Multidimensional Analysis of Phosphorus Release Processes from Reservoir Sediments and Implications for Water Quality and Safety
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Equipment
2.3. Water and Sediment Sample Collection
2.4. Laboratory Analysis of Water and Sediment Samples
2.5. Phosphorus Pollution Assessment Methods
- (1)
- The system operates under relatively stable hydrodynamic conditions, with no significant disturbance at the sediment–water interface.
- (2)
- Within the double-membrane region, the solute concentration gradient along the diffusion direction is linear, and diffusion occurs under steady-state conditions.
- (3)
- The thickness of the diffusive boundary layer remains constant over time and is unaffected by physical disturbances.
2.6. Data Management and Analysis
3. Results
3.1. Sediment Distribution Characteristics in Reservoir Sampling Zones
3.2. Composition Characteristics of Phosphorus Fractions in Reservoir Sediments
3.3. Vertical Distribution Characteristics of Different Phosphorus Fractions in Sediments
3.4. Influence of Heavy Metals on Phosphorus Release from Sediments
3.5. Influence of Particle Size on Phosphorus Release from Sediments
3.6. Phosphorus Release per Unit Area and Assessment of Pollution Risk in Sediments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
P | Phosphorus |
TP | Total phosphorus |
IP | Inorganic phosphorus |
Fe-P | Iron-bound phosphorus |
DGT | Diffusive gradients in thin films |
Ca-P | Calcium-bound phosphorus |
Org-P | Organic phosphorus |
Fet | Total iron in sediment |
R2 | Coefficient of determination |
Zn | Metal zinc |
Fe | Iron |
Appendix A
Zone | Depth (cm) | Zn | Fe | Cd | Cr | Pb | As | Ni | Cu |
---|---|---|---|---|---|---|---|---|---|
I | 0~10 cm | 101.24 | 249.01 | 0.688 | 32.36 | 42.42 | 11.75 | 63.11 | 32.36 |
10~20 cm | 104.87 | 262.29 | 0.559 | 26.31 | 43.34 | 9.55 | 64.48 | 26.31 | |
20~30 cm | 98.61 | 218.37 | 0.698 | 32.83 | 39.96 | 11.92 | 59.45 | 32.83 | |
30~40 cm | 93.02 | 239.82 | 0.718 | 33.76 | 41.19 | 12.26 | 61.28 | 33.76 | |
II | 0~10 cm | 107.09 | 219.91 | 0.407 | 92.58 | 31.09 | 15.33 | 52.44 | 34.29 |
10~20 cm | 89.00 | 228.03 | 0.590 | 134.29 | 29.33 | 14.46 | 50.78 | 49.74 | |
20~30 cm | 99.13 | 247.59 | 0.541 | 123.10 | 32.59 | 16.07 | 47.45 | 45.59 | |
30~40 cm | 104.92 | 267.73 | 0.604 | 137.34 | 34.10 | 16.81 | 48.28 | 50.87 | |
III | 0~10 cm | 75.99 | 213.10 | 0.487 | 67.08 | 30.37 | 7.97 | 32.42 | 26.31 |
10~20 cm | 81.38 | 256.44 | 0.522 | 71.83 | 32.52 | 8.53 | 33.62 | 28.17 | |
IV | 0~10 cm | 101.24 | 249.84 | 0.86 | 84.58 | 41.71 | 14.49 | 48.59 | 30.51 |
10~20 cm | 81.96 | 227.29 | 0.696 | 68.47 | 46.01 | 15.99 | 50.34 | 24.70 |
Appendix B
References
- Ding, X.; Dong, X.; Hou, B.; Fan, G.; Zhang, X. Visual platform for water quality prediction and pre-warning of drinking water source area in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 309, 127398. [Google Scholar] [CrossRef]
- Tang, X.; Zhai, A.; Ding, X.; Zhu, Q. Safety guarantee system of drinking water source in Three Gorges Reservoir area and its application in Huangjuedu drinking water source area. Sustainability 2019, 11, 7074. [Google Scholar] [CrossRef]
