Sustainable Remediation: Advances in Red Mud-Based Synergistic Fabrication Techniques and Mechanistic Insights for Enhanced Heavy Metal(Loid)s Sorption in Wastewater
Abstract
1. Introduction
2. Modification of Red Mud
2.1. Heat Treatment
2.2. Neutralization
- (1)
- Acid activation. Through acid solution and RM reaction, acid treatment modulates surface properties and component activities to improve pollutant adsorption, dissolve/reconstruct mineral phases, and functionalize surfaces and surface functionalization [75]. Existing studies have mostly used inorganic acids like HCl, HNO3, and H2SO4 (0.05–1.0 M concentration range) to modify samples. Two typical processes are acid solution reflux followed by liquid ammonia precipitation and drying [76] and direct acid leaching followed by washing and drying [77,78,79]. Both methods effectively remove alkali metal and impurity phases, expose fresh active surfaces, and optimize pore structure [80]. Acid treatment increased the specific surface area of red mud (e.g., from 13.15 to 23.80 m2/g [75], or from 33.5 to 67.10 m2/g [81]), dissolved mineral phases like hematite and gibbsite [82], and increased Fe2O3 content by 3–4% [75,83,84]. Additionally, surface hydroxyl and metal–oxygen group density increased, forming high-affinity metal binding [75,85]. Acid treatment increases electrostatic adsorption capacity by modulating surface charge characteristics (e.g., pH decreased from 11.00 to 2.12, isoelectric PZC decreased), but the acid concentration and reaction time must be tightly controlled to avoid the over-dissolution of Fe/Al oxides [85]. Moreover, the buffering capacity of red mud is intrinsically linked to its alkaline constituents (e.g., calcium hydroxide, carbonates, etc.). However, some studies have shown that specific surface area is not necessarily correlated with cation adsorption efficiency, emphasizing the importance of surface chemical properties (e.g., functional group type and charge distribution) [70]. In conclusion, acid treatment optimizes adsorption performance through physical–chemical synergistic modification, but the source and mineral composition of red mud affect its effect, which must be combined with the surface reaction mechanism for targeted process design. Acid neutralization of red mud has the potential for low cost and “waste for waste,” but is limited by location dependence, the risk of dilute salt contamination, and transportation costs. Its adsorption efficiency is regulated by chemical composition, specific surface area, etc., but the correlation between the latter and cation adsorption is still controversial.
- (2)
- Neutralization with seawater. Seawater neutralization reduces pH to 8.5–8.8 by replacing Na+ in red mud with Ca2+ and Mg2+ while maintaining residual neutralization potential and also converts soluble wastes to solids (such as hydrotalcite, calcite, and brucite; Equation (3)) and increases the surface area [86,87,88,89]. Rai et al. [90] demonstrated that pH is mainly controlled by seawater dosage and that the technique is very efficient and cost-effective but is limited by geographical location.
- (3)
- Neutralization with gypsum. Gypsum neutralization of red mud induces the precipitation of Ca(OH)2, tricalcium aluminate, and CaCO3, and the addition of 5–8% gypsum releases Ca2+ and reduces pH to 8.6 [80,91] via the mechanism that Ca2+ reacts with carbonate to form calcite to improve buffering capacity (Equation (4)) [92,93,94]. At the same time, carbonate precipitation provides adsorption sites for the immobilization of toxic elements [95], and excess Ca2+ may react directly with aluminate to form phases such as hydrocalumite Ca2Al(OH)7·2H2O (Equation (5)) [96]. Although this method is limited by the efficiency of carbonate precipitation in the presence of Ca2+/Mg2+ deficiency [97], it has been popularized in the field of construction materials and soil remediation due to its ease of operation.
- (4)
- Neutralization with carbon dioxide. CO2-neutralized red mud lowers pH via liquid-phase carbonation, where CO2 dissolution produces carbonic acid that interacts with alkaline components. However, a pH rebound occurs due to the ongoing dissolution of solid-phase alkalinity, such as tricalcium aluminate (TCA), which releases OH- ions [80,98,99,100]. Equations (6) and (7) represent interactions between CO2 and hydroxide ions in the caustic solution, whereas Equations (8)–(10) depict the dissolution of TCA in CO2. TCA interacts with CO2 to produce calcite and aluminum hydroxide; however, the kinetics are sluggish, and the reaction is reversible. Additionally, residual alkaline minerals, such as kaolinite, present in the solid phase after incomplete conversion, elevate the pH back to the alkaline range by dissolution [98,101]. Yadav et al. [102] determined that a particle size of 30 μm for red mud maximized carbonation efficiency owing to a substantial proportion of the active phase, but larger particles hindered full neutralization due to inadequate solid–liquid interaction. This method sequesters CO2 and diminishes the necessity for subsequent acid leaching [99]; however, the solid-phase alkalinity buffering effect renders the neutralization effect transient, necessitating the integration of subsequent stabilization treatments (e.g., calcium carbonate generation) to mitigate pH fluctuations [101]. Therefore, it is critical to elucidate the mechanisms of solid-phase alkalinity conversion and develop sustainable neutralization technologies for red mud, which could effectively remediate its persistent high alkalinity [103].
2.3. Organic and Metal Compound Modification
3. Preparation Method of Red Mud-Based Adsorbent
3.1. Alkali Fusion
3.2. Hydrothermal
3.3. Pyrolysis
3.4. Cured Foam Method
3.5. Carbothermal Reduction
3.6. CVD Method
3.7. Comparison and Prospects
4. Key Parameters Impacting HMs’ Removal
4.1. pH
4.2. Coexisting Ion
4.3. Temperature
4.4. Initial Concentration and Adsorbent Dosage
4.5. Contact Time
4.6. Types of Adsorbents
4.7. Reusability and Regeneration
4.8. Leaching of HMs and Economic Viability
5. Mechanism of HMs’ Removal
5.1. Sorption Isotherm Model
5.2. Adsorption Kinetic Model
5.3. Adsorption Mechanism
6. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gautam, R.K.; Chattopadhyaya, M.C.; Sharma, S.K. Biosorption of Heavy Metals: Recent Trends and Challenges. In Wastewater Reuse and Management; Sharma, S.K., Sanghi, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 305–322. ISBN 978-94-007-4941-2. [Google Scholar]
- Ayyappan, R.; Sophia, A.C.; Swaminathan, K.; Sandhya, S. Removal of Pb(II) from Aqueous Solution Using Carbon Derived from Agricultural Wastes. Process Biochem. 2005, 40, 1293–1299. [Google Scholar] [CrossRef]
- Lee, J.-C.; Son, Y.-O.; Pratheeshkumar, P.; Shi, X. Oxidative Stress and Metal Carcinogenesis. Free. Radic. Biol. Med. 2012, 53, 742–757. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Manzoor, Q.; Nadeem, R.; Iqbal, M.; Saeed, R.; Ansari, T.M. Organic Acids Pretreatment Effect on Rosa Bourbonia Phyto-Biomass for Removal of Pb(II) and Cu(II) from Aqueous Media. Bioresour. Technol. 2013, 132, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Stasinakis, A.S.; Thomaidis, N.S. Fate and Biotransformation of Metal and Metalloid Species in Biological Wastewater Treatment Processes. Crit. Rev. Environ. Sci. Technol. 2010, 40, 307–364. [Google Scholar] [CrossRef]
