Investigation of Low-Toxicity Azoic Direct Dyes Synthesized from 4,4′-Diaminobenzanilide
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of the Dyes
2.2. Toxicity of the Dyes
3. Results and Discussion
3.1. Synthesis of the Dyes
3.2. Toxicity of the Dyes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zollinger, H. Color Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Omar, A.Z.; Mohamed, M.G.; Homed, E.A.; El-Atavy, M.A. Characterization, DFT calculations and dyeing performance on polyester fabrics of some azo disperse dyes containing pyrazole ring. J. Saudi Chem. 2023, 27, 101594. [Google Scholar] [CrossRef]
- Matei, A.; Constantinescu, C.; Mitu, B.; Filipescu, M.; Ion, V.; Ionita, I.; Brajnicov, S.; Alloncle, A.P.; Delaporte, P.; Emandi, A.; et al. Laser printing of azoderivative thin films for non-linear optical applications. Appl. Surf. Sci. 2015, 336, 200–205. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Helyion 2020, 6, e03271. [Google Scholar] [CrossRef]
- Yamjala, K.; Naiar, M.S.; Ramisetti, N.R. Methods for the analysis of azo dyes employed in food industry—A review. Food Chem. 2016, 192, 813–824. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Gloriozova, T.A.; Poroikov, V.V. Pharmacological and predicted activities of natural azo compounds. Nat. Prod. Bioprospecting 2017, 7, 151–169. [Google Scholar] [CrossRef]
- Hamidian, H. Synthesis of novel compounds as new potent tyrosinase inhibitors. Biomed. Res. Int. 2013, 2013, 207181. [Google Scholar] [CrossRef]
- Gupta, P.O.; Sekar, N. Investigation of heterocyclic azo dyes for dye-sensitized solar cells and non-linear optical properties: Synthesis and in-silico studies. J. Mol. Struct. 2025, 1321 Pt 4, 140035. [Google Scholar] [CrossRef]
- Nyaki, H.Y.; Mahmoodi, N.O. Investigation of solvatochromic, optical, organic field effect transistor (OFET), antibacterial, and molecular bonding of some azothiazolidine-2,4-dione -azo dyes. J. Photochem. Photobiol. A 2024, 450, 115475. [Google Scholar]
- Dandge, S.V.; NikuRme, S.R.; Bendre, R.S. An efficient synthesis, characterization, antimicrobial and anticancer activities of azo dyes derived from eugenol. Synth. Commun. 2024, 54, 282–292. [Google Scholar] [CrossRef]
- Jaiswal, A.; Kumari, N.; Kumar, A.; Prakash, R. Enhanced photodegradation of azo dye by Ag2O/SnO2@g-C3N4 nanocomposite. Mater. Chem. Phys. 2022, 281, 1258845. [Google Scholar] [CrossRef]
- Aragaw, T.A. Potential and prospects of reductases in azo dye degradation: A review. Microbe 2024, 4, 100162. [Google Scholar] [CrossRef]
- Brown, M.A.; de Vito, S.C. Predicting azo dyes toxicity. Crit. Rev. Environ. Sci. Tecnol. 1993, 23, 249–324. [Google Scholar] [CrossRef]
- Ansari, A. A review paper of benzidine. Int. J. Adv. Res. Sci. Commun. Technol. 2022, 2, 177–181. [Google Scholar] [CrossRef]
- Zweite Verordnung zur Änderung der Atomrechtlichen Verfahrensordnung, no. 82; Bundesgesetzblatt: Bonn, Germany, 1994.
- Vierte Verordnung zur Änderung der Bedarfsgegenständeverordnung, no. 8; Bundesgesetzblatt: Bonn, Germany, 1995.
- Bae, J.-S.; Freeman, H.S. Aquatic toxicity evaluation of new direct dyes to the Daphnia magna. Dye. Pigm. 2007, 73, 81–85. [Google Scholar] [CrossRef]
- Rizk, H.F.; El-Barai, M.A.; Ragab, A.; Ibrahim, S.A.; Sadek, M.E. A Novel of Azo-Thiazole Moiety Alternative for Benzidine-Based Pigments: Design, Synthesis, Characterization, Biological Evaluation, and Molecular Docking Study. Plycycl. Aromat. Comp. 2023, 43, 500–522. [Google Scholar] [CrossRef]
- Rădulescu-Grad, M.E.; Visa, A.; Milea, M.S.; Lazau, R.I.; Popa, S.; Funar-Timofei, S. Synthesis, spectral characterization, and theoretical investigations of a new azo-stilbene dye for acrylic resins. J. Mol. Struct. 2020, 1217, 128380. [Google Scholar] [CrossRef]
- Czajkovski, W. Sulphonated Diaminobenzanilides as Substitutes for Benzidine in the Synthesis of Direct Dyes. Dye. Pigm. 1991, 17, 297. [Google Scholar] [CrossRef]
- Simu, G.M.; Funar-Timofei, S.L.; Hora, S.G.; Schmidt, W.E.; Kurunczi, L.; Şişu, E.N.V.; Morin, N. Coloranţi Direcţi Derivaţi ai 4, 4′-Diaminobenzanilidei. I. Sinteza şi Studiul Izotermelor de Adsorbţie pe Bumbac ale unui Colorant Disazoic Direct cu Structură Asimetrică. Rev. Chim. 2002, 53, 826–829. [Google Scholar]
- Simu, G.M.; Hora, H.S.; Grad, M.E.; Şişu, E. Coloranţi direcţi derivaţi ai 4, 4′-diaminobenzanilidei. II. Sinteza şi evaluarea proprietăţilor tinctoriale a unor coloranţi disazoici cu structură asimetrică. Rev. Chim. 2004, 55, 873–878. [Google Scholar]
