Integrated Zeta–Ćuk-Based Single-Phase DC/AC Inverter for Standalone Applications
Abstract
1. Introduction
2. IZCI: Structure and Operation
2.1. Operating Principles of the IZCI
2.1.1. IZCI—Zeta Operation Mode
2.1.2. IZCI—Ćuk Operation Mode
2.2. Main Waveforms of the IZCI
2.3. Static Gain
2.4. Modeling and Control Design
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Candra, O.; Chammam, A.; Alvarez, J.R.N.; Muda, I.; Aybar, H.Ş. The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions. Sustainability 2023, 15, 2104. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Jen, T.-C. Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. Int. J. Precis. Eng. Manuf. Technol. 2020, 7, 97–117. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Liu, X.; Ming, Y.; Wu, Y. Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration. Energy 2024, 294, 130251. [Google Scholar] [CrossRef]
- Muttaqi, K.M.; Islam, R.; Sutanto, D. Future Power Distribution Grids: Integration of Renewable Energy, Energy Storage, Electric Vehicles, Superconductor, and Magnetic Bus. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Haegel, N.M.; Kurtz, S.R. Global Progress Toward Renewable Electricity: Tracking the Role of Solar (Version 2). IEEE J. Photovolt. 2022, 12, 1265–1272. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, Y.; Blaabjerg, F. Power Electronics: The Enabling Technology for Renewable Energy Integration. CSEE J. Power Energy Syst. 2022, 8, 39–52. [Google Scholar] [CrossRef]
- de Assis, B.G.; Braga, E.P.C.; Nascimento, C.B.; Júnior, E.A. High-Voltage-Gain Integrated Boost SEPIC DC-DC Converter for Renewable Energy Applications. Eletrônica De Potência 2019, 24, 336–344. [Google Scholar] [CrossRef]
- Nyamathulla, S.; Chittathuru, D. A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems. Sustainability 2023, 15, 13376. [Google Scholar] [CrossRef]
- Dionizio, A.A.; Sampaio, L.P.; da Silva, S.A.O.; Monteiro, V.; Afonso, J.L. Hybrid Inverter Zeta-Ćuk for Grid-Tied Photovoltaic Applications. IEEE Open J. Power Electron. 2025, 6, 1094–1109. [Google Scholar] [CrossRef]
- Duong, T.-D.; Nguyen, M.-K.; Tran, T.-T.; Vo, D.-V.; Lim, Y.-C.; Choi, J.-H. Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction. Energies 2022, 15, 3106. [Google Scholar] [CrossRef]
- Pires, V.F.; Pires, A.; Cordeiro, A. DC Microgrids: Benefits, Architectures, Perspectives and Challenges. Energies 2023, 16, 1217. [Google Scholar] [CrossRef]
- Sarvi, M.; Zohdi, H.Z. A comprehensive overview of DC-DC converters control methods and topologies in DC microgrids. Energy Sci. Eng. 2024, 12, 2017–2036. [Google Scholar] [CrossRef]
- Quizhpe, K.; Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, E. Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review. Electronics 2024, 13, 3620. [Google Scholar] [CrossRef]
- Ali, S.; Zheng, Z.; Aillerie, M.; Sawicki, J.-P.; Péra, M.-C.; Hissel, D. A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications. Energies 2021, 14, 4308. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sinha, A.K.; Kishore, N.K. Control Techniques in AC, DC, and Hybrid AC–DC Microgrid: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 738–759. [Google Scholar] [CrossRef]
- Adegboyega, A.W.; Sepasi, S.; Howlader, H.O.R.; Griswold, B.; Matsuura, M.; Roose, L.R. DC Microgrid Deployments and Challenges: A Comprehensive Review of Academic and Corporate Implementations. Energies 2025, 18, 1064. [Google Scholar] [CrossRef]
- Ming, W. Power Electronic Converters for Microgrids; IntechOpen: London, UK, 2021. [Google Scholar]
- Joddumahanthi, V.; Knypiński, Ł.; Gopal, Y.; Kasprzak, K. Review of Power Electronics Technologies in the Integration of Renewable Energy Systems. Appl. Sci. 2025, 15, 4523. [Google Scholar] [CrossRef]