- Shang, C.; Geng, Z.; Sun, Y.; Che, D.; Zhao, Q.; Chen, T.; Tang, M.; Huo, L. Lanthanum-Modified Phosphogypsum Red Mud Composite for the Co-Adsorption of Cadmium and Arsenic: Mechanism Study and Soil Remediation. Agriculture 2024, 14, 464. [Google Scholar] [CrossRef]
- Cui, T.; Chen, D.; Duan, R.; Yang, F.; Li, D.; Tian, L.; Zhang, Y.; Wang, H.; Xu, R. Taloring Sawdust Derived Hydrochar via Red Mud for Cadmium Removal: Electron Transfer Insight and Recyclability Assessment. Chemosphere 2025, 370, 143924. [Google Scholar] [CrossRef]
- Wang, H.; Cai, J.; Liao, Z.; Jawad, A.; Ifthikar, J.; Chen, Z.; Chen, Z. Black Liquor as Biomass Feedstock to Prepare Zero-Valent Iron Embedded Biochar with Red Mud for Cr(VI) Removal: Mechanisms Insights and Engineering Practicality. Bioresour. Technol. 2020, 311, 123553. [Google Scholar] [CrossRef]
- Sahu, M.K.; Patel, R.K.; Kurwadkar, S. Mechanistic Insight into the Adsorption of Mercury (II) on the Surface of Red Mud Supported Nanoscale Zero-Valent Iron Composite. J. Contam. Hydrol. 2022, 246, 103959. [Google Scholar] [CrossRef]
- Bai, Y.; Pang, Y.; Wu, Z.; Li, X.; Jing, J.; Wang, H.; Zhou, Z. Adsorption of Lead from Water Using MnO2-Modified Red Mud: Performance, Mechanism, and Environmental Risk. Water 2023, 15, 4314. [Google Scholar] [CrossRef]
- Li, J.; Hu, Z.; Chen, Y.; Deng, R. Removal of Pb(II) by Adsorption of HCO–(Fe3O4)x Composite Adsorbent: Efficacy and Mechanism. Water 2023, 15, 1857. [Google Scholar] [CrossRef]
- Xu, W.; Yang, H.; Mao, Q.; Luo, L.; Deng, Y. Removal of Heavy Metals from Acid Mine Drainage by Red Mud–Based Geopolymer Pervious Concrete: Batch and Long–Term Column Studies. Polymers 2022, 14, 5355. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Li, X.; Ma, X.; Cao, Z.; Zhong, H.; Yang, J.; Wang, S. Transferring Red Mud to Efficient Adsorbent for the Adsorption and Immobilization of Ni(Ⅱ) from Aqueous Solution. Colloids Surf. C Environ. Asp. 2024, 2, 100045. [Google Scholar] [CrossRef]
- Chen, W.; Deng, R.; Chen, Y.; Wang, C.; Hou, B.; Zhou, S.; Hursthouse, A. New Insights into Adsorption of As(V) and Sb(V) from Aqueous by HCO–(Fe3O4)x Adsorbent: Adsorption Behaviors, Competition and Mechanisms. J. Water Process Eng. 2024, 58, 104873. [Google Scholar] [CrossRef]
- Wang, X.; Deng, R.; Wang, C.; Chen, W.; Hou, B.; Zhou, S.; Huang, W.; Ren, B.; Hursthouse, A. Novel Ce(III) Based Ce-Oxide/Fe3O4 Composite for High-Efficiency Removal of Sb(V) and Sb(III) from Wastewater at Wide pH Range. J. Environ. Manag. 2025, 375, 124384. [Google Scholar] [CrossRef]
- Li, X.; Deng, R.; Tang, Z.; Zhou, S.; Zeng, X.; Wang, J.; Hursthouse, A. A Study of the Adsorption and Removal of Sb(III) from Aqueous Solution by Fe(III) Modified Proteus Cibarius with Mechanistic Insights Using Response Surface Methodology. Processes 2021, 9, 933. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, R.; Ren, B.; Yaseen, M.; Hursthouse, A. Enhancing the Removal of Sb (III) from Water: A Fe3O4@HCO Composite Adsorbent Caged in Sodium Alginate Microbeads. Processes 2020, 8, 44. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, R.; Ren, B.; Hou, B.; Hursthouse, A. Preparation of a Novel Fe3O4/HCO Composite Adsorbent and the Mechanism for the Removal of Antimony (III) from Aqueous Solution. Sci. Rep. 2019, 9, 13021. [Google Scholar] [CrossRef]
- Deng, R.-J.; Jin, C.-S.; Ren, B.-Z.; Hou, B.-L.; Hursthouse, A. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents. Water 2017, 9, 794. [Google Scholar] [CrossRef]
- Deng, R.-J.; Shao, R.; Ren, B.-Z.; Hou, B.; Tang, Z.-E.; Hursthouse, A. Adsorption of Antimony(III) onto Fe(III)-TreatedHumus Sludge Adsorbent: Behaviorand Mechanism Insights. Pol. J. Environ. Stud. 2018, 28, 577–586. [Google Scholar] [CrossRef]
- Chipasa, K.B. Accumulation and Fate of Selected Heavy Metals in a Biological Wastewater Treatment System. Waste Manag. 2003, 23, 135–143. [Google Scholar] [CrossRef]
- Alyüz, B.; Veli, S. Kinetics and Equilibrium Studies for the Removal of Nickel and Zinc from Aqueous Solutions by Ion Exchange Resins. J. Hazard. Mater. 2009, 167, 482–488. [Google Scholar] [CrossRef]
- Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Chemical Precipitation of Heavy Metals from Acid Mine Drainage. Water Res. 2002, 36, 4757–4764. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.E.; Pereira, M.S.; Jorgetto, A.O.; Martines, M.A.U.; Silva, R.I.V.; Saeki, M.J.; Castro, G.R. The Reactive Surface of Castor Leaf [Ricinus communis L.] Powder as a Green Adsorbent for the Removal of Heavy Metals from Natural River Water. Appl. Surf. Sci. 2013, 276, 24–30. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, H.F.; Sorour, M.H.; Tewfik, S.R. Simulation and Optimization of a Membrane System for Chromium Recovery from Tanning Wastes. Desalination 2001, 141, 315–324. [Google Scholar] [CrossRef]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (Modified) Natural Adsorbents for Arsenic Remediation: A Review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Chen, H.; Lu, J.; Yu, G.; Möslang, M.; Zhou, Y. Superior Adsorption Capacity of Functionalised Straw Adsorbent for Dyes and Heavy-Metal Ions. J. Hazard. Mater. 2020, 382, 121040. [Google Scholar] [CrossRef]
- Mi, H.; Yi, L.; Wu, Q.; Xia, J.; Zhang, B. A Review of Comprehensive Utilization of Red Mud. Waste Manag. Res. 2022, 40, 1594–1607. [Google Scholar] [CrossRef]
- Khairul, M.A.; Zanganeh, J.; Moghtaderi, B. The Composition, Recycling and Utilisation of Bayer Red Mud. Resour. Conserv. Recycl. 2019, 141, 483–498. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X. Applications of Red Mud as an Environmental Remediation Material: A Review. J. Hazard. Mater. 2021, 408, 124420. [Google Scholar] [CrossRef]
- Ye, N.; Yang, J.; Liang, S.; Hu, Y.; Hu, J.; Xiao, B.; Huang, Q. Synthesis and Strength Optimization of One-Part Geopolymer Based on Red Mud. Constr. Build. Mater. 2016, 111, 317–325. [Google Scholar] [CrossRef]
- Lei, H.; Xu, X.; Liu, X.; Park, J.; Yu, Z.; Liu, H. Red Mud-Amended Soil as Highly Adsorptive Hybrid-Fill Materials for Controlling Heavy Metal Sewage Seepage in Industrial Zone. Int. J. Environ. Res. Public Health 2022, 19, 15043. [Google Scholar] [CrossRef]
- Çimen, Ö.; Günaydın, H.İ. Preparation and Characterization of Red Mud/Polysulfone Composite Geosynthetic Barrier. Eng. Sci. Technol. Int. J. 2024, 54, 101720. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Li, Z.; Liu, C.; Chen, J. Feasibility Study on Grouting Material Prepared from Red Mud and Metallurgical Wastewater Based on Synergistic Theory. J. Hazard. Mater. 2021, 407, 124358. [Google Scholar] [CrossRef] [PubMed]
- Sevgili, İ.; Dilmaç, Ö.F.; Şimşek, B. An Environmentally Sustainable Way for Effective Water Purification by Adsorptive Red Mud Cementitious Composite Cubes Modified with Bentonite and Activated Carbon. Sep. Purif. Technol. 2021, 274, 119115. [Google Scholar] [CrossRef]
- Meshram, N.; Lini Dev, K. Sustainable Utilization of Red Mud as Recycled Waste: A Critical Review and Future Research Directions. Indian Geotech. J. 2024. [Google Scholar] [CrossRef]
