Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Gibbs Energy Minimization (minG) Model
2.2. Thermodynamic Approach—Mass Balance of the Reactive System
2.3. Resolution of the Model and Conditions for Conducting the Thermodynamic Analysis
3. Results and Discussion
3.1. Model Validation
3.2. Temperature Effects
3.3. Pressure Effects
3.4. Inlet Composition Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Symbols
Number of atoms of element i in component m | |
Antoine equation parameters for pure component i | |
B | Second coefficient of the virial equation |
Bij | Second coefficient of the virial equation for mixtures |
Cpi | Heat capacity of component i |
Cpa, Cpb, Cpc, and Cpd | Heat capacity parameters for pure components |
Fugacity coefficient of component i | |
Fugacity coefficient of component i in the mixture | |
R | Universal gas constant |
g | Gas phase |
G | Gibbs energy |
Fugacity coefficient of component i in phase k | |
Fugacity coefficient of component i in a reference state | |
Enthalpy of component i in phase k | |
Enthalpy of component i in the standard phase | |
Total enthalpy | |
l1 | Liquid phase one |
l2 | Liquid phase two |
T | Temperature |
P | Pressure |
s | Solid phase |
Number of moles of component i in phase k | |
Number of moles in the standard phase | |
xi | Liquid phase molar composition of component i |
yi | Gas phase molar composition of component i |
NC | Number of components |
NE | Number of elements |
Chemical potential of component i in phase k | |
yi | Molar fraction of gas phase |
Stoichiometric coefficient of component i in reaction j | |
Extent of reaction j | |
Activity coefficient of component i | |
Conversion of component i | |
Number of moles of component i in the feed stream | |
Number of moles of component i in the output stream | |
Number of moles of water in the output stream | |
Number of moles of hydrogen in the feed stream | |
Number of moles of hydrogen in the output stream |
References
- IEA. Total energy supply (TES) by source, World 1971–2022. In IEA World Energy Balances Database 2023; IEA: Paris, France, 2024; Available online: https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances (accessed on 5 May 2025).
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for biooil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Khurshid, H.; Mohammed, B.S.; Al-Yacouby, A.M.; Liew, M.S.; Zawawi, N.A.W.A. Analysis of hybrid offshore renewable energy sources for power generation: A literature review of hybrid solar, wind, and waves energy systems. Dev. Built Environ. 2024, 19, 100497. [Google Scholar] [CrossRef]
- Schanke, D.; Lian, P.; Eri, S.; Rytter, E.; Sannaes, B.H.; Kinnari, K.J. Optimization of Fischer–Tropsch reactor design and operation in GTL plant. Stud. Surf. Sci. Catal. 2001, 136, 239–244. [Google Scholar] [CrossRef]
- Alsudani, F.T.; Saeed, A.N.; Ali, N.S.; Majdi, H.S.; Salih, H.G.; Albayati, T.M.; Saady, N.M.C.; Shakor, Z.M. Fisher–Tropsch Synthesis for Conversion of Methane into Liquid Hydrocarbons through Gas-to-Liquids (GTL) Process: A Review. Methane 2023, 2, 24–43. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.R. Production of synthesis gas. Catal. Today 1993, 18, 305–324. [Google Scholar] [CrossRef]
- Knottenbelt, C. Mossgas “gas-to-liquid” diesel fuels—An environmentally friendly option. Catal. Today 2002, 71, 437–445. [Google Scholar] [CrossRef]
- Hu, J.; Yu, F.; Lu, Y. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion. Catalysts 2012, 2, 303–326. [Google Scholar] [CrossRef]
