Production Decline Rate Prediction for Offshore High Water-Cut Reservoirs by Integrating Moth–Flame Optimization with Extreme Gradient Boosting Tree
Abstract
1. Introduction
2. Principle of the MFO-XGBoost Method
2.1. XGBoost Algorithm
2.2. Moth–Flame Optimization Algorithm
2.3. Workflow of the MFO-XGBoost Model for Predicting Production Decline Rate in Offshore High Water-Cut Reservoirs
2.4. Evaluation Metrics
3. Application Example
3.1. Overview of the Studied Oilfield Block
3.2. Data Acquisition and Processing
3.3. MFO-XGBoost Model Training and Validation
3.4. Comparison of Prediction Performance of Different Models
4. Conclusions
5. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
RF | Random forest |
DT | Decision tree regression |
XGBoost | Extreme gradient boosting tree |
MFO | Moth–flame optimization |
GA | Genetic algorithm |
MFO-XGBoost | Integrating moth–flame optimization with extreme gradient boosting tree |
PSO-XGBoost | Integrating particle swarm optimization with extreme gradient boosting tree |
Bayesian-XGBoost | Integrating Bayesian optimization with extreme gradient boosting tree |
GRA | Grey relational analysis |
SHAP | Shapley additive explanations |
MDI | Mean decrease impurity |
MAE | Mean absolute error |
MSE | Mean squared error |
RMSE | Root mean squared error |
ML | Machine learning |
References
- Wang, R.; Xue, L.L.; Dang, D.Q.; Gao, W.J. Establishment and application of a general formula for production decline equations. Acta Pet. Sin. 2023, 44, 1693–1705. [Google Scholar]
- Men, H.W.; Zhang, J.; Wei, H.J.; Zhao, Y.; Gao, W.J. Establishment and application of a pan-functional mathematical model for oil and gas reservoir production cycles. Xinjiang Pet. Geol. 2023, 44, 365–374. [Google Scholar]
- Wang, X.; Cai, B.; Li, S. History and prospect of reservoir stimulation technology for oil and gas reservoirs in China National Petroleum Corporation. Pet. Drill. Tech. 2023, 45, 67–75. [Google Scholar]
- Zhao, G.Z.; Li, C.L.; He, X. Variation law of development indicators in the extra-high water-cut stage of continental sandstone oil reservoirs. Pet. Geol. Oilfield Dev. Daqing 2023, 42, 50–58. [Google Scholar]
- Yu, Q.T. Production decline law of waterflooded oilfields. Pet. Explor. Dev. 1993, 20, 72–80. [Google Scholar]
- Ji, B.Y. Seepage flow theory basis of production decline equation. Acta Pet. Sin. 1995, 16, 86–91. [Google Scholar]
- Gao, W.J.; Wang, Z.J. Discrimination theory basis and application of production decline equation. Xinjiang Pet. Geol. 1999, 20, 518–521. [Google Scholar]
- Arps, J.J. Analysis of decline curves. Trans. AIME 1945, 160, 228–247. [Google Scholar] [CrossRef]
- Gentry, R.W. Decline-curve analysis. J. Pet. Technol. 1972, 24, 38–41. [Google Scholar] [CrossRef]
- Yu, Q.T. The making and application of generalized decline curve standard charts. Pet. Explor. Dev. 1990, 17, 84–87. [Google Scholar]
- Yu, Q.T. Study on the characteristics of seven decline curves. Xinjiang Pet. Geol. 1994, 15, 49–56. [Google Scholar]
- Liu, W.F.; Zhang, X.Y.; Sheng, S.Y.; Wang, K.; Duan, Y.G.; Wei, M.Q. Research on a new combined method for production decline analysis of tight oil reservoirs: A case study of Mahu tight oil reservoir. Pet. Reserv. Eval. Dev. 2021, 11, 911–916. [Google Scholar]
- Wang, Q.; Zeng, J.C.; Liang, B. Research and application of production decline law based on Arps algorithm. Well Logging Eng. 2021, 32, 142–146. [Google Scholar]
- Huang, S.; Peng, C.Z. Analysis of production decline factors based on grey relational analysis. Pet. Reserv. Eval. Dev. 2018, 8, 33–35. [Google Scholar]
- Li, C.; Wang, Y.; Li, W.Z. Application of type A water drive curve and production decline method in Bohai B oilfield. Complex Hydrocarb. Reserv. 2023, 16, 100–103. [Google Scholar]