- Feng, L.; Yao, W.; Zheng, K.; Cui, N.; Xie, N. Synergistically Using Bauxite Residue (Red Mud) and Other Solid Wastes to Manufacture Eco-Friendly Cementitious Materials. Buildings 2022, 12, 117. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, J.; Reddy Kannapu, H.P.; Jang, S.-H.; Kim, Y.; Jang, H.; Ha, J.-M.; Jung, S.-C.; Park, Y.-K. Acid-Treated Waste Red Mud as an Efficient Catalyst for Catalytic Fast Copyrolysis of Lignin and Polyproylene and Ozone-Catalytic Conversion of Toluene. Environ. Res. 2020, 191, 110149. [Google Scholar] [CrossRef]
- Gao, B.; Liu, X.; Wu, Y.; Cheng, H.; Zhou, H.; Wang, Y.; Chen, Z. Integration of Lactic Acid Biorefinery with Treatment of Red Mud from Alumina Refinery: Win–Win Paradigm for Waste Valorization. Bioresour. Technol. 2024, 401, 130743. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, P.; Ni, W.; Zhang, S.; Li, S.; Deng, W.; Hu, W.; Li, J.; Pei, F.; Du, L.; et al. A Review of Solid Wastes-Based Stabilizers for Remediating Heavy Metals Co-Contaminated Soil: Applications and Challenges. Sci. Total Environ. 2024, 920, 170667. [Google Scholar] [CrossRef] [PubMed]
- Schlögl, S.; Diendorfer, P.; Baldermann, A.; Vollprecht, D. Use of Industrial Residues for Heavy Metals Immobilization in Contaminated Site Remediation: A Brief Review. Int. J. Environ. Sci. Technol. 2023, 20, 2313–2326. [Google Scholar] [CrossRef]
- Qin, J.; Wang, X.; Deng, M.; Li, H.; Lin, C. Red Mud-Biochar Composites (Co-Pyrolyzed Red Mud-Plant Materials): Characteristics and Improved Efficacy on the Treatment of Acidic Mine Water and Trace Element-Contaminated Soils. Sci. Total Environ. 2022, 844, 157062. [Google Scholar] [CrossRef] [PubMed]
- Golia, E.E.; Chartodiplomenou, M.-A.; Papadimou, S.G.; Kantzou, O.-D.; Tsiropoulos, N.G. Influence of Soil Inorganic Amendments on Heavy Metal Accumulation by Leafy Vegetables. Environ. Sci. Pollut. Res. 2021, 30, 8617–8632. [Google Scholar] [CrossRef]
- Johnston, M.; Clark, M.W.; McMahon, P.; Ward, N. Alkalinity Conversion of Bauxite Refinery Residues by Neutralization. J. Hazard. Mater. 2010, 182, 710–715. [Google Scholar] [CrossRef]
- Rai, S.B.; Wasewar, K.L.; Mishra, R.S.; Mahindran, P.; Chaddha, M.J.; Mukhopadhyay, J.; Yoo, C.K. Sequestration of Carbon Dioxide in Red Mud. Desalination Water Treat. 2013, 51, 2185–2192. [Google Scholar] [CrossRef]
- Çoruh, S.; Ergun, O.N. Copper Adsorption from Aqueous Solutions by Usıng Red Mud—An Aluminium Industry Waste. In Survival and Sustainability; Gökçekus, H., Türker, U., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1275–1282. ISBN 978-3-540-95990-8. [Google Scholar]
- Nadaroglu, H.; Kalkan, E.; Demir, N. Removal of Copper from Aqueous Solution Using Red Mud. Desalination 2010, 251, 90–95. [Google Scholar] [CrossRef]
- Çoruh, S.; Ergun, O.N. Use of Fly Ash, Phosphogypsum and Red Mud as a Liner Material for the Disposal of Hazardous Zinc Leach Residue Waste. J. Hazard. Mater. 2010, 173, 468–473. [Google Scholar] [CrossRef]
- Ayala, J.; Fernández, B. Treatment from Abandoned Mine Landfill Leachates. Adsorption Technology. J. Mater. Res. Technol. 2019, 8, 2732–2740. [Google Scholar] [CrossRef]
- Zoumis, T.; Calmano, W.; Förstner, U. Demobilization of Heavy Metals from Mine Waters. Acta Hydrochim. Hydrobiol. 2000, 28, 212–218. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Fischel, M.; Lin, X.; Zhou, S.; Zhang, L.; Wang, L.; Yan, J. Applying Red Mud in Cadmium Contamination Remediation: A Scoping Review. Toxics 2024, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Thakur, A. Red Mud Based Binder: A Sustainable Material for Removal of Chromium (VI) from Water. Mater. Today Proc. 2021, 46, 2955–2959. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Ma, W.; Li, J.; Feng, S.; Zhang, L.; Mao, A. Study on the Adsorption Performance of Cu2+ in Wastewater by Red Mud. Desalination Water Treat. 2024, 317, 100254. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, X.; Luo, L.; Zhou, Y.; Wei, J.; Chen, A.; Tang, L.; Wu, H.; Deng, Y.; Zhang, F.; et al. Remediation of Cu, Pb, Zn and Cd-Contaminated Agricultural Soil Using a Combined Red Mud and Compost Amendment. Int. Biodeterior. Biodegrad. 2017, 118, 73–81. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Liu, Z.; Ren, Z. Frontier Research and Prospect of Phosphate Adsorption in Wastewater by Red Mud: A Review. Desalination Water Treat. 2023, 310, 86–108. [Google Scholar] [CrossRef]
- Hua, Y.; Heal, K.V.; Friesl-Hanl, W. The Use of Red Mud as an Immobiliser for Metal/Metalloid-Contaminated Soil: A Review. J. Hazard. Mater. 2017, 325, 17–30. [Google Scholar] [CrossRef]
- Smiljanić, S.; Smičiklas, I.; Perić-Grujić, A.; Lončar, B.; Mitrić, M. Rinsed and Thermally Treated Red Mud Sorbents for Aqueous Ni2+ Ions. Chem. Eng. J. 2010, 162, 75–83. [Google Scholar] [CrossRef]
- Wang, S.; Ang, H.M.; Tadé, M.O. Novel Applications of Red Mud as Coagulant, Adsorbent and Catalyst for Environmentally Benign Processes. Chemosphere 2008, 72, 1621–1635. [Google Scholar] [CrossRef]
- Li, D.; Ding, Y.; Li, L.; Chang, Z.; Rao, Z.; Lu, L. Removal of Hexavalent Chromium by Using Red Mud Activated with Cetyltrimethylammonium Bromide. Environ. Technol. 2015, 36, 1084–1090. [Google Scholar] [CrossRef]
- He, C.; Xie, F. Adsorption Behavior of Manganese Dioxide Towards Heavy Metal Ions: Surface Zeta Potential Effect. Water Air Soil Pollut. 2018, 229, 77. [Google Scholar] [CrossRef]
- Smiljanić, S.; Smičiklas, I.; Perić-Grujić, A.; Šljivić, M.; Đukić, B.; Lončar, B. Study of Factors Affecting Ni2+ Immobilization Efficiency by Temperature Activated Red Mud. Chem. Eng. J. 2011, 168, 610–619. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Luan, Z.; Peng, X.; Zhu, C.; Chen, Z.; Zhang, Z.; Fan, J.; Jia, Z. Phosphate Removal from Aqueous Solutions Using Raw and Activated Red Mud and Fly Ash. J. Hazard. Mater. 2006, 137, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Genç-Fuhrman, H.; Tjell, J.C.; McConchie, D. Increasing the Arsenate Adsorption Capacity of Neutralized Red Mud (Bauxsol). J. Colloid Interface Sci. 2004, 271, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, S.; Zhu, Z.; Li, L.; Yao, X.; Rudolph, V.; Haghseresht, F. Phosphate Removal from Wastewater Using Red Mud. J. Hazard. Mater. 2008, 158, 35–42. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, J.; Zhang, Z.; Long, Q.; Zhang, Q. Application of Annealed Red Mud to Mn2+ Ion Adsorption from Aqueous Solution. Water Sci. Technol. 2016, 73, 2761–2771. [Google Scholar] [CrossRef]
- Athira, K.; Shanmugapriya, T. Investigation on Properties and Heavy MetalIon Extraction of Thermally Activated RedMud Incorporated Cement Mortar. Pol. J. Environ. Stud. 2023, 32, 3959–3970. [Google Scholar] [CrossRef]
- Antunes, M.L.P.; Couperthwaite, S.J.; Da Conceição, F.T.; Costa De Jesus, C.P.; Kiyohara, P.K.; Coelho, A.C.V.; Frost, R.L. Red Mud from Brazil: Thermal Behavior and Physical Properties. Ind. Eng. Chem. Res. 2012, 51, 775–779. [Google Scholar] [CrossRef]
- Santona, L.; Castaldi, P.; Melis, P. Evaluation of the Interaction Mechanisms between Red Muds and Heavy Metals. J. Hazard. Mater. 2006, 136, 324–329. [Google Scholar] [CrossRef]
- Sahu, R.C.; Patel, R.; Ray, B.C. Utilization of Activated CO2-Neutralized Red Mud for Removal of Arsenate from Aqueous Solutions. J. Hazard. Mater. 2010, 179, 1007–1013. [Google Scholar] [CrossRef]