- Eilers, J.; Posthuma, S.A.; Sie, S.T. The Shell middle distillate synthesis process (SMDS). Catal. Lett. 1990, 7, 253–269. [Google Scholar] [CrossRef]
- Gill, S.S.; Tsolakis, A.; Dearn, K.D.; Rodrıguez-Fernandez, J. Combustion characteristics and emissions of Fischer Tropsch diesel fuels in IC engines. Prog. Energy Combust. Sci. 2011, 37, 503–523. [Google Scholar] [CrossRef]
- Farias, F.E.M.; Sales, F.G.; Fernandes, F.A.N. Effect of operating conditions and potassium content on Fischer Tropsch liquid products produced by potassium promoted iron catalysts. J. Nat. Gas Chem. 2008, 17, 175–178. [Google Scholar] [CrossRef]
- Jess, A.; Kern, C. Significance of Pressure Drop, Changing Molar Flow, and Formation of Steam in the Accurate Modeling of a Multi-Tubular Fischer–Tropsch Reactor with Cobalt as Catalyst. Processes 2023, 11, 3281. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Z. Catalytic Conversion of Biomass into Chemicals and Fuels over Magnetic Catalysts. ACS Catal. 2016, 6, 326–338. [Google Scholar] [CrossRef]
- Lin, T.; An, L.; Yu, F.; Gong, K.; Yu, H.; Wang, C.; Sun, Y.; Zhong, L. Advances in Selectivity Control for Fischer–Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal. 2022, 12, 12092–12112. [Google Scholar] [CrossRef]
- Jahangiri, H.; Bennett, J.; Mahjoubi, P.; Wilson, K.; Gua, S. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 2014, 4, 2210–2229. [Google Scholar] [CrossRef]
- Suo, Y.; Yao, Y.; Zhang, Y.; Xing, S.; Yuan, Z. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. J. Ind. Eng. Chem. 2022, 115, 92–119. [Google Scholar] [CrossRef]
- Steynberg, A.P.; Espinoza, R.L.; Jager, B.; Vosloo, A.C. High temperature Fischer Tropsch synthesis in commercial practice. Appl. Catal. A Gen. 1999, 186, 41–48. [Google Scholar] [CrossRef]
- Dry, M.E. The Fischer Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Espinoza, R.L.; Steynberg, A.P.; Jager, B.; Vosloo, A.C. Low temperature Fischer Tropsch synthesis from a Sasol Perspective. Appl. Catal. A Gen. 1999, 186, 13–26. [Google Scholar] [CrossRef]
- Borg, Ø.; Hammer, N.; Enger, B.C.; Myrstad, R.; Lindvåg, O.A.; Eri, S.; Skagseth, T.H.; Rytter, E. Effect of biomass-derived synthesis gas impurity elements on cobalt Fischer–Tropsch catalyst performance including in situ sulphur and nitrogen addition. J. Catal. 2011, 279, 163–173. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Thermodynamic characterization of hydrocarbon synthesis from syngas using Fischer-Tropsch synthesis reaction. Chem. Eng. Trans. 2015, 43, 1831–1836. [Google Scholar] [CrossRef]
- Pitzer, K.S.; Lippmann, D.Z.; Curl, R.F.; Huggins, C.M.; Petersen, D.E. The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization. J. Am. Chem. Soc. 1955, 77, 3433–3440. [Google Scholar] [CrossRef]
- Tsonopoulos, C. An empirical correlation of second virial coefficients. AIChE J. 1974, 20, 263–272. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Comparison of several glycerol reforming methods for hydrogen and syngas production using Gibbs energy minimization. Int. J. Hydrogen Energy 2014, 39, 17969–17984. [Google Scholar] [CrossRef]
- Dias, I.M.; Mourão, L.C.; Souza, G.B.M.; Santos-Junior, J.M.; Freitas, A.C.D.; Pavão, L.; Miguélez, J.R.P.; Abelleira-Pereira, J.M.; Jarana, B.G.; Cardozo-Filho, L.; et al. Supercritical water valorization of a model wastewater containing anxiolytic and antidepressant drugs: Experimental and thermodynamic assessment. J. Water Process Eng. 2024, 66, 105961. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Constant, A.G.; Bechara, R.; Zholobenko, V.L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas. J. Catal. 2002, 206, 230–241. [Google Scholar] [CrossRef]