- Butler, M.J.; Yellen, B.C.; Oyewumi, O.; Ouimet, W.; Richardson, J.B. Accumulation and transport of nutrient and pollutant elements in riparian soils, sediments, and river waters across the Thames River Watershed, Connecticut, USA. Sci. Total Environ. 2023, 899, 165630. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Onodera, S.; Saito, M.; Maruyama, Y.; Hayakawa, A.; Sato, T.; Aritomi, D. Vertical distribution of sediment phosphorus in Lake Hachirogata related to the effect of land reclamation on phosphorus accumulation. Environ. Technol. 2016, 37, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhao, Y.; Zhan, Y.; Wang, Y. Control of internal phosphorus release from sediments using magnetic lanthanum/iron-modified bentonite as active capping material. Environ. Pollut. 2020, 264, 114809. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, Y.; Zhan, Y.; Wu, X. Combined amendment and capping of sediment with ferrihydrite and magnetite to control internal phosphorus release. Water Res. 2023, 235, 119899. [Google Scholar] [CrossRef]
- Tu, L.; Jarosch, K.A.; Schneider, T.; Grosjean, M. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. Sci. Total Environ. 2019, 685, 806–817. [Google Scholar] [CrossRef]
- Janicka, E.; Kanclerz, J.; Wiatrowska, K. Content and speciation of phosphorus in Lake Kórnickie. Water 2022, 14, 3234. [Google Scholar] [CrossRef]
- Wang, T.; Liu, J.; Xu, S.; Qin, G.; Sun, Y.; Wang, F. Spatial distribution, adsorption/release characteristics, and environment influence of phosphorus on sediment in reservoir. Water 2017, 9, 724. [Google Scholar] [CrossRef]
- Li, H.; Cai, Y.; Song, C.; Cao, Z.; Li, J.; Qin, Z.; Zhou, Y. Comparison of phosphorus migration and transformation characteristics in sediments of lakes within the Yangtze River basin and reservoirs on the Wujiang River. J. Soils Sediments 2024, 24, 991–1001. [Google Scholar] [CrossRef]
- Hadian, M.; Mosaedi, A. Application of remote sensing technology in sediment estimating entering the dam reservoirs due to floods. Shock. Vib. 2021, 1, 4469744. [Google Scholar] [CrossRef]
- Liu, W.C. Modelling the effects of reservoir construction on tidal hydrodynamics and suspended sediment distribution in Danshuei River estuary. Environ. Model. Softw. 2007, 22, 1588–1600. [Google Scholar] [CrossRef]
- Ruiping, S.; Yixuan, H.; Yiping, Z.; Yongchao, Z.; Tuqiao, Z. Salinity distribution and sediment flux in the estuarine Xuanmen Reservoir. Water Air Soil Pollut. 2020, 231, 1–10. [Google Scholar] [CrossRef]
- Foteh, R.; Garg, V.; Nikam, B.R.; Khadatare, M.Y.; Aggarwal, S.P.; Kumar, A.S. Reservoir sedimentation assessment through remote sensing and hydrological modelling. J. Indian Soc. Remote Sens. 2018, 46, 1893–1905. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, R.; Wang, J.; He, K.; Chen, J. Fluxes and mechanisms of phosphorus release from sediments in seasonal hypoxic reservoirs: A simulation-based experimental study. J. Soils Sediments 2021, 21, 3246–3258. [Google Scholar] [CrossRef]
- Guo, P.; Lu, D.; Jiang, J.; Zhan, L.; Wang, R. Temporal-spatial distribution, environmental significance and release risks of phosphorus in the sediments of a tropical mountain’s deep drinking water reservoir in southeastern China. Chem. Speciat. Bioavailab. 2017, 29, 170–178. [Google Scholar] [CrossRef]
- Márquez-Pacheco, H.; Hansen, A.M. Internal phosphorus load in a Mexican reservoir through sediment speciation analysis. Environ. Sci. Pollut. Res. 2017, 24, 24947–24952. [Google Scholar] [CrossRef]
