Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Fe–Cu Alloy
2.2. Fabrication of Fe–Cu–Coated Electrode
2.3. Characterization
2.4. Synthesis of Wastewater
2.5. Experimental Setup for Nitrate Removal from Synthesized Wastewater
3. Results and Discussion
3.1. Fe–Cu Alloys
3.2. Crystalline Structure of Fe–Cu Alloys
3.3. Surface Morphology of Fe–Cu Alloys
3.4. TEM of Fe–Cu Alloys
3.5. AFM of Cu and Fe–Cu Alloy-Coated Cu
3.6. Surface Morphology of Fe–Cu Alloy-Coated Cu Substrate
3.7. Experimental Test for Nitrate Removal from Synthesized Wastewater
3.8. Cost-Effectiveness and Pros of the Fe–Cu Treatment Process
4. Conclusions
5. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Ling, J.; Yu, W.; Zhang, L.; Wu, R.; Yang, D.; Qu, J.; Jin, H.; Tao, Z.; Shen, Y.; et al. Identification of point and nonpoint emission sources of neonicotinoid pollution in regional surface water. Water Res. 2024, 248, 120863. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Tian, Y.; Shen, X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 2018, 192, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Rajta, A.; Bhatia, R.; Setia, H.; Pathania, P. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J. Appl. Microbiol. 2020, 128, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Focht, D.D.; Chang, A.C. Nitrification and denitrification processes related to waste water Treatment. Adv. Appl. Microbiol. 1975, 19, 153–186. [Google Scholar]
- Xu, D.; Li, Y.; Yin, L.; Ji, Y.; Niu, J.; Yu, Y. Electrochemical removal of nitrate in industrial wastewater. Front. Environ. Sci. Eng. 2018, 12, 9. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, D.; Zhai, S.; Liu, Y.; Dou, C.; Chen, P.; Huang, G. Electrochemical behaviors and influence factors of copper and copper alloys cathode for electrocatalytic nitrate removal. Water Environ. Res. 2019, 91, 1589–1599. [Google Scholar] [CrossRef]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 2017, 186, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Sui, M.; Li, Y.; Jiang, Y.; Wang, L.; Zhang, W.; Sathishkumara, K.; Zakaria, H. Sediment-based biochar facilitates highly efficient nitrate removal: Physicochemical properties, biological responses and potential mechanism. Chem. Eng. J. 2021, 405, 126645. [Google Scholar] [CrossRef]
- Asefaw, K.T.; Bidira, F.; Desta, W.M.; Asaithambi, P. Investigation on pulsed-electrocoagulation process for the treatment of wet coffee processing wastewater using an aluminum electrode. Sustain. Chem. Environ. 2024, 6, 100085. [Google Scholar] [CrossRef]
- Koparal, A.S.; Öğütveren, Ü.B. Removal of nitrate from water by electroreduction and electrocoagulation. J. Hazard. Mater. 2002, 89, 83–94. [Google Scholar] [CrossRef]
- Govindan, K.; Noel, M.; Mohan, R. Removal of nitrate ion from water by electrochemical approaches. J. Water Process. Eng. 2015, 6, 58–63. [Google Scholar] [CrossRef]
- Lacasa, E.; Cañizares, P.; Llanos, J.; Rodrigo, M.A. Removal of nitrates by electrolysis in non-chloride media: Effect of the anode material. Sep. Purif. Technol. 2011, 80, 592–599. [Google Scholar] [CrossRef]
- Duca, M.; Sacré, N.; Wang, A.; Garbarino, S.; Guay, D. Enhanced electrocatalytic nitrate reduction by preferentially-oriented (100) PtRh and PtIr alloys: The hidden treasures of the “miscibility gap”. Appl. Catal. B Environ. 2018, 221, 86–96. [Google Scholar] [CrossRef]
- Zhang, R.; Shuai, D.; Guy, K.; Shapley, J.; Strathmann, T.; Werth, C. Elucidation of nitrate reduction mechanisms on a Pd-In bimetallic catalyst using isotope labeled nitrogen species. ChemCatChem 2013, 5, 313–321. [Google Scholar] [CrossRef]