- Schiffer, J.; Zonetti, D.; Ortega, R.; Stanković, A.M.; Sezi, T.; Raisch, J. A survey on modeling of microgrids-from fundamental physics to phasors and voltage sources. Automatica 2016, 74, 135–150. [Google Scholar] [CrossRef]
- Mathew, D.; Naidu, R.C. A review on single-phase boost inverter technology for low power grid integrated solar PV applications. Ain Shams Eng. J. 2024, 15, 102365. [Google Scholar] [CrossRef]
- Coelho, S.; Monteiro, V.; Afonso, J.L. Topological Advances in Isolated DC–DC Converters: High-Efficiency Design for Renewable Energy Integration. Sustainability 2025, 17, 2336. [Google Scholar] [CrossRef]
- Lee, S.S.; Lim, C.S.; Siwakoti, Y.P.; Lee, K.-B. Single-Stage Common-Ground Boost Inverter (S2CGBI) for Solar Photovoltaic Systems. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MA, USA, 29 September–3 October 2019; pp. 4229–4233. [Google Scholar]
- Lin, Z.; Su, M.; Liu, Y.; Sun, Y.; Liao, Y.; Chen, X. Single-phase integrated power decoupling inverter based on Boost converter. In Proceedings of the IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 405–408. [Google Scholar]
- Abdeen, E.; Gaafar, M.A.; Orabi, M. Performance analysis for single-stage buck-boost inverter. In Proceedings of the International Conference on Innovative Trends in Computer Engineering (ITCE’2019), Aswan, Egypt, 2–4 February 2019; pp. 2–4. [Google Scholar]
- Paul, A.R.; Bhattacharya, A.; Chatterjee, K. A Novel SEPIC-Ćuk Based High Gain Solar Micro-Inverter for Integration to Grid. In Proceedings of the 2019 National Power Electronics Conference (NPEC), Tiruchirappalli, India, 13–15 December 2019; pp. 1–5. [Google Scholar]
- Awad, K.; Abdel-Rahim, O.; Orabi, M. A New Single-Phase Single-Stage Buck-Boost Inverter For Grid Connected PV Applications. In Proceedings of the 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Aswan, Egypt, 23–25 October 2019; pp. 32–37. [Google Scholar]
- Dionizio, A.A.; Pelz, G.M.; Sampaio, L.P.; da Silva, S.A.O. Novel Integrated Zeta Inverter for Standalone Applications. Energies 2024, 17, 2748. [Google Scholar] [CrossRef]
- Yue, Z. Research on single-stage Cuk inverter for photovoltaic power generation. In Proceedings of the IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 1–4 August 2021; pp. 688–694. [Google Scholar]
- Dionizio, A.A.; Sampaio, L.P.; Da Silva, S.A.O. Integrated Cuk Inverter for Single-Phase Grid-Tied Photovoltaic System. In Proceedings of the 2023 38th Conference on Design of Circuits and Integrated Systems (DCIS), Málaga, Spain, 15–17 November 2023; pp. 1–6. [Google Scholar]
- Wang, L.; Shan, M. A novel single-stage common-ground Zeta-based inverter with nonelectrolytic capacitor. IEEE Trans. Power Electron. 2022, 37, 11319–11331. [Google Scholar] [CrossRef]
- Ghosh, S.; Nathan, K.; Long, T.; Tripathi, P.; Siwakoti, Y. Single Phase Integrated Ćuk Transformerless SiC Inverter for Grid-Connected PV Systems. In Proceedings of the 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Xi’an, China, 16–28 May 2018; pp. 18–22. [Google Scholar]
- Sampaio, L.P.; da Silva, S.A.O.; Costa, P.J.S. Integrated Zeta inverter applied in a single-phase grid-connected photovoltaic system. In Proceedings of the 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019; pp. 1–6. [Google Scholar]
- Inoue, R.T.; Dionizio, A.A.; Sampaio, L.P.; da Silva, S.A.O.; de Brito, M.A.G. Single-Phase Single-Stage Integrated Ćuk Inverter Operating in Discontinuous Conduction Mode for Autonomous Operation. Int. J. Circuit Theory Appl. 2025. [Google Scholar] [CrossRef]