- Cao, Q.; Banerjee, R.; Gupta, S.; Li, J.; Zhou, W.; Jeyachandra, B. Data driven production forecasting using machine learning. In Proceedings of the SPE Argentina Exploration and Production of Unconventional Resources Symposium, Buenos Aires, Argentina, 1–3 June 2016; p. D021S006R001. [Google Scholar]
- Li, Y.; Han, Y. Decline curve analysis for production forecasting based on machine learning. In Proceedings of the SPE Symposium: Production Enhancement and Cost Optimisation, Kuala Lumpur, Malaysia, 7–8 November 2017; p. D011S004R003. [Google Scholar]
- Johan, D.C.; Shukla, P.; Shrivastava, K.; Koley, M. Data-Driven Completion Optimization for Unconventional Assets. In Proceedings of the 11th Unconventional Resources Technology Conference, Denver, CO, USA, 13–15 June 2023. [Google Scholar] [CrossRef]
- Kong, B.; Chen, S.; Chen, Z.; Zhou, Q. Bayesian probabilistic dual-flow-regime decline curve analysis for complex production profile evaluation. J. Pet. Sci. Eng. 2020, 195, 107623. [Google Scholar] [CrossRef]
- Kong, B.; Chen, Z.; Chen, S.; Qin, T. Machine learning-assisted production data analysis in liquid-rich Duvernay formation. J. Pet. Sci. Eng. 2021, 200, 108377. [Google Scholar] [CrossRef]
- Li, D.; You, S.; Liao, Q.; Sheng, M.; Tian, S. Prediction of Shale Gas production by hydraulic fracturing in Changning Area using machine learning algorithms. Transp. Porous Media 2023, 149, 373–388. [Google Scholar] [CrossRef]
- Lu, C.; Jiang, H.; Yang, J.; Wang, Z.; Zhang, M.; Li, J. Shale oil production prediction and fracturing optimization based on machine learning. J. Pet. Sci. Eng. 2022, 217, 110900. [Google Scholar] [CrossRef]
- Alimohammadi, H.; Rahmanifard, H.; Chen, N. Multivariate time series modelling approach for production forecasting in unconventional resources. In Proceedings of the SPE Annual Technical Conference and Exhibition, Virtual, 26–29 October 2020. [Google Scholar] [CrossRef]
- Amr, S.; Ashhab, E.; El-Saban, H.; Schietinger, M.; Caile, P.; Kaheel, C.; Rodriguez, A.L. A large-scale study for a multi-basin machine learning model predicting horizontal well production. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Vyas, A. Application of machine learning in predicting oil rate decline for Bakken shale oil wells. Sci. Rep. 2022, 12, 16154. [Google Scholar] [CrossRef] [PubMed]
- Chaikine, I. Machine Learning Applications for Production Prediction and Optimization in Multistage Hydraulically Fractured Wells; University of Calgary: Calgary, AB, Canada, 2020; Available online: https://prism.ucalgary.ca/bitstream/handle/1880/112817/ucalgary_2020_chaikine_ilia.pdf?sequence=2&isAllowed=y (accessed on 30 April 2025).
- Chaikine, I.; Gates, I.D. A machine learning model for predicting multi-stage horizontal well production. J. Pet. Sci. Eng. 2021, 198, 108133. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Gao, P.; Zhou, J. Prediction of shale gas horizontal wells productivity after volume fracturing using machine learning–an LSTM approach. Pet. Sci. Technol. 2022, 40, 1861–1877. [Google Scholar] [CrossRef]
- Gao, Q.; Liao, L.; Yang, S. Application of artificial intelligence technology in unconventional natural gas production forecasting. In Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Applications II; SPIE: Bellingham, WA, USA, 2022; p. 291. [Google Scholar] [CrossRef]
- Agwu, O.E.; Alatefi, S.; Azim, R.A.; Alkouh, A. Applications of Artificial Intelligence Algorithms in Artificial Lift Systems: A Critical Review. Flow Meas. Instrum. 2024, 97, 102613. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Ewees, A.A.; Abualigah, L.; Elaziz, M.A. MTV-MFO: Multi-Trial Vector-Based Moth-Flame Optimization Algorithm. Symmetry 2021, 13, 2388. [Google Scholar] [CrossRef]
- Okere, C.J.; Sheng, J.J.; Ikpeka, P.M. Which Offers Greater Techno-Economic Potential: Oil or Hydrogen Production from Light Oil Reservoirs? Geosciences 2025, 15, 214. [Google Scholar] [CrossRef]