- Lopes, G.; Guilherme, L.R.G.; Costa, E.T.S.; Curi, N.; Penha, H.G.V. Increasing Arsenic Sorption on Red Mud by Phosphogypsum Addition. J. Hazard. Mater. 2013, 262, 1196–1203. [Google Scholar] [CrossRef]
- Krishna, P.; Reddy, M.S.; Patnaik, S.K. Aspergillus Tubingensis Reduces the pH of the Bauxite Residue (Red Mud) Amended Soils. Water Air Soil Pollut 2005, 167, 201–209. [Google Scholar] [CrossRef]
- Genç-Fuhrman, H.; Tjell, J.C.; McConchie, D. Adsorption of Arsenic from Water Using Activated Neutralized Red Mud. Environ. Sci. Technol. 2004, 38, 2428–2434. [Google Scholar] [CrossRef]
- Tsamo, C.; Djomou Djonga, P.N.; Dangwang Dikdim, J.M.; Kamga, R. Kinetic and Equilibrium Studies of Cr(VI), Cu(II) and Pb(II) Removal from Aqueous Solution Using Red Mud, a Low-Cost Adsorbent. Arab. J. Sci. Eng. 2018, 43, 2353–2368. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Luan, Z.; Chen, Z.; Zhang, Z.; Jia, Z. Adsorption Removal of Phosphate from Aqueous Solution by Active Red Mud. J. Environ. Sci. 2007, 19, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Tütem, E.; Hügül, M.; Hizal, J. Heavy Metal Cation Retention by Unconventional Sorbents (Red Muds and Fly Ashes). Water Res. 1998, 32, 430–440. [Google Scholar] [CrossRef]
- Altundoǧan, H.S.; Tümen, F. Removal of Phosphates from Aqueous Solutions by Using Bauxite II: The Activation Study. J. Chem. Technol. Biotechnol. 2003, 78, 824–833. [Google Scholar] [CrossRef]
- Altundoğan, H.S.; Altundoğan, S.; Tümen, F.; Bildik, M. Arsenic Adsorption from Aqueous Solutions by Activated Red Mud. Waste Manag. 2002, 22, 357–363. [Google Scholar] [CrossRef]
- Kirwan, L.J.; Hartshorn, A.; McMonagle, J.B.; Fleming, L.; Funnell, D. Chemistry of Bauxite Residue Neutralisation and Aspects to Implementation. Int. J. Miner. Process. 2013, 119, 40–50. [Google Scholar] [CrossRef]
- Sahu, M.K.; Mandal, S.; Dash, S.S.; Badhai, P.; Patel, R.K. Removal of Pb(II) from Aqueous Solution by Acid Activated Red Mud. J. Environ. Chem. Eng. 2013, 1, 1315–1324. [Google Scholar] [CrossRef]
- Liang, W.; Couperthwaite, S.J.; Kaur, G.; Yan, C.; Johnstone, D.W.; Millar, G.J. Effect of Strong Acids on Red Mud Structural and Fluoride Adsorption Properties. J. Colloid Interface Sci. 2014, 423, 158–165. [Google Scholar] [CrossRef]
- Snars, K.; Gilkes, R.J. Evaluation of Bauxite Residues (Red Muds) of Different Origins for Environmental Applications. Appl. Clay Sci. 2009, 46, 13–20. [Google Scholar] [CrossRef]
- Gräfe, M.; Power, G.; Klauber, C. Bauxite Residue Issues: III. Alkalinity and Associated Chemistry. Hydrometallurgy 2011, 108, 60–79. [Google Scholar] [CrossRef]
- Smičiklas, I.; Smiljanić, S.; Perić-Grujić, A.; Šljivić-Ivanović, M.; Mitrić, M.; Antonović, D. Effect of Acid Treatment on Red Mud Properties with Implications on Ni(II) Sorption and Stability. Chem. Eng. J. 2014, 242, 27–35. [Google Scholar] [CrossRef]
- Hanahan, C.; McConchie, D.; Pohl, J.; Creelman, R.; Clark, M.; Stocksiek, C. Chemistry of Seawater Neutralization of Bauxite Refinery Residues (Red Mud). Environ. Eng. Sci. 2004, 21, 125–138. [Google Scholar] [CrossRef]
- Palmer, S.; Frost, R.; Nguyen, T. Hydrotalcites and Their Role in Coordination of Anions in Bayer Liquors: Anion Binding in Layered Double Hydroxides. Coord. Chem. Rev. 2009, 253, 250–267. [Google Scholar] [CrossRef]
- Genç, H.; Tjell, J.C.; McConchie, D.; Schuiling, O. Adsorption of Arsenate from Water Using Neutralized Red Mud. J. Colloid Interface Sci. 2003, 264, 327–334. [Google Scholar] [CrossRef]
- Menzies, N.W.; Fulton, I.M.; Morrell, W.J. Seawater Neutralization of Alkaline Bauxite Residue and Implications for Revegetation. J. Environ. Qual. 2004, 33, 1877–1884. [Google Scholar] [CrossRef]
- Rai, S.; Wasewar, K.L.; Lataye, D.H.; Mukhopadhyay, J.; Yoo, C.K. Feasibility of Red Mud Neutralization with Seawater Using Taguchi’s Methodology. Int. J. Environ. Sci. Technol. 2013, 10, 305–314. [Google Scholar] [CrossRef]
- Burke, I.T.; Peacock, C.L.; Lockwood, C.L.; Stewart, D.I.; Mortimer, R.J.G.; Ward, M.B.; Renforth, P.; Gruiz, K.; Mayes, W.M. Behavior of Aluminum, Arsenic, and Vanadium during the Neutralization of Red Mud Leachate by HCl, Gypsum, or Seawater. Environ. Sci. Technol. 2013, 47, 6527–6535. [Google Scholar] [CrossRef]
- Renforth, P.; Mayes, W.M.; Jarvis, A.P.; Burke, I.T.; Manning, D.A.C.; Gruiz, K. Contaminant Mobility and Carbon Sequestration Downstream of the Ajka (Hungary) Red Mud Spill: The Effects of Gypsum Dosing. Sci. Total Environ. 2012, 421–422, 253–259. [Google Scholar] [CrossRef]
- Renforth, P.; Manning, D.A.C.; Lopez-Capel, E. Carbonate Precipitation in Artificial Soils as a Sink for Atmospheric Carbon Dioxide. Appl. Geochem. 2009, 24, 1757–1764. [Google Scholar] [CrossRef]
- Burke, I.T.; Mortimer, R.J.G.; Palaniyandi, S.; Whittleston, R.A.; Lockwood, C.L.; Ashley, D.J.; Stewart, D.I. Biogeochemical Reduction Processes in a Hyper-Alkaline Leachate Affected Soil Profile. Geomicrobiol. J. 2012, 29, 769–779. [Google Scholar] [CrossRef]
- Alexandratos, V.G.; Elzinga, E.J.; Reeder, R.J. Arsenate Uptake by Calcite: Macroscopic and Spectroscopic Characterization of Adsorption and Incorporation Mechanisms. Geochim. Cosmochim. Acta 2007, 71, 4172–4187. [Google Scholar] [CrossRef]
- Courtney, R.; Kirwan, L. Gypsum Amendment of Alkaline Bauxite Residue—Plant Available Aluminium and Implications for Grassland Restoration. Ecol. Eng. 2012, 42, 279–282. [Google Scholar] [CrossRef]
- Mayes, W.M.; Jarvis, A.P.; Burke, I.T.; Walton, M.; Feigl, V.; Klebercz, O.; Gruiz, K. Dispersal and Attenuation of Trace Contaminants Downstream of the Ajka Bauxite Residue (Red Mud) Depository Failure, Hungary. Environ. Sci. Technol. 2011, 45, 5147–5155. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.G.; Pennifold, R.M.; Davies, M.G.; Jamieson, E.J. Reactions of Carbon Dioxide with Tri-Calcium Aluminate. In Electrometallurgy and Environmental Hydrometallurgy; Young, C., Alfantazi, A., Anderson, C., James, A., Dreisinger, D., Harris, B., Eds.; Wiley: Hoboken, NJ, USA, 2003; pp. 1705–1715. ISBN 978-1-118-82060-5. [Google Scholar]
- Rivera, R.M.; Ounoughene, G.; Borra, C.R.; Binnemans, K.; Van Gerven, T. Neutralisation of Bauxite Residue by Carbon Dioxide Prior to Acidic Leaching for Metal Recovery. Miner. Eng. 2017, 112, 92–102. [Google Scholar] [CrossRef]
- Sahu, R.C.; Patel, R.K.; Ray, B.C. Neutralization of Red Mud Using CO2 Sequestration Cycle. J. Hazard. Mater. 2010, 179, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Archambo, M.; Kawatra, S.K. Red Mud: Fundamentals and New Avenues for Utilization. Miner. Process. Extr. Metall. Rev. 2021, 42, 427–450. [Google Scholar] [CrossRef]
- Yadav, V.S.; Prasad, M.; Khan, J.; Amritphale, S.S.; Singh, M.; Raju, C.B. Sequestration of Carbon Dioxide (CO2) Using Red Mud. J. Hazard. Mater. 2010, 176, 1044–1050. [Google Scholar] [CrossRef]
- Han, Y.-S.; Ji, S.; Lee, P.-K.; Oh, C. Bauxite Residue Neutralization with Simultaneous Mineral Carbonation Using Atmospheric CO2. J. Hazard. Mater. 2017, 326, 87–93. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, X.; Yang, G. Preparation of Nanochitin-Contained Magnetic Chitosan Microfibers via Continuous Injection Gelation Method for Removal of Ni(II) Ion from Aqueous Solution. Int. J. Biol. Macromol. 2019, 125, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, G.; Naushad, M.; Al-Muhtaseb, A.H.; García-Peñas, A.; Mola, G.T.; Si, C.; Stadler, F.J. Bio-Inspired and Biomaterials-Based Hybrid Photocatalysts for Environmental Detoxification: A Review. Chem. Eng. J. 2020, 382, 122937. [Google Scholar] [CrossRef]