- Mao, Y.; He, Q.; Li, H.; Su, X.; Ai, H. Thermal structure-induced biochemical parameters stratification in a subtropical dam reservoir. Water Environ. Res. 2018, 90, 2036–2048. [Google Scholar] [CrossRef]
- Shou, C.Y.; Yue, F.J.; Zhou, B.; Fu, X.; Ma, Z.N.; Gong, Y.Q.; Chen, S.N. Chronic increasing nitrogen and endogenous phosphorus release from sediment threaten to the water quality in a semi-humid region reservoir. Sci. Total Environ. 2024, 931, 172924. [Google Scholar] [CrossRef]
- Lee, J.K.; Oh, J.M. A study on the characteristics of organic matter and nutrients released from sediments into agricultural reservoirs. Water 2018, 10, 980. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Dąbek, P.B.; Lejcuś, I. Identifying surface runoff pathways for cost-effective mitigation of pollutant inputs to drinking water reservoir. Water 2018, 10, 1300. [Google Scholar] [CrossRef]
- Holas, J.; Holas, M.; Chour, V. Pollution by phosphorus and nitrogen in water streams feeding the Zelivka drinking water reservoir. Water Sci. Technol. 1999, 39, 207–214. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S. Release mechanism and kinetic exchange for phosphorus (P) in lake sediment characterized by diffusive gradients in thin films (DGT). J. Hazard. Mater. 2017, 331, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, W.X.; Li, Q.Q.; Han, Y.J.; Ma, W.W.; Li, T.; Zhu, M.X. Characterization of iron, sulfur, and phosphorus diagenesis in muddy sediments of the South Yellow Sea using the diffusive gradients in thin films (DGT) technique. Aquat. Sci. 2023, 85, 69. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, J.; Sun, Y.; Liu, Q.; Li, S.; Li, P.; Li, Q. Study on streamflow response to land use change over the upper reaches of Zhanghe Reservoir in the Yangtze River basin. Geosci. Lett. 2020, 7, 6. [Google Scholar] [CrossRef]
- HJ 493—2009; Water Quality—Technical Regulation of the Preservation and Handling of Samples. China Environmental Science Press: Beijing, China, 2009.
- MC Almeida, I.; Oliva-Teles, M.T.; Alves, R.C.; Santos, J.; Pinho, R.S.; Silva, S.I.; Oliveira, M.B.P.P. Oilseeds from a Brazilian semi-arid region: Edible potential regarding the mineral composition. Foods 2020, 9, 229. [Google Scholar] [CrossRef]
- Capilla, X.; Bedell, J.P.; Schwartz, C.; Sterckeman, T.; Perrodin, Y.; Morel, J.L. The effects of drying temperature on the extractability of metals from dredged sediments. Soil Sediment Contam. 2007, 16, 383–396. [Google Scholar] [CrossRef]
- Loh, P.S.; Ying, C.Y.; Alnoor, H.I.M.; Huang, X.R.; Lou, Z.H.; Chen, X.G.; Jin, A.M. Comparative study on the elucidation of sedimentary phosphorus species using two methods, the SMT and SEDEX methods. J. Anal. Methods Chem. 2020, 1, 8548126. [Google Scholar] [CrossRef]
- Pardo, P.; Rauret, G.; López-Sánchez, J.F. Shortened screening method for phosphorus fractionation in sediments: A complementary approach to the standards, measurements and testing harmonised protocol. Anal. Chim. Acta 2004, 508, 201–206. [Google Scholar] [CrossRef]
- GBW 07317-GSD-13; Water Quality Standard Reference Material. China Standards Press: Beijing, China. Available online: http://www.bzw580.com/site/products/id/10084 (accessed on 19 June 2025).