- Erickson, R.W.; Maksimovic, D. Erickson, Fundamentals of Power Electronics, 1st ed.; Chapman & Hall: London, UK, 1984. [Google Scholar]
- Dionizio, A.A.; Sampaio, L.P.; da Silva, S.A.O. Generalized state space averaging modeling to fourth-order power converters operating in DCM. Int. J. Circuit Theory Appl. 2024, 53, 1031–1055. [Google Scholar] [CrossRef]
- Bacon, V.D.; da Silva, S.A.O.; Campanhol, L.B.G.; Angélico, B.A. Stability analysis and performance evaluation of a single-phase phase-locked loop algorithm using a non-autonomous adaptive filter. IET Power Electron. 2014, 7, 2081–2092. [Google Scholar] [CrossRef]
Power Switches | Positive Half-Cycle | Negative Half-Cycle |
---|---|---|
1 | ||
1 | ||
1 | 0 | |
0 | 1 |
Parameter | Value |
---|---|
Nominal output voltage | 127 V |
Nominal output frequency | 60 Hz |
Switching frequency | 50 kHz |
Input DC-Bus capacitance | 2000 µF |
Input DC voltage | 140 V |
Input inductance | 70 µH |
Output inductance | 1.635 mH |
Coupling capacitance | 1 µF |
Nominal power | 280 W |
Phase margin | 85° |
Crossover frequency | 435 Hz |
PI controller gains | Kp = 0.10 |
Ki = 3.87 | |
MR controller gains | R1 = 0.3810 |
R3 = 0.0587 | |
R5 = 0.0267 | |
R7 = −0.0183 | |
R9 = 0.0114 | |
PWM gain | 1/2999 |
Sampling time A/D converter | 1/60 kHz |
Integrated Inverter Structures | IZCI | [11] | [24] | [25] | [26] | [27] | [28] | [29] | [30] | [31] | [32] | [33] | [34] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum number of semiconductors conducting simultaneously [units] | 4 | 2 | 3 | 4 | 4 | 3 | 3 | 1 | 3 | 1 | 4 | 4 | 2 |
Switching frequency [kHz] | 50 | 50 | 10 | 20 | 10 | 100 | 15 | 50 | 20 | 50 | 20 | 20; 100 | 50 |
Rated power [W] | 280 | 432 | 147 | 400 | - | 250 | 340 | 250 | 484 | 245 | 1000 | 2000 | 432 |
Input DC voltage [V] | 139.2 | 139.2 | 100 | 200 | 100 | 40 | 71.2 | 140 | 200 | 123 | 150 | 400 | 139.2 |
High-frequency switches [units] | 2 | 2 | 5 | 5 | 1 | 1 | 5 | 4 | 2 | 4 | 4 | 5 | 4 |
Low-frequency switches [units] | 4 | 2 | 0 | 0 | 6 | 4 | 0 | 0 | 2 | 0 | 2 | 0 | 0 |
Diodes [units] | 0 | 4 | 3 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 3 | 1 | 4 |
Inductors [units] | 2 | 3 | 2 | 2 | 1 | 3 | 1 | 3 | 2 | 3 | 2 | 3 | 3 |
Capacitors [units] | 3 | 3 | 2 | 1 | 1 | 3 | 1 | 5 | 3 | 4 | 3 | 3 | 4 |
Voltage sensors [units] | 1 | 1 | 1 | 2 | 1 | 0 | 1 | 3 | 3 | 3 | 1 | 1 | 3 |
Current sensors [units] | 0 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 3 | 0 | 0 | 0 | 0 |
Output Voltage [V] | 180 | 180 | 180 | 156 | 156 | 311 | 311 | 180 | 120 | 180 | 311 | 311 | 180 |
THD | 2.0% | 1.6% | - | - | - | 1.14% | - | 0.7% | - | 1.61% | 3.9% | - | 2.2% |
Efficiency | 90% | 90% | - | - | - | - | 90% | 87.5% | - | - | 94% | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guedes, A.R.M.; Dionizio, A.A.; Westin, Ó.P.; Sampaio, L.P.; da Silva, S.A.O. Integrated Zeta–Ćuk-Based Single-Phase DC/AC Inverter for Standalone Applications. Processes 2025, 13, 2603. https://doi.org/10.3390/pr13082603
Guedes ARM, Dionizio AA, Westin ÓP, Sampaio LP, da Silva SAO. Integrated Zeta–Ćuk-Based Single-Phase DC/AC Inverter for Standalone Applications. Processes. 2025; 13(8):2603. https://doi.org/10.3390/pr13082603
Chicago/Turabian StyleGuedes, Aylla R. M., Anderson A. Dionizio, Óliver P. Westin, Leonardo P. Sampaio, and Sérgio A. O. da Silva. 2025. "Integrated Zeta–Ćuk-Based Single-Phase DC/AC Inverter for Standalone Applications" Processes 13, no. 8: 2603. https://doi.org/10.3390/pr13082603
APA StyleGuedes, A. R. M., Dionizio, A. A., Westin, Ó. P., Sampaio, L. P., & da Silva, S. A. O. (2025). Integrated Zeta–Ćuk-Based Single-Phase DC/AC Inverter for Standalone Applications. Processes, 13(8), 2603. https://doi.org/10.3390/pr13082603