- Shankar, A.; Kongot, M.; Saini, V.K.; Kumar, A. Removal of Pentachlorophenol Pesticide from Aqueous Solutions Using Modified Chitosan. Arab. J. Chem. 2020, 13, 1821–1830. [Google Scholar] [CrossRef]
- Luu, T.-T.; Nguyen, D.-K.; Nguyen, T.T.P.; Ho, T.-H.; Dinh, V.-P.; Kiet, H.A.T. The Effective Ni(II) Removal of Red Mud Modified Chitosan from Aqueous Solution. Environ. Monit. Assess. 2023, 195, 254. [Google Scholar] [CrossRef] [PubMed]
- Luu, T.-T.; Dinh, V.-P.; Nguyen, Q.-H.; Tran, N.-Q.; Nguyen, D.-K.; Ho, T.-H.; Nguyen, V.-D.; Tran, D.X.; Kiet, H.A.T. Pb(II) Adsorption Mechanism and Capability from Aqueous Solution Using Red Mud Modified by Chitosan. Chemosphere 2022, 287, 132279. [Google Scholar] [CrossRef]
- Liu, J.; Xie, Y.; Li, C.; Fang, G.; Chen, Q.; Ao, X. Novel Red Mud/Polyacrylic Composites Synthesized from Red Mud and Its Performance on Cadmium Removal from Aqueous Solution. J. Chem. Technol. Biotechnol. 2020, 95, 213–222. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Liu, J.; Hu, P.; Meng, K.; Lv, F.; Tong, W.; Chu, P.K. Dealkalization of Red Mud by Carbide Slag and Flue Gas. CLEAN Soil Air Water 2018, 46, 1700634. [Google Scholar] [CrossRef]
- Fayazi, M.; Afzali, D.; Ghanei-Motlagh, R.; Iraji, A. Synthesis of Novel Sepiolite–Iron Oxide–Manganese Dioxide Nanocomposite and Application for Lead(II) Removal from Aqueous Solutions. Environ. Sci. Pollut. Res. 2019, 26, 18893–18903. [Google Scholar] [CrossRef]
- Khan, T.A.; Chaudhry, S.A.; Ali, I. Equilibrium Uptake, Isotherm and Kinetic Studies of Cd(II) Adsorption onto Iron Oxide Activated Red Mud from Aqueous Solution. J. Mol. Liq. 2015, 202, 165–175. [Google Scholar] [CrossRef]
- Venkatesan, G.; Narayanan, S.L. Synthesis of Fe2O3-Coated and HCl-Treated Bauxite Ore Waste for the Adsorption of Arsenic (III) from Aqueous Solution: Isotherm and Kinetic Models. Chem. Eng. Commun. 2018, 205, 34–46. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Luan, Z.; Peng, X.; Ren, H.; Wang, J. Arsenate Removal from Aqueous Solutions Using Modified Red Mud. J. Hazard. Mater. 2008, 152, 486–492. [Google Scholar] [CrossRef]
- Cui, Y.-W.; Li, J.; Du, Z.-F.; Peng, Y.-Z. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms. PLoS ONE 2016, 11, e0161780. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zu, Y.-Q.; Li, G.; Sun, G.-X. [Mechanism of As(V)Removal from Water by Lanthanum and Cerium Modified Biochars]. Huan Jing Ke Xue 2018, 39, 2211–2218. [Google Scholar] [CrossRef]
- Xie, W.-M.; Zhou, F.-P.; Bi, X.-L.; Chen, D.-D.; Li, J.; Sun, S.-Y.; Liu, J.-Y.; Chen, X.-Q. Accelerated Crystallization of Magnetic 4A-Zeolite Synthesized from Red Mud for Application in Removal of Mixed Heavy Metal Ions. J. Hazard. Mater. 2018, 358, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Niu, S.; Wang, L.; Liu, R.; Sun, W.; He, D. Efficient Removal of Pb(II) Ions from Aqueous Solution by Modified Red Mud. J. Hazard. Mater. 2021, 406, 124678. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, M.; He, C.; Zhai, X.; Wang, S. Synthesis of Porous Red Mud/Slag-Based Spherical Geopolymers for Efficient Methylene Blue and Ni2+ Removal from Water. Langmuir 2024, 40, 23882–23894. [Google Scholar] [CrossRef]
- Du, Y.; Dai, M.; Cao, J.; Peng, C. Fabrication of a Low-Cost Adsorbent Supported Zero-Valent Iron by Using Red Mud for Removing Pb(ii) and Cr(vi) from Aqueous Solutions. RSC Adv. 2019, 9, 33486–33496. [Google Scholar] [CrossRef]
- Mesgari Abbasi, S.; Rashidi, A.; Ghorbani, A.; Khalaj, G. Synthesis, Processing, Characterization, and Applications of Red Mud/Carbon Nanotube Composites. Ceram. Int. 2016, 42, 16738–16743. [Google Scholar] [CrossRef]
- Zhao, Y.; Luan, H.; Yang, B.; Li, Z.; Song, M.; Li, B.; Tang, X. Adsorption of Pb, Cu and Cd from Water on Coal Fly Ash-Red Mud Modified Composite Material: Characterization and Mechanism. Water 2023, 15, 767. [Google Scholar] [CrossRef]
- Belviso, C.; Lucini, P.; Mancinelli, M.; Abdolrahimi, M.; Martucci, A.; Peddis, D.; Maraschi, F.; Cavalcante, F.; Sturini, M. Lead, Zinc, Nickel and Chromium Ions Removal from Polluted Waters Using Zeolite Formed from Bauxite, Obsidian and Their Combination with Red Mud: Behaviour and Mechanisms. J. Clean. Prod. 2023, 415, 137814. [Google Scholar] [CrossRef]
- Chai, A.; Ding, S.; Yu, J.; Deng, S.; Yu, J.; Zhu, W.; Liu, L.; Wu, D.; Wu, Y. Remediation of Pb, Cd, and Cu Contaminated Soil with Mg-Fe-Al Layered Double Hydroxides (LDHs) Synthesized from Waste Red Mud. Soil Use Manag. 2024, 40, e13103. [Google Scholar] [CrossRef]
- Wang, H.; Cui, T.; Chen, D.; Luo, Q.; Xu, J.; Sun, R.; Zi, W.; Xu, R.; Liu, Y.; Zhang, Y. Hexavalent Chromium Elimination from Wastewater by Integrated Micro-Electrolysis Composites Synthesized from Red Mud and Rice Straw via a Facile One-Pot Method. Sci. Rep. 2022, 12, 14242. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhang, J.; Liu, D.; Meng, X.; Guo, Y.; Cheng, F. Feasible Synthesis of Magnetic Zeolite from Red Mud and Coal Gangue: Preparation, Transformation and Application. Powder Technol. 2023, 423, 118495. [Google Scholar] [CrossRef]
- Belviso, C.; Cannas, C.; Pinna, N.; Cavalcante, F.; Lettino, A.; Lotti, P.; Gatta, G.D. Effect of Red Mud Added to Zeolite LTA Synthesis: Where Is Fe in the Newly-Formed Material? Microporous Mesoporous Mater. 2020, 298, 110058. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, C.; Han, L.; Liang, M. Synthesis of 4A Zeolite from Red Mud and Mechanism of Adsorption Removal of Cu2+ and Mn2+ from Water. Environ. Prot. Chem. Ind. 2023, 43, 813–820. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K.; Phan, C. Synthesis and Characterization of Slow Pyrolysis Pine Cone Bio-Char in the Removal of Organic and Inorganic Pollutants from Aqueous Solution by Adsorption: Kinetic, Equilibrium, Mechanism and Thermodynamic. Bioresour. Technol. 2017, 246, 76–81. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Duan, S.; Wang, Y.; Hayat, T.; Alsaedi, A.; Wang, C.; Li, J. A Valuable Biochar from Poplar Catkins with High Adsorption Capacity for Both Organic Pollutants and Inorganic Heavy Metal Ions. Sci. Rep. 2017, 7, 10033. [Google Scholar] [CrossRef]
- Shen, Y.; Ma, D.; Ge, X. CO2 -Looping in Biomass Pyrolysis or Gasification. Sustain. Energy Fuels 2017, 1, 1700–1729. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.-W.; Bhatnagar, A.; Song, H. Adsorption of As(V) and Ni(II) by Fe-Biochar Composite Fabricated by Co-Pyrolysis of Orange Peel and Red Mud. Environ. Res. 2020, 188, 109809. [Google Scholar] [CrossRef] [PubMed]
- Di, Z.; Cao, Y.; Yang, F.; Zhang, K.; Cheng, F. Thermodynamic Analysis on the Parametric Optimization of a Novel Chemical Looping Methane Reforming in the Separated Productions of H2 and CO. Energy Convers. Manag. 2019, 192, 171–179. [Google Scholar] [CrossRef]