- Algwil, A.R.A.; Khalifa, W. An Enhanced Moth Flame Optimization Extreme Learning Machines Hybrid Model for Predicting CO2 Emissions. Sci. Rep. 2025, 15, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Ning, Y.; Schumann, H.; Jin, G. Application of Data Mining to Small Data Sets: Identification of Key Production Drivers in Heterogeneous Unconventional Resources. SPE Reserv. Eval. Eng. 2023, 26, 411–421. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Reservoir Oil Saturation Pressure | 6.890–13.720 MPa |
Reservoir Oil Viscosity | 9.1–944.0 mPa·s |
Average Relative Density of Natural Gas Samples | 0.769 |
Pressure Coefficient | 1.00 |
Pressure Gradient | 0.977 MPa/100 m |
Temperature Gradient | 3.0 °C/100 m |
Count | Mean | Std | Min | 25% | 50% | 75% | Max | |
---|---|---|---|---|---|---|---|---|
Vertical Thickness/m | 209 | 65.112 | 23.115 | 6.5 | 50.7 | 64.312 | 83.8 | 135.3 |
Perforated Interval/m | 209 | 55.824 | 21.337 | 2.4 | 42 | 54.987 | 70.8 | 118.8 |
Porosity/% | 209 | 26.154 | 1.951 | 20.274 | 25.119 | 26.225 | 27.326 | 30.479 |
Oil Saturation/% | 209 | 66.516 | 7.054 | 48.874 | 63.042 | 66.758 | 71.302 | 84.1 |
Shale Content/% | 209 | 11.785 | 2.32 | 6.168 | 10.376 | 11.591 | 12.912 | 19.813 |
Permeability/mD | 209 | 942.283 | 335.933 | 293.048 | 711.526 | 943.44 | 1103.695 | 2256.5 |
Crude Oil Viscosity/(50 °C) mPa·s | 209 | 175.938 | 143.768 | 48.21 | 80.98 | 124.8 | 193.4 | 830.8 |
Mobility/(mD/(mPa·s)) | 209 | 7.942 | 4.641 | 1.056 | 4.426 | 7.158 | 10.189 | 23.278 |
Reservoir Flow Coefficient/(mD/(mPa·s)) | 209 | 450.779 | 333.069 | 6.372 | 211.434 | 395.233 | 581.682 | 1622.779 |
Deviation Angle/° | 209 | 46.201 | 16.94 | 0 | 35.211 | 47.027 | 55.087 | 89.01 |
Production Decline Rate | 209 | 0.1 | 0.06 | 0.026 | 0.06 | 0.081 | 0.123 | 0.304 |
Hyperparameter | Value |
---|---|
n_estimators | 159 |
learning_rate | 0.065 |
max_depth | 3 |
gamma | 0.001 |
subsample | 0.527 |
colsample_bytree | 0.711 |
DT | RF | XGBoost | MFO-XGBoost | ||
---|---|---|---|---|---|
MAE | 0.0216 | 0.0287 | 0.0109 | 0.0101 | |
Training Dataset | MSE | 0.0011 | 0.0014 | 0.0002 | 0.0002 |
RMSE | 0.0328 | 0.0379 | 0.014 | 0.0134 | |
R2 | 0.7261 | 0.6336 | 0.9503 | 0.9542 | |
MAE | 0.0225 | 0.0161 | 0.0141 | 0.011 | |
Test Dataset | MSE | 0.0008 | 0.0004 | 0.0004 | 0.0002 |
RMSE | 0.0285 | 0.0211 | 0.0191 | 0.0146 | |
R2 | 0.6668 | 0.8174 | 0.8503 | 0.9128 |
MFO-XGBoost | Bayesian-XGBoost | PSO-XGBoost | ||
---|---|---|---|---|
Training Dataset | MAE | 0.0101 | 0.0144 | 0.0055 |
MSE | 0.0002 | 0.0004 | 0.0001 | |
RMSE | 0.0134 | 0.0187 | 0.0072 | |
R2 | 0.9542 | 0.9105 | 0.9868 | |
Test Dataset | MAE | 0.011 | 0.013 | 0.0117 |
MSE | 0.0002 | 0.0003 | 0.0002 | |
RMSE | 0.0146 | 0.0176 | 0.0158 | |
R2 | 0.9128 | 0.873 | 0.8981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Lu, C.; Chen, L.; Chong, Q.; Dong, Y.; Xia, W.; Meng, F. Production Decline Rate Prediction for Offshore High Water-Cut Reservoirs by Integrating Moth–Flame Optimization with Extreme Gradient Boosting Tree. Processes 2025, 13, 2266. https://doi.org/10.3390/pr13072266
Ding Z, Lu C, Chen L, Chong Q, Dong Y, Xia W, Meng F. Production Decline Rate Prediction for Offshore High Water-Cut Reservoirs by Integrating Moth–Flame Optimization with Extreme Gradient Boosting Tree. Processes. 2025; 13(7):2266. https://doi.org/10.3390/pr13072266
Chicago/Turabian StyleDing, Zupeng, Chuan Lu, Long Chen, Qinwan Chong, Yintao Dong, Wenlong Xia, and Fankun Meng. 2025. "Production Decline Rate Prediction for Offshore High Water-Cut Reservoirs by Integrating Moth–Flame Optimization with Extreme Gradient Boosting Tree" Processes 13, no. 7: 2266. https://doi.org/10.3390/pr13072266
APA StyleDing, Z., Lu, C., Chen, L., Chong, Q., Dong, Y., Xia, W., & Meng, F. (2025). Production Decline Rate Prediction for Offshore High Water-Cut Reservoirs by Integrating Moth–Flame Optimization with Extreme Gradient Boosting Tree. Processes, 13(7), 2266. https://doi.org/10.3390/pr13072266