- Min, W.; Sun, X.M.; Huang, S.L.; Tang, X.Q.; Scholz, M. Laboratory analyses of nutrient release processes from Haihe River sediment. Int. J. Sediment Res. 2012, 27, 61–72. [Google Scholar] [CrossRef]
- Rodríguez-Uribe, M.C.; Núñez-Cornú, F.J.; Chávez-Dagostino, R.M.; Trejo-Gómez, E. Granulometric analysis of shallow vents sediments at Banderas Bay (Mexico). J. Mar. Sci. Eng. 2020, 8, 342. [Google Scholar] [CrossRef]
- Yang, H.; Chang, Y.; Dong, X.; Wang, S.; Che, F.; Huang, W. The coupled effect of sediment resuspension and microbiota on phosphorus release and transformation in a simulated aquatic ecosystem. J. Water Process Eng. 2024, 57, 104653. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, H.; Ma, Z.; Yao, Z.; Duan, P.; Ji, G. The release of endogenous nitrogen and phosphorus in the Danjiangkou Reservoir: A double-membrane diffusion model analysis. J. Sens. 2021, 1, 6610178. [Google Scholar] [CrossRef]
- Bunke, D.; Leipe, T.; Moros, M.; Morys, C.; Tauber, F.; Virtasalo, J.J.; Arz, H.W. Natural and anthropogenic sediment mixing processes in the south-western Baltic Sea. Front. Mar. Sci. 2019, 6, 677. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, G.S.; Kim, D.C.; Bae, S.H.; Kim, S.P. Physical properties and geoacoustic provinces of surficial sediments in the southwestern part of the Ulleung Basin in the East Sea. Quat. Int. 2017, 459, 35–44. [Google Scholar] [CrossRef]
- Chen, C.; Deng, W.; Xu, X.; He, J.; Wang, S.; Jiao, L.; Zhang, Y. Phosphorus adsorption and release characteristics of surface sediments in Dianchi Lake, China. Environ. Earth Sci. 2015, 74, 3689–3700. [Google Scholar] [CrossRef]
- Adhikari, P.L.; White, J.R.; Maiti, K.; Nguyen, N. Phosphorus speciation and sedimentary phosphorus release from the Gulf of Mexico sediments: Implication for hypoxia. Estuar. Coast. Shelf Sci. 2015, 164, 77–85. [Google Scholar] [CrossRef]
- Tammeorg, O.; Nürnberg, G.K.; Horppila, J.; Tammeorg, P.; Jilbert, T.; Nõges, P. Linking sediment geochemistry with catchment processes, internal phosphorus loading and lake water quality. Water Res. 2024, 263, 122157. [Google Scholar] [CrossRef]
- Peng, C.; Huang, Y.; Yan, X.; Jiang, L.; Wu, X.; Zhang, W.; Wang, X. Effect of overlying water pH, temperature, and hydraulic disturbance on heavy metal and nutrient release from drinking water reservoir sediments. Water Environ. Res. 2021, 93, 2135–2148. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Tan, X.B.; Wei, L.L.; Yu, S.M.; Wu, D.J. Comparison between the lower Nansi Lake and its inflow rivers in sedimentary phosphorus fractions and phosphorus adsorption characteristics. Environ. Earth Sci. 2012, 66, 1569–1576. [Google Scholar] [CrossRef]
- Xing, X.; Chen, M.; Wu, Y.; Tang, Y.; Li, C. The decomposition of macrozoobenthos induces large releases of phosphorus from sediments. Environ. Pollut. 2021, 283, 117104. [Google Scholar] [CrossRef]
- Liu, J.J.; Diao, Z.H.; Xu, X.R.; Xie, Q. Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Sci. Total Environ. 2019, 666, 894–901. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; Yang, B.; Zhu, D.; Ning, Z.; Lu, D.; Kang, Z. Biogeochemistry of phosphorus species in water and sediments and sedimentary phosphorus release potential from a eutrophic estuary and adjacent bay. Mar. Environ. Res. 2025, 208, 107134. [Google Scholar] [CrossRef]