- Cho, D.-W.; Yoon, K.; Ahn, Y.; Sun, Y.; Tsang, D.C.W.; Hou, D.; Ok, Y.S.; Song, H. Fabrication and Environmental Applications of Multifunctional Mixed Metal-Biochar Composites (MMBC) from Red Mud and Lignin Wastes. J. Hazard. Mater. 2019, 374, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-I.; Choi, D.; Kim, S.; Park, S.-J.; Kwon, E.E. Fabrication of Fe-Doped Biochar for Pb Adsorption through Pyrolysis of Agricultural Waste with Red Mud. Chemosphere 2025, 370, 143930. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Li, H.; Cheng, T.; Tian, Y.; Liu, P.; Guo, J.; Cui, K.; Ma, R.; Ma, X.; Cui, F.; et al. Novel Preparation of Sludge-Based Spontaneous Magnetic Biochar Combination with Red Mud for the Removal of Cu2+ from Wastewater. Chem. Phys. Lett. 2022, 806, 139993. [Google Scholar] [CrossRef]
- Rabiee Abyaneh, M.; Aliasghar, A.; Nabi Bidhendi, G.; Daryabeigi Zand, A.; Moazeni, K. Importance of Pyrolysis Temperature and Particle Size on Physicochemical and Adsorptive Properties of Urban Wood-Derived Biochar. Sustain. Chem. Pharm. 2024, 40, 101631. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, B.; Liu, H.; Zhao, Y.; Li, L. Effects of Pyrolysis Temperature on Biochar’s Characteristics and Speciation and Environmental Risks of Heavy Metals in Sewage Sludge Biochars. Environ. Technol. Innov. 2022, 26, 102288. [Google Scholar] [CrossRef]
- Liu, J.; Feng, J.; Wang, Z.; Lyu, X.; Liu, C.; Dai, H.; Bai, Z. Steel Slag Base Geopolymer for Efficient Removal of Zn and Ni Ions from Aqueous Solutions: Preparation and Characterization. Mater. Lett. 2023, 340, 134173. [Google Scholar] [CrossRef]
- Onutai, S.; Kobayashi, T.; Thavorniti, P.; Jiemsirilers, S. Removal of Pb2+, Cu2+, Ni2+, Cd2+ from Wastewater Using Fly Ash Based Geopolymer as an Adsorbent. Key Eng. Mater. 2018, 773, 373–378. [Google Scholar] [CrossRef]
- Gonçalves, N.P.F.; Almeida, M.M.; Labrincha, J.A.; Novais, R.M. Effective Acid Mine Drainage Remediation in Fixed Bed Column Using Porous Red Mud/Fly Ash-Containing Geopolymer Spheres. Sci. Total Environ. 2024, 940, 173633. [Google Scholar] [CrossRef]
- Korat, L.; Ducman, V. The Influence of the Stabilizing Agent SDS on Porosity Development in Alkali-Activated Fly-Ash Based Foams. Cem. Concr. Compos. 2017, 80, 168–174. [Google Scholar] [CrossRef]
- Carvalheiras, J.; Novais, R.M.; Labrincha, J.A. Metakaolin/Red Mud-Derived Geopolymer Monoliths: Novel Bulk-Type Sorbents for Lead Removal from Wastewaters. Appl. Clay Sci. 2023, 232, 106770. [Google Scholar] [CrossRef]
- Li, C.; Yu, J.; Li, W.; He, Y.; Qiu, Y.; Li, P.; Wang, C.; Huang, F.; Wang, D.; Gao, S. Immobilization, Enrichment and Recycling of Cr(VI) from Wastewater Using a Red Mud/Carbon Material to Produce the Valuable Chromite (FeCr2O4). Chem. Eng. J. 2018, 350, 1103–1113. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Han, Y.; Qu, J.; Guo, Z. The Influence of Carbon Nanotubes/Silica Fume on the Mechanical Properties of Cement-Based Composites. Rom. J. Mater. 2015, 45, 29–34. [Google Scholar]
- Kuenzel, C.; Neville, T.P.; Donatello, S.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. Influence of Metakaolin Characteristics on the Mechanical Properties of Geopolymers. Appl. Clay Sci. 2013, 83–84, 308–314. [Google Scholar] [CrossRef]
- Novais, R.M.; Pullar, R.C.; Labrincha, J.A. Geopolymer Foams: An Overview of Recent Advancements. Prog. Mater. Sci. 2020, 109, 100621. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, Y.; An, J.; Zhang, H.; Li, S. Multi-Scale Reinforcement of Multi-Walled Carbon Nanotubes / Polyvinyl Alcohol Fibers on Lightweight Engineered Geopolymer Composites. J. Build. Eng. 2022, 57, 104889. [Google Scholar] [CrossRef]
- Carvalheiras, J.; Oliveira, I.E.; Silva, R.M.; Silva, R.F.; Novais, R.M.; Labrincha, J.A. Catalyst-Free CNTs Growth on Red Mud-Based Alkali Activated Adsorbents: Innovative Route to Boost Heavy Metals Adsorption from Wastewaters. Mater. Lett. 2023, 353, 135246. [Google Scholar] [CrossRef]
- Peng, Y.; Luo, L.; Luo, S.; Peng, K.; Zhou, Y.; Mao, Q.; Yang, J.; Yang, Y. Efficient Removal of Antimony(III) in Aqueous Phase by Nano-Fe3O4 Modified High-Iron Red Mud: Study on Its Performance and Mechanism. Water 2021, 13, 809. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Z.; Song, W.; Zhong, Y.; Sun, M.; Gan, T.; Bao, B. Quantifying Gel Properties of Industrial Waste-Based Geopolymers and Their Application in Pb2+ and Cu2+ Removal. J. Clean. Prod. 2021, 315, 128203. [Google Scholar] [CrossRef]
- Rath, D.; Nanda, B.; Parida, K. Sustainable Nano Composite of Mesoporous Silica Supported Red Mud for Solar Powered Degradation of Aquatic Pollutants. J. Environ. Chem. Eng. 2017, 5, 6137–6147. [Google Scholar] [CrossRef]
- Su, H.; Deng, T.; Qiu, W.; Hu, T.; Zheng, X.; Peng, K.; Zhang, Y.; Zhao, Y.; Xu, Z.; Lei, H.; et al. One Stone, Two Birds: An Eco-Friendly Aerogel Based on Waste Pomelo Peel Cellulose for the Efficient Adsorption of Dyes and Heavy Metal Ions. Int. J. Biol. Macromol. 2024, 273, 132875. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Hong, W.; Srinivasakannan, C.; Liu, X.; Wang, X.; Duan, X. A Novel Mesoporous Fe-Silica Aerogel Composite with Phenomenal Adsorption Capacity for Malachite Green. Sep. Purif. Technol. 2022, 281, 119950. [Google Scholar] [CrossRef]
- Sadegh, H.; Ali, G.A.M.; Makhlouf, A.S.H.; Chong, K.F.; Alharbi, N.S.; Agarwal, S.; Gupta, V.K. MWCNTs-Fe3O4 Nanocomposite for Hg(II) High Adsorption Efficiency. J. Mol. Liq. 2018, 258, 345–353. [Google Scholar] [CrossRef]
- Liu, T.; Gou, S.; He, Y.; Fang, S.; Zhou, L.; Gou, G.; Liu, L. N-Methylene Phosphonic Chitosan Aerogels for Efficient Capture of Cu2+ and Pb2+ from Aqueous Environment. Carbohydr. Polym. 2021, 269, 118355. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Kong, L.; Cai, G.; Wang, P.; Zhang, J.; Zuo, W.; Tian, Y. Compressible Amino-Modified Carboxymethyl Chitosan Aerogel for Efficient Cu(II) Adsorption from Wastewater. Sep. Purif. Technol. 2022, 293, 121146. [Google Scholar] [CrossRef]
- Dong, H.; Deng, J.; Xie, Y.; Zhang, C.; Jiang, Z.; Cheng, Y.; Hou, K.; Zeng, G. Stabilization of Nanoscale Zero-Valent Iron (nZVI) with Modified Biochar for Cr(VI) Removal from Aqueous Solution. J. Hazard. Mater. 2017, 332, 79–86. [Google Scholar] [CrossRef]
- Nightingale, E.R. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Su, Q.; Pan, B.; Wan, S.; Zhang, W.; Lv, L. Use of Hydrous Manganese Dioxide as a Potential Sorbent for Selective Removal of Lead, Cadmium, and Zinc Ions from Water. J. Colloid Interface Sci. 2010, 349, 607–612. [Google Scholar] [CrossRef]
- Huang, X.R.; Zhao, H.H.; Zhang, G.B.; Li, J.T.; Ji, P.H. [Adsorption of Cd2+ from wastewater by modified fly ash]. Ying Yong Sheng Tai Xue Bao 2019, 30, 3215–3223. [Google Scholar] [CrossRef]
- Liu, S.; Kang, S.; Wang, G.; Zhao, H.; Cai, W. Micro/Nanostructured Porous Fe–Ni Binary Oxide and Its Enhanced Arsenic Adsorption Performances. J. Colloid Interface Sci. 2015, 458, 94–102. [Google Scholar] [CrossRef]
- De Miguel, E.; Izquierdo, M.; Gómez, A.; Mingot, J.; Barrio-Parra, F. Risk Assessment from Exposure to Arsenic, Antimony, and Selenium in Urban Gardens (Madrid, Spain). Environ. Toxicol. Chem. 2016, 36, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, R.; Liang, X.; Ma, L.; Lin, X.; Zhu, J.; He, H.; Parker, S.C.; Molinari, M. Synergistic Adsorption of Cd(II) with Sulfate/Phosphate on Ferrihydrite: An in Situ ATR-FTIR/2D-COS Study. Chem. Geol. 2018, 477, 12–21. [Google Scholar] [CrossRef]