- Marvast, M.A.; Sohrabi, M.; Zarrinpashne, S.; Baghmisheh, G. Fischer Tropsch synthesis: Modeling and performance study for Fe-HZSM5 bifunctional catalyst. Chem. Eng. Technol. 2005, 28, 78–86. [Google Scholar] [CrossRef]
- Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids, 4th ed.; Mc Graw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Rossi, C.C.R.S.; Berezuk, M.E.; Cardozo-Filho, L.; Guirardello, R. Simultaneous calculation of chemical and phase equilibria using convexity analysis. Comput. Chem. Eng. 2011, 35, 1226–1237. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Oxidative reforming of methane for hydrogen and syngas production: Thermodynamic Equilibrium analysis. J. Nat. Gas Chem. 2012, 21, 571–580. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Supercritical Water Gasification of glucose and cellulose for hydrogen and syngas production. Chem. Eng. Trans. 2012, 27, 361–366. [Google Scholar] [CrossRef]
- Raje, A.; Inga, J.R.; Davis, B.H. Fischer Tropsch synthesis: Process considerations based on performance of iron based catalysts. Fuel 1997, 76, 273–280. [Google Scholar] [CrossRef]
- Steynberg, A.P.; Nel, W.U.; Desmet, M.A. Large scale production of high value hydrocarbons using Fischer-Tropsch technology. Stud. Surf. Sci. Catal. 2004, 147, 37–42. [Google Scholar] [CrossRef]
- Fernandes, F.A.N. Modeling and product grade optimization of Fischer-Tropsch synthesis in a slurry reactor. Ind. Eng. Chem. Res. 2006, 45, 1047–1057. [Google Scholar] [CrossRef]
- Rafiq, M.H.; Jakobsen, H.A.; Schmid, R.; Hustad, J.E. Experimental studies and modeling of a fixed bed reactor for Fischer–Tropsch synthesis using biosyngas. Fuel Process. Technol. 2011, 92, 893–907. [Google Scholar] [CrossRef]
- Anderson, R.B.; Friedel, R.A.; Storch, H.H. Fischer–Tropsch Reaction mechanism involving stepwise growth of carbon chain. J. Chem. Phys. 1951, 19, 313–319. [Google Scholar] [CrossRef]
- Amin, M.; Usman, M.; Kella, T.; Khan, W.U.; Khan, I.A.; Hoon, L.K. Issues and challenges of Fischer–Tropsch synthesis catalysts. Front. Chem. 2024, 12, 1462503. [Google Scholar] [CrossRef] [PubMed]
- Rane, S.; Borg, Ø.; Yang, J.; Rytter, E.; Holmen, A. Effect of alumina phases on hydrocarbon selectivity in Fischer–Tropsch synthesis. Appl. Catal. A Gen. 2010, 388, 160–167. [Google Scholar] [CrossRef]
- Pour, A.N.; Shahri, S.M.K.; Zamani, Y.; Irani, M.; Tehrani, S. Deactivation studies of bifunctional Fe-HZSM5 catalyst in Fischer-Tropsch process. J. Nat. Gas Chem. 2008, 17, 242–248. [Google Scholar] [CrossRef]
- Horáček, J. Fischer–Tropsch synthesis, the effect of promoters, catalyst support, and reaction conditions selection. Monatsh Chem. 2020, 151, 649–675. [Google Scholar] [CrossRef]
- Fujimoto, K.; Kajioka, M. Hydrogenation of carbon monoxide over solid catalysts dispersed in the liquid medium. I. Slurry phase Fischer-Tropsch synthesis with supported ruthenium catalysts. Bull. Chem. Soc. Jap. 1987, 60, 2237–2243. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Q.; Guo, J.; Ru, B.; Zhu, L. Improved Fischer Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts. Fuel 2013, 108, 597–603. [Google Scholar] [CrossRef]
- Dagle, R.A.; Lizarazo-Adarme, J.A.; Dagle, V.L.; Gray, M.J.; White, J.F.; King, D.L.; Palo, D.R. Syngas conversion to gasoline range hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 composite catalyst system. Fuel Process. Technol. 2014, 123, 65–74. [Google Scholar] [CrossRef]