- Simu, G.M.; Chicu, S.A.; Morin, N.; Schmidt, W.; Şişu, E. Direct dyes derived from 4, 4′-diaminobenzanilide. Synthesis, characterisation and toxicity evaluation of a disazo symmetric direct dye. Turk. J. Chem. 2004, 28, 579–585. [Google Scholar]
- Simu, G.M.; Hora, S.G.; Grad, M.E.; Sisu, E.N. Direct dyes derived from 4, 4′-diaminobenzanilide. Synthesis, physicochemical properties and colouristic evaluation of some new trisazo direct dyes. Rev. Roum. Chim. 2005, 50, 113–117. [Google Scholar]
- Simu, G.M.; Muntean, S.G.; Grad, M.E.; Chicu, S.A.; Şişu, E. Coloranţi direcţi derivaţi ai 4, 4′-diaminobenzanilidei. III. Obţinerea, caracterizarea şi evaluarea toxicităţii unor noi coloranţi disazoici simetrici. Rev. Chim. 2006, 57, 1038–1040. [Google Scholar]
- Simu, G.M.; Agrigoroaie, G.; Dragomirescu, A.; Andoni, M. Synthesis, Physico-Chemical Characterisation and In Vivo Imagistic Skin Evaluation of a New Disazo Dye Containing Eco-Friendly Precursors. Rev. Chim. 2009, 60, 1309–1312. [Google Scholar]
- Simu, G.; Funar-Timofei, S.; Kurunczi, L.; Hora, S.; Schmidt, W.; Grad, M. Synthesis and Study of Adsorption Isotherms of a Trisazo Direct Dye on Cotton Fibre. Cellul. Chem. Technol. 2004, 38, 409–416. [Google Scholar]
- Simu, G.; Funar-Timofei, S.; Kurunczi, L.; Schmidt, W. A thermodynamic study of the sorption of an asymmetrical disazo direct dye on mercerized cotton. Rev. Roum. Chim. 2004, 49, 345–349. [Google Scholar]
- Simu, G.; Funar-Timofei, S.; Hora, S.; Kurunczi, L. Experimental and Theoretical Study of the Adsorption of a Trisazo Direct Dye Derived from 4, 4′-Diamino-benzanilide on a Cellulose Substrate. Molec. Cryst. Liq. Cryst. 2004, 416, 97–104. [Google Scholar] [CrossRef]
- Muntean, S.G.; Simu, G.M.; Sfarloaga, P.; Bologa, C. Study of a Trisazo Direct Dye Adsorption on Wood Fibre Using a Comparison of Different Adsorption Isotherms. Rev. Chim. 2010, 61, 70–73. [Google Scholar]
- Chicu, S.A. New insights into binary mixture toxicology: 2. Effects of reactive oxygen species generated by some carboxylic diesters on marine and freshwater organisms (VIII). Comput. Toxicol. 2023, 27, 100283. [Google Scholar] [CrossRef]
- Chicu, S.A.; Munteanu, M.; Cîtu, I.; Şoica, C.; Dehelean, C.; Trandafirescu, C.; Funar-Timofei, S.; Ionescu, D.; Simu, G.M. The Hydractinia echinata Test-System. III: Structure-Toxicity Relationship Study of Some Azo-, Azo-Anilide, and Diazonium Salt Derivatives. Molecules 2014, 19, 9798–9817. [Google Scholar] [CrossRef]
- Maglione, G.; Zinno, P.; Tropea, A.; Mussagy, C.U.; Dufossé, L.; Giuffrida, D.; Mondello, A. Microbes’ role in environmental pollution and remediation: A bioeconomy focus approach. AIMS Microbiol. 2024, 10, 723–755. [Google Scholar] [CrossRef] [PubMed]
- Frisbie, S.H.; Mitchell, E.; Abualrub, M.; Abosalem, Y.M. Calculating the Lowest Reportable Concentrations of Toxic Chemicals in the Environment. J. Appl. Math. Theor. Phys. 2015, 1, 9–13. [Google Scholar] [CrossRef]
- Jamee, R.; Siddique, R. Biodegradation of Synthetic Dyes of Textile Effluent by Microorganisms: An Environmentally and Economically Sustainable Approach. Eur. J. Microbiol. Immunol. 2019, 9, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.T.; Kim, J.; Chang, S.; Bang, D. Investigating Bio-Inspired Degradation of Toxic Dyes Using Potential Multi-Enzyme Producing Extremophiles. Microorganisms 2023, 11, 1273. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radulescu-Grad, M.E.; Popa, S.; Mosoarca, G.; Gherman, V.D. Investigation of Low-Toxicity Azoic Direct Dyes Synthesized from 4,4′-Diaminobenzanilide. Processes 2025, 13, 2505. https://doi.org/10.3390/pr13082505
Radulescu-Grad ME, Popa S, Mosoarca G, Gherman VD. Investigation of Low-Toxicity Azoic Direct Dyes Synthesized from 4,4′-Diaminobenzanilide. Processes. 2025; 13(8):2505. https://doi.org/10.3390/pr13082505
Chicago/Turabian StyleRadulescu-Grad, Maria Elena, Simona Popa, Giannin Mosoarca, and Vasile Daniel Gherman. 2025. "Investigation of Low-Toxicity Azoic Direct Dyes Synthesized from 4,4′-Diaminobenzanilide" Processes 13, no. 8: 2505. https://doi.org/10.3390/pr13082505
APA StyleRadulescu-Grad, M. E., Popa, S., Mosoarca, G., & Gherman, V. D. (2025). Investigation of Low-Toxicity Azoic Direct Dyes Synthesized from 4,4′-Diaminobenzanilide. Processes, 13(8), 2505. https://doi.org/10.3390/pr13082505