- Wu, J.; Huang, D.; Liu, X.; Meng, J.; Tang, C.; Xu, J. Remediation of As(III) and Cd(II) Co-Contamination and Its Mechanism in Aqueous Systems by a Novel Calcium-Based Magnetic Biochar. J. Hazard. Mater. 2018, 348, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Li, B.; Luo, L.; Zheng, Y.; Huang, L.; Zhang, J.; Yang, Y.; Huang, H. Simultaneous Adsorption and Oxidation of Antimonite onto Nano Zero-Valent Iron Sludge-Based Biochar: Indispensable Role of Reactive Oxygen Species and Redox-Active Moieties. J. Hazard. Mater. 2020, 391, 122057. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, P.; Liu, F.; Li, F.; An, X.; Liu, J.; Wang, Z.; Shen, C.; Sand, W. Electroactive Modified Carbon Nanotube Filter for Simultaneous Detoxification and Sequestration of Sb(III). Environ. Sci. Technol. 2019, 53, 1527–1535. [Google Scholar] [CrossRef]
- Du, B.; Li, W.; Zhu, H.; Xu, J.; Wang, Q.; Shou, X.; Wang, X.; Zhou, J. A Functional Lignin for Heavy Metal Ions Adsorption and Wound Care Dressing. Int. J. Biol. Macromol. 2023, 239, 124268. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhu, H.; Yang, T.; Wang, X.; Wang, Z.; Lei, X.; Li, B.; Qian, W. Biomass-Derived Carbon/Iron Composite (FexOy-BC (RM)) with Excellent Cd(II) Adsorption from Wastewater—Red Mud Resource Utilization. Arab. J. Chem. 2024, 17, 105411. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, Y.; Yu, Y.; Yu, Z.; Lai, L.; Liu, F.; Wei, L.; Chen, Y. Bifunctional Catalysts for Heterogeneous Electro-Fenton Processes: A Review. Environ. Chem. Lett. 2022, 20, 3837–3859. [Google Scholar] [CrossRef]
- Awual, M.R.; Yaita, T.; Okamoto, Y. A Novel Ligand Based Dual Conjugate Adsorbent for Cobalt(II) and Copper(II) Ions Capturing from Water. Sens. Actuators B Chem. 2014, 203, 71–80. [Google Scholar] [CrossRef]
- Islam, M.A.; Awual, M.R.; Angove, M.J. A Review on Nickel(II) Adsorption in Single and Binary Component Systems and Future Path. J. Environ. Chem. Eng. 2019, 7, 103305. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Y.; Lin, Y.; Yang, D.; Zheng, H. Adsorption Behaviors of Paper Mill Sludge Biochar to Remove Cu, Zn and As in Wastewater. Environ. Technol. Innov. 2021, 23, 101616. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, J.; Sun, Y. Enhanced Immobilization of Lead, Cadmium, and Arsenic in Smelter-Contaminated Soil by Sulfidated Zero-Valent Iron. J. Hazard. Mater. 2023, 447, 130783. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, N.P.F.; Da Silva, E.F.; Tarelho, L.A.C.; Labrincha, J.A.; Novais, R.M. Simultaneous Removal of Multiple Metal(Loid)s and Neutralization of Acid Mine Drainage Using 3D-Printed Bauxite-Containing Geopolymers. J. Hazard. Mater. 2024, 462, 132718. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Y.; Jin, J.; Xu, M.; Zhang, Z.; Dong, F.; Shao, M.; Wan, Y. Characterization of Phosphate Modified Red Mud–Based Composite Materials and Study on Heavy Metal Adsorption. Environ. Sci. Pollut. Res. 2024, 31, 43687–43703. [Google Scholar] [CrossRef] [PubMed]
- Lan, B.; Wang, Y.; Wang, X.; Zhou, X.; Kang, Y.; Li, L. Aqueous Arsenic (As) and Antimony (Sb) Removal by Potassium Ferrate. Chem. Eng. J. 2016, 292, 389–397. [Google Scholar] [CrossRef]
- Li, Z.; Shao, L.; Ruan, Z.; Hu, W.; Lu, L.; Chen, Y. Converting Untreated Waste Office Paper and Chitosan into Aerogel Adsorbent for the Removal of Heavy Metal Ions. Carbohydr. Polym. 2018, 193, 221–227. [Google Scholar] [CrossRef]
- GB5085.3-2007; Hazardous Waste Identification Criteria: Leaching Toxicity Identification Standards. State Environmental Protection Administration: Beijing, China, 2007.
- Zhao, S.; Xia, M.; Yu, L.; Huang, X.; Jiao, B.; Li, D. Optimization for the Preparation of Composite Geopolymer Using Response Surface Methodology and Its Application in Lead-Zinc Tailings Solidification. Constr. Build. Mater. 2021, 266, 120969. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, P.; Lu, J. Application of Natural Biosorbent and Modified Peat for Bisphenol a Removal from Aqueous Solutions. Carbohydr. Polym. 2012, 88, 502–508. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, X.; Zhang, R.; Lu, J. Removal of Aniline from Aqueous Solution Using Pine Sawdust Modified with Citric Acid and β-Cyclodextrin. Ind. Eng. Chem. Res. 2014, 53, 887–894. [Google Scholar] [CrossRef]
- Piri, F.; Mollahosseini, A.; Khadir, A.; Milani Hosseini, M. Enhanced Adsorption of Dyes on Microwave-Assisted Synthesized Magnetic Zeolite-Hydroxyapatite Nanocomposite. J. Environ. Chem. Eng. 2019, 7, 103338. [Google Scholar] [CrossRef]
- Tu, Y.; Ren, L.-F.; Lin, Y.; Shao, J.; He, Y.; Gao, X.; Shen, Z. Adsorption of Antimonite and Antimonate from Aqueous Solution Using Modified Polyacrylonitrile with an Ultrahigh Percentage of Amidoxime Groups. J. Hazard. Mater. 2020, 388, 121997. [Google Scholar] [CrossRef]
- Yuh-Shan, H. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
- Kazak, O.; Tor, A. In Situ Preparation of Magnetic Hydrochar by Co-Hydrothermal Treatment of Waste Vinasse with Red Mud and Its Adsorption Property for Pb(II) in Aqueous Solution. J. Hazard. Mater. 2020, 393, 122391. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Yi, X.; Yang, Y.; Jiang, F.; Yin, H.; Dang, Z. Chemical Speciation and Distribution of Adsorbed Cd(ii) on Goethite: Influence of pH and Sulfate. Environ. Sci. Nano 2023, 10, 2500–2513. [Google Scholar] [CrossRef]
- Hu, S.; Fu, H.; Fu, J. Distinct Effects of Fe3+ on the Adsorption of Chromate and Arsenate: A Comparison of Iron-Bearing Ferrihydrite and Nano-TiO2 Absorbents. Environ. Technol. Innov. 2023, 32, 103418. [Google Scholar] [CrossRef]
- Kocik, E.M.; Kim, A.; Aiken, M.L.; Smith, L.; Kim, C.S. Sulfate Enhances the Adsorption and Retention of Cu(II) and Zn(II) to Dispersed and Aggregated Iron Oxyhydroxide Nanoparticles. Appl. Geochem. 2024, 162, 105929. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Uzum, C.; Shahwan, T.; Eroglu, A.; Hallam, K.; Scott, T.; Lieberwirth, I. Synthesis and Characterization of Kaolinite-Supported Zero-Valent Iron Nanoparticles and Their Application for the Removal of Aqueous Cu2+ and Co2+ Ions. Appl. Clay Sci. 2009, 43, 172–181. [Google Scholar] [CrossRef]
- Ifthikar, J.; Wang, J.; Wang, Q.; Wang, T.; Wang, H.; Khan, A.; Jawad, A.; Sun, T.; Jiao, X.; Chen, Z. Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications. Bioresour. Technol. 2017, 238, 399–406. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G.; Zheng, H.; Li, F.; Ngo, H.H.; Guo, W.; Liu, C.; Chen, L.; Xing, B. Investigating the Mechanisms of Biochar’s Removal of Lead from Solution. Bioresour. Technol. 2015, 177, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Lyu, J.; Liu, H.; Yang, J.; Yan, Z.; Yang, W.; Liu, X.; Qiu, J. Eco-Friendly Synthesis of Magnetic Zeolite A from Red Mud and Coal Gasification Slag for the Removal of Pb2+ and Cu2+. J. Environ. Chem. Eng. 2024, 12, 113739. [Google Scholar] [CrossRef]
- Ahmed, W.; Mehmood, S.; Mahmood, M.; Ali, S.; Shakoor, A.; Núñez-Delgado, A.; Asghar, R.M.A.; Zhao, H.; Liu, W.; Li, W. Adsorption of Pb(II) from Wastewater Using a Red Mud Modified Rice-Straw Biochar: Influencing Factors and Reusability. Environ. Pollut. 2023, 326, 121405. [Google Scholar] [CrossRef]