- Pirola, C.; Di Fronzo, A.; Galli, F.; Bianchi, C.L.; Comazzi, A.; Manenti, F. Biosyngas conversion by Fischer Tropsch synthesis: Experimental results and multi scale simulation of PBR with high Fe loaded supported catalysts. Chem. Eng. Trans. 2014, 37, 595–600. [Google Scholar] [CrossRef]
- Tavakoli, A.; Sohrabi, M.; Kargari, A. Application of Anderson–Schulz–Flory (ASF) equation in the product distribution of slurry phase FT synthesis with nanosized iron catalysts. Chem. Eng. J. 2008, 136, 358–363. [Google Scholar] [CrossRef]
- Bochniak, D.J.; Subramaniam, B. Fischer Tropsch synthesis in near critical n-hexane: Pressure tuning effects. AIChE J. 1998, 44, 1889–1896. [Google Scholar] [CrossRef]
- Das, T.K.; Jacobs, G.; Patterson, P.M.; Conner, W.A.; Li, J.; Davis, B.H. Fischer Tropsch synthesis: Characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel 2003, 82, 805–815. [Google Scholar] [CrossRef]
- Chen, J.; Yang, C. Thermodynamic Equilibrium Analysis of Product Distribution in the Fischer−Tropsch Process Under Different Operating Conditions. ACS Omega 2019, 4, 22237–22244. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lee, T. Influence of the feed gas composition on the Fischer-Tropsch synthesis in commercial operations. J. Nat. Gas Chem. 2007, 16, 329–341. [Google Scholar] [CrossRef]
Product | (%) |
---|---|
Methane | 7 |
Olefins C2–C4 | 24 |
Paraffins C2–C4 | 6 |
Gasoline | 36 |
Middle distillates | 12 |
Waxes | 9 |
Water-soluble oxygenates | 6 |
Main Non-Acidic Chemicals | % Mass |
---|---|
Acetaldehyde | 3 |
Acetone | 10 |
Ethanol | 55 |
i-Propanol | 3 |
n-Propanol | 13 |
i-Butanol | 3 |
n-Butanol | 4 |
Acids | % Mass |
Acetic acid | 70 |
Propionic acid | 16 |
Butyric acid | 9 |
Valeric acid and higher | 5 |
Compound | Symbol | Compound | Symbol |
---|---|---|---|
Carbon monoxide | CO | n-Decane | C10 |
Carbon dioxide | CO2 | n-Undecane | C11 |
Water | H2O | n-Dodecane | C12 |
Hydrogen | H2 | n-Tridecane | C13 |
Ethane | C2 | n-Tetradecane | C14 |
Propane | C3 | n-Pentadecane | C15 |
n-Butane | C4 | n-Hexadecane | C16 |
n-Pentane | C5 | n-Heptadecane | C17 |
n-Hexane | C6 | n-Octadecane | C18 |
n-Heptane | C7 | n-Nonadecane | C19 |
n-Octane | C8 | n-Eicosane | C20 |
n-Nonane | C9 | - | - |
GHSV (Nml.gcat−1.h−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
37 | 74 | 111 | 148 | ||||||
minG Model | Exp. | 2D Model | Exp. | 2D Model | Exp. | 2D Model | Exp. | 2D Model | |
CO conversion (%) | 99.999 | 90 | 91 | 68 | 68 | 40 | 50 | 36 | 39 |
H2 Conversion (%) | 99.948 | 92 | 93 | 71 | 70 | 43 | 52 | 40 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos Junior, J.M.; dos Reis, L.P.; Vidotti, A.D.S.; de Freitas, A.C.D.; Mariano, A.P.; Guirardello, R. Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production. Processes 2025, 13, 2373. https://doi.org/10.3390/pr13082373
dos Santos Junior JM, dos Reis LP, Vidotti ADS, de Freitas ACD, Mariano AP, Guirardello R. Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production. Processes. 2025; 13(8):2373. https://doi.org/10.3390/pr13082373
Chicago/Turabian Styledos Santos Junior, Julles Mitoura, Lucas Pinheiro dos Reis, Annamaria Dória Souza Vidotti, Antonio Carlos Daltro de Freitas, Adriano Pinto Mariano, and Reginaldo Guirardello. 2025. "Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production" Processes 13, no. 8: 2373. https://doi.org/10.3390/pr13082373
APA Styledos Santos Junior, J. M., dos Reis, L. P., Vidotti, A. D. S., de Freitas, A. C. D., Mariano, A. P., & Guirardello, R. (2025). Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production. Processes, 13(8), 2373. https://doi.org/10.3390/pr13082373