- Weng, H.; Sun, X.; Chen, J.; Chen, J.; Chen, L.; Chen, X.; Qin, Y. Potential effect of sedimentary iron-phosphorus accumulation on frequent algal bloom in the Pearl River Estuary. Sci. China Ser. D Earth Sci. 2007, 50, 453–461. [Google Scholar] [CrossRef]
- Emsens, W.J.; Aggenbach, C.J.; Smolders, A.J.; Zak, D.; van Diggelen, R. Restoration of endangered fen communities: The ambiguity of iron–phosphorus binding and phosphorus limitation. J. Appl. Ecol. 2017, 54, 1755–1764. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Wu, Y.; Bol, R.; Wu, Y.; Sun, H.; Bing, H. Fine sediment particle microscopic characteristics, bioavailable phosphorus and environmental effects in the world largest reservoir. Environ. Pollut. 2020, 265, 114917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ouyang, W.; Lin, C.; Zhu, W.; Critto, A.; Tysklind, M.; Wu, H. Higher fine particle fraction in sediment increased phosphorus flux to estuary in restored Yellow River Basin. Environ. Sci. Technol. 2021, 55, 6783–6790. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Gao, B.; Wang, H.; Hou, W. Effects of pH, temperature and hydraulic disturbance on nitrogen release from sediments in the Sunxi River, Three Gorges Reservoir Area, China. PeerJ 2025, 13, 19161. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, J.; Cao, T.; Ji, X.; Yan, J.; Ding, S.; Chen, N. Seasonal hypoxia enhances sediment iron-bound phosphorus release in a subtropical river reservoir. Sci. Total Environ. 2024, 936, 173261. [Google Scholar] [CrossRef]
- Puttonen, I.; Lukkari, K.; Miettunen, E.; Ropponen, J.; Tuomi, L. Estimating internal phosphorus loading for a water quality model using chemical characterisation of sediment phosphorus and contrasting oxygen conditions. Sci. Total Environ. 2024, 942, 173717. [Google Scholar] [CrossRef]
Zone | Sampling Site | Water Surface Area of the Sampling Region (km2) | Sediment Sampling | Water Sampling | ||
---|---|---|---|---|---|---|
Depth (cm) | Sampling Frequency | Depth (cm) | Sampling Frequency | |||
Sampling Zone I | ZH-1 | 0.124 | 40 | 3 | 3 | 3 |
ZH-2 | 40 | 3 | 3 | 3 | ||
Sampling Zone II | ZH-3 | 0.131 | 40 | 3 | 3 | 3 |
ZH-4 | 40 | 3 | 3 | 3 | ||
Sampling Zone III | ZH-5 | 0.152 | 20 | 3 | 3 | 3 |
ZH-6 | 20 | 3 | 3 | 3 | ||
Sampling Zone IV | ZH-7 | 0.126 | 15 | 3 | 3 | 3 |
ZH-8 | 15 | 3 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, J.; Miao, T.; Zhou, N.; Yu, T.; Zhang, Y.; He, C.; Shen, L.; Zhou, C.; Huang, Y. Multidimensional Analysis of Phosphorus Release Processes from Reservoir Sediments and Implications for Water Quality and Safety. Processes 2025, 13, 2495. https://doi.org/10.3390/pr13082495
Zhang H, Zhou J, Miao T, Zhou N, Yu T, Zhang Y, He C, Shen L, Zhou C, Huang Y. Multidimensional Analysis of Phosphorus Release Processes from Reservoir Sediments and Implications for Water Quality and Safety. Processes. 2025; 13(8):2495. https://doi.org/10.3390/pr13082495
Chicago/Turabian StyleZhang, Hang, Junqi Zhou, Teng Miao, Nianlai Zhou, Ting Yu, Yi Zhang, Chen He, Laiyin Shen, Chi Zhou, and Yu Huang. 2025. "Multidimensional Analysis of Phosphorus Release Processes from Reservoir Sediments and Implications for Water Quality and Safety" Processes 13, no. 8: 2495. https://doi.org/10.3390/pr13082495
APA StyleZhang, H., Zhou, J., Miao, T., Zhou, N., Yu, T., Zhang, Y., He, C., Shen, L., Zhou, C., & Huang, Y. (2025). Multidimensional Analysis of Phosphorus Release Processes from Reservoir Sediments and Implications for Water Quality and Safety. Processes, 13(8), 2495. https://doi.org/10.3390/pr13082495