- Mohan, S.; Kumar, V.; Singh, D.K.; Hasan, S.H. Effective Removal of Lead Ions Using Graphene Oxide-MgO Nanohybrid from Aqueous Solution: Isotherm, Kinetic and Thermodynamic Modeling of Adsorption. J. Environ. Chem. Eng. 2017, 5, 2259–2273. [Google Scholar] [CrossRef]
- Jun, B.-M.; Kim, S.; Kim, Y.; Her, N.; Heo, J.; Han, J.; Jang, M.; Park, C.M.; Yoon, Y. Comprehensive Evaluation on Removal of Lead by Graphene Oxide and Metal Organic Framework. Chemosphere 2019, 231, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Eltaweil, A.S.; Ali Mohamed, H.; Abd El-Monaem, E.M.; El-Subruiti, G.M. Mesoporous Magnetic Biochar Composite for Enhanced Adsorption of Malachite Green Dye: Characterization, Adsorption Kinetics, Thermodynamics and Isotherms. Adv. Powder Technol. 2020, 31, 1253–1263. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, L.; Jiang, Z.; Liu, C.; Zhang, Q.; Zou, Y.; Chen, Y.; Li, J.; Liu, X. Feasible Low-Cost Conversion of Red Mud into Magnetically Separated and Recycled Hybrid SrFe12O19@NaP1 Zeolite as a Novel Wastewater Adsorbent. Chem. Eng. J. 2021, 417, 128090. [Google Scholar] [CrossRef]
- Li, T.; He, Y.; Peng, X. Efficient Removal of Tetrabromobisphenol A (TBBPA) Using Sewage Sludge-Derived Biochar: Adsorptive Effect and Mechanism. Chemosphere 2020, 251, 126370. [Google Scholar] [CrossRef]
- Zhang, D.-R.; Chen, H.-R.; Zhao, X.-J.; Xia, J.-L.; Nie, Z.; Zhang, R.; Shu, W.-S.; Pakostova, E. Fe(II) Bio-Oxidation Mediates Red Mud Transformations to Form Fe(III)/Al (Hydr)Oxide Adsorbent for Efficient As(V) Removal under Acidic Conditions. Chem. Eng. J. 2022, 439, 135753. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | Practical Applicability |
---|---|---|---|
Heat treatment | Significant improvement in activity | High energy consumption, risk of secondary pollution | Acidic wastewater treatment agent |
Neutralization | Significant reduction in alkalinity, low cost, and easy to operate | Salt accumulation limits performance improvement | Building material pretreatment, soil improvement |
Organic modification | Good ecological compatibility, carbon sequestration, and emission reduction | Low intensity, long cycle | Ecological restoration |
Metal compound modification | Excellent adsorption performance, functional design | High cost, complex process | Remediation of water contaminated with heavy metals or arsenic |
Method | Advantages | Disadvantages | References |
---|---|---|---|
Alkali fusion | Effortless operation and rapid reaction time. | Equipment degradation, energy consumption, and alkali use rise. | [117] |
Hydrothermal | Superior crystal quality and minimal reaction temperature. | Elevated equipment prerequisites and inadequate safety features. | [118] |
Pyrolysis | Elevated resource recovery rate and ecological advantages. | High energy use, complex products, and complicated technology. | [119] |
Cured Foam Method | Pollution reduction and productivity boost. | Process complexity, energy, equipment, and material restrictions. | [120] |
Carbothermal reduction | High output, simple process control, repeatability. | High reaction temperature, equipment needs, and manufacturing costs. | [121] |
CVD method | Very good coverage, scalability, and performance. | Lack of precision, contamination, and material restrictions. | [122] |
Test Methods | Absorbent | Cd | Pb | Cr | As | Zn | Cu | Ni | References |
---|---|---|---|---|---|---|---|---|---|
GB5085.3-2007 | RM | 0.0081 | 0.28 | 0.291 | 2.267 | 0.43 | 0.132 | ND | [11] |
RM | ND | 0.576 | 1.327 | NO | NO | 0.0104 | NO | [153] | |
Mn-RM | 0.016 | 0.21 | 0.54 | ND | 0.07 | 0.126 | ND | [11] | |
Red mud | ND | ND | ND | ND | 0.37 | 0.06 | 0.06 | [143] | |
NaSi-MGP | ND | 0.327 | ND | NO | NO | 0.0104 | NO | [153] | |
Norm | 1 | 5 | 15 | 5 | 100 | 100 | 5 | [181] |
Materials | Material Price (CNY kg−1) c | Advantages | Disadvantages |
---|---|---|---|
Soil a | 0.43–6.34 | Richness, accessibility | Limited affinity, requiring special handling and disposal |
Rock a | 0.035–8.33 | ||
Clay a & b | 0.12–11.10 | Excellent porosity, large surface area | High doses require special handling and disposal. |
Iron oxide a & b | 0.034–300.00 | Inherent magnetism | Dependent on environmental conditions |
Apatite a & b | 8.00–380.00 | Availability and efficiency | Eutrophication, ion (NH4+) leaching |
Struvite a & b | 4.00–2400.00 | ||
Zeolite a & b | 0.15–5.00 | Honeycomb porous structure with a large specific surface area | Recycling is challenging and inefficient, using solvent heat/hydrothermal treatment, which increases material costs. |
Cellulose a & b | 0.99–94.1 | Unique structure and function provide specific active adsorption sites | The processing procedure is complex, the scope of application is limited, and selectivity and affinity are limited. |
Alginate a & b | 10.00–120.00 | Rich in functional groups (-OH and -COOH) | Has a certain solubility and needs to be modified. |
Chitin/chitosan a & b | 1.00–900.00 | Rich in amino and hydroxyl groups | Poor mechanical stability, easily soluble in acidic solutions |
Biochar a & b | 0.80–130.00 | Large specific surface area, rich in oxygen-containing functional groups | The properties may fluctuate depending on process factors (temperature) and contain toxic substances (HMs, etc.). |
Agricultural and local wastes b | 0.001–11.00 | Low cost, easy to obtain | May release toxic elements, have limited mechanical strength, and have adsorption capacity |
Iron Content (Fe2O3) | Price (CNY/ton) | Price (CNY/kg) | Source Company | Time |
---|---|---|---|---|
≥64% | 80.00 | 0.080 | China Aluminum (Zhengzhou) Aluminum Industry | 2025.05 |
60~64% | Base price + floating rate * | 0.070~0.075 * | China Aluminum (Zhengzhou) Aluminum Industry | 2025.03 |
56~60% | Base price + floating rate * | 0.065~0.070 * | China Aluminum (Zhengzhou) Aluminum Industry | 2025.03 |
50~56% | 1.20 | 0.0012 | China Aluminum (Zhengzhou) Aluminum Industry | 2024.12 |
Not specified (industrial waste residue) | 46.46 | 0.046 | Tianjin Jinyu Zhenxing Environmental Protection | 2025.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Deng, R.; Hou, B.; Peng, L.; Ren, B.; Kong, X.; Zhang, B.; Hursthouse, A. Sustainable Remediation: Advances in Red Mud-Based Synergistic Fabrication Techniques and Mechanistic Insights for Enhanced Heavy Metal(Loid)s Sorption in Wastewater. Processes 2025, 13, 2249. https://doi.org/10.3390/pr13072249
Li F, Deng R, Hou B, Peng L, Ren B, Kong X, Zhang B, Hursthouse A. Sustainable Remediation: Advances in Red Mud-Based Synergistic Fabrication Techniques and Mechanistic Insights for Enhanced Heavy Metal(Loid)s Sorption in Wastewater. Processes. 2025; 13(7):2249. https://doi.org/10.3390/pr13072249
Chicago/Turabian StyleLi, Feng, Renjian Deng, Baolin Hou, Lingyu Peng, Bozhi Ren, Xiangxing Kong, Bo Zhang, and Andrew Hursthouse. 2025. "Sustainable Remediation: Advances in Red Mud-Based Synergistic Fabrication Techniques and Mechanistic Insights for Enhanced Heavy Metal(Loid)s Sorption in Wastewater" Processes 13, no. 7: 2249. https://doi.org/10.3390/pr13072249
APA StyleLi, F., Deng, R., Hou, B., Peng, L., Ren, B., Kong, X., Zhang, B., & Hursthouse, A. (2025). Sustainable Remediation: Advances in Red Mud-Based Synergistic Fabrication Techniques and Mechanistic Insights for Enhanced Heavy Metal(Loid)s Sorption in Wastewater. Processes, 13(7), 2249. https://doi.org/10.3390/pr13072249