate fluctuations. SPE Reserv. Eval. Eng. 2006, 9, 630–646. [Google Scholar] [CrossRef]
- Holanda, R.W.; Gildin, E.; Jensen, J.L.; Lake, L.W.; Kabir, C.S. A state-of-the-art literature review on capacitance resistance models for reservoir characterization and performance forecasting. Energies 2018, 11, 3368. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, J.; Lue, A.M.; Wang, W. Reservoir interwell dynamic connectivity inversion based on injection and production data. Zhongguo Shi You Daxue Xuebao J. China Univ. Pet. Ed. Nat. Sci. 2010, 34, 91–94. [Google Scholar]
- Lutidze, G. StellNet: Physics-Based Data-Driven General Model for Closed-Loop Reservoir Management. Ph.D. Thesis, The University of Tulsa, Tulsa, OK, USA, 2018. [Google Scholar]
- Ren, G.; He, J.; Wang, Z.; Younis, R.M.; Wen, X.H. Implementation of physics-based data-driven models with a commercial simulator. In Proceedings of the SPE Reservoir Simulation Conference, Galveston, TX, USA, 10–11 April 2019. [Google Scholar]
- Lie, K.A.; Krogstad, S. Comparison of two different types of reduced graph-based reservoir models: Interwell networks (GPSNet) versus aggregated coarse-grid networks (CGNet). Geoenergy Sci. Eng. 2023, 221, 111266. [Google Scholar] [CrossRef]
- Wang, Z.; Guan, X.; Milliken, W.; Wen, X.H. Fast history matching and robust optimization using a novel physics-based data-driven flow network model: An application to a Steamflood sector model. SPE J. 2022, 27, 2033–2051. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Z.; Kostakis, F.; Ren, G.; Guo, G.; Milliken, W.J.; Rangaratnam, B.; Wen, X.H. Fast history matching and optimization using a novel physics-based data-driven model: An application to a diatomite reservoir with hundreds of wells. Geoenergy Sci. Eng. 2023, 228, 211919. [Google Scholar] [CrossRef]
- Wang, Z. A fast physics-based data-driven surrogate model for unconventional reservoirs with rapid decline and well interference. Geoenergy Sci. Eng. 2024, 237, 212772. [Google Scholar] [CrossRef]
- Bao, K.; Lie, K.A.; Møyner, O.; Liu, M. Fully implicit simulation of polymer flooding with MRST. Comput. Geosci. 2017, 21, 1219–1244. [Google Scholar] [CrossRef]
- Bi, J.; Li, J.; Wu, K.; Chen, Z.; Chen, S.; Jiang, L.; Feng, D.; Deng, P. A physics-informed spatial-temporal neural network for reservoir simulation and uncertainty quantification. SPE J. 2024, 29, 2026–2043. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Chen, S.; Hui, G.; Pang, Y. A novel governing equation for shale gas production prediction via physics-informed neural networks. Expert Syst. Appl. 2024, 248, 123387. [Google Scholar] [CrossRef]
- Emerick, A.A.; Reynolds, A.C. Ensemble smoother with multiple data assimilation. Comput. Geosci. 2013, 55, 3–15. [Google Scholar] [CrossRef]
Parameters | w1 | w2 | w3 | w4 |
---|---|---|---|---|
Value | 1 | 3 | 5 | 5 |
M | Channeling Intensity Grading |
---|---|
>0.65 | Large channel |
0.55~0.65 | Advantageous channel |
<0.55 | Not developing |
Well | Formation | The New Method | Tracer Method | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Injection Ratio, (104·d)-1 | Injection Efficiency, m3/m3 | Rate of Water Cut Increase, Month-1 | Comprehensive Judging Factor | Corresponding Production Wells | Permeability/mD | Identify the Results | The Tracer Interprets the Results | Permeability/mD | ||
A 0 2 | Iu | 35.10 | 0.01 | 0.446 | 0.59 | J12 | 7900 | Advantageous channel | Large flow channel | 8750 |
Id | 71.48 | 0.02 | 0.838 | 0.83 | K04 | 9860 | Large flow channel | Large flow channel | 10,500 | |
A 0 8 | Id | 24.40 | 0.01 | 0.817 | 0.78 | A14 | 12,430 | Large flow channel | Large flow channel | 10,624 |
II | 69.32 | 0.02 | 0.82 | 0.82 | A07 | 10,970 | Large flow channel | Large flow channel | 11,058 | |
J 1 4 | Iu | 9.42 | 0.04 | 0.635 | 0.67 | J13 | 11,270 | Large flow channel | Large flow channel | 12,350 |
Id | 24.40 | 0.04 | 0.565 | 0.62 | K20 | 7530 | Advantageous channel | Advantageous channel | 7960 |
Well | Formation | Comprehensive Judging Factor, M | Corresponding to Production Wells | Identify the Results |
---|---|---|---|---|
J03 | Iu | 0.58 | A07 | Advantageous channel |
Id | 0.61 | K16 | Advantageous channel | |
J10 | Iu | \ | \ | \ |
Id | 0.59 | K20 | Advantageous channel | |
K23 | Iu | 0.49 | K20 | \ |
Id | 0.57 | K17H | Advantageous channel | |
J08 | Iu | \ | \ | \ |
Id | 0.81 | K15 | Large flow channel | |
J06 | Iu | \ | \ | \ |
Id | 0.60 | J05 | Advantageous channel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Cui, Y.; Su, Y.; Zhou, W. Fast History Matching and Flow Channel Identification for Polymer Flooding Reservoir with a Physics-Based Data-Driven Model. Processes 2025, 13, 2610. https://doi.org/10.3390/pr13082610
Wei Z, Cui Y, Su Y, Zhou W. Fast History Matching and Flow Channel Identification for Polymer Flooding Reservoir with a Physics-Based Data-Driven Model. Processes. 2025; 13(8):2610. https://doi.org/10.3390/pr13082610
Chicago/Turabian StyleWei, Zhijie, Yongzheng Cui, Yanchun Su, and Wensheng Zhou. 2025. "Fast History Matching and Flow Channel Identification for Polymer Flooding Reservoir with a Physics-Based Data-Driven Model" Processes 13, no. 8: 2610. https://doi.org/10.3390/pr13082610
APA StyleWei, Z., Cui, Y., Su, Y., & Zhou, W. (2025). Fast History Matching and Flow Channel Identification for Polymer Flooding Reservoir with a Physics-Based Data-Driven Model. Processes, 13(8), 2610. https://doi.org/10.3390/pr13082610