- Pérez-Gallent, E.; Figueiredo, M.; Katsounaros, I.; Koper, M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2016, 227, 77–84. [Google Scholar] [CrossRef]
- Ren, M.; Song, Y.; Xiao, S.; Zeng, P.; Peng, J. Treatment of berberine hydrochloride wastewater by using pulse electro-coagulation process with Fe electrode. Chem. Eng. J. 2011, 169, 84–90. [Google Scholar] [CrossRef]
- Vasudevan, S. Effects of alternating current (AC) and direct current (DC) in electrocoagulation process for the removal of iron from water. Can. J. Chem. Eng. 2012, 90, 1160–1169. [Google Scholar] [CrossRef]
- Karamati-Niaragh, E.; Alavi Moghaddam, M.R.; Emamjomeh, M.M.; Nazlabadi, E. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM. J. Environ. Manag. 2019, 230, 245–254. [Google Scholar] [CrossRef]
- Hariri, M.B.; Botte, G.G. Simultaneous removal of ammonia and nitrate from wastewater using a pulse electrolysis technique. J. Electrochem. Soc. 2023, 170, 053502. [Google Scholar] [CrossRef]
- Atkins, A.P.; Lennox, A.J.J. Application of pulsed electrolysis in organic electrosynthesis. Curr. Opin. Electrochem. 2024, 44, 101441. [Google Scholar] [CrossRef]
- Li, S.; Zheng, C.; Yang, S.; Ma, T.; Yang, L.; Gao, Y. Reduction of nitrogen and phosphorus loading from polluted sediment by electrolysis. Ecol. Eng. 2021, 159, 106088. [Google Scholar] [CrossRef]
- Demir, N.; Kaya, M.F.; Albawabiji, M.S. Effect of pulse potential on alkaline water electrolysis performance. Int. J. Hydrogen Energy. 2018, 43, 17013–17020. [Google Scholar] [CrossRef]
- Jiang, C.J.; Liu, L.F.; Crittenden, J.C. An electrochemical process that uses an FeO/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Front. Environ. Sci. Eng. 2016, 10, 15. [Google Scholar] [CrossRef]
- Ghazouani, M.; Akrout, H.; Bousselmi, L. Efficiency of electro chemical denitrification using electrolysis cell containing BDD electrode. Desalin. Water Treat. 2015, 53, 1107. [Google Scholar] [CrossRef]
- Li, L.; Yun, Y.; Zhang, Y.; Huang, Y.; Xu, Z. Electrolytic reduction of nitrate on copper and its binary composite electrodes. J. Alloys Compd. 2018, 766, 157–160. [Google Scholar] [CrossRef]
- Paliwal, A.; Bandas, C.D.; Thornburg, E.S.; Haasch, R.T.; Gewirth, A.A. Enhanced nitrate reduction activity from cu-alloy electrodes in an alkaline electrolyte. ACS Catal. 2023, 13, 6754–6762. [Google Scholar] [CrossRef]
- Li, W.; Yin, Q.; Liu, C.; Yang, S.; Jin, D.; Wang, X.; Song, L. Fabrication of FeCu/CC composite for efficient removal of nitrate for aqueous solution via electrochemical reduction process. ChemCatChem 2024, 16, 202401017. [Google Scholar] [CrossRef]
- Jia, Z.; Feng, T.; Ma, M.; Li, Z.; Tang, L. Emerging advances in Cu-based electrocatalysts for electrochemical nitrate reduction (NO3RR). Surf. Interfaces 2024, 48, 104294. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Zhang, S.; Chen, D.; Yan, S.; Xie, R. Efficient electrochemical nitrate reduction with CoFe@Cu foam electrode: Experimental study and high N2 selectivity. Ionics 2025, 31, 3525–3536. [Google Scholar] [CrossRef]
- Alami, A.H.; Hawili, A.A. Synthesis, characterization and applications of FeCu alloys. Appl. Surf. Sci. Adv. 2020, 1, 100027. [Google Scholar] [CrossRef]
- Xu, H.; Bao, H.; Li, Y.; Bai, H.; Ma, F. Atomic scale insights into the rapid crystallization and precipitation behaviors in FeCu binary alloys. J. Alloys Compd. 2021, 882, 160725. [Google Scholar] [CrossRef]
- Lozhkomoev, A.S.; Lerner, M.I.; Pervikov, A.V.; Naidenkin, E.V.; Mishin, I.P.; Vorozhtsov, A.B.; Apkarian, A.S.; Eskin, D.G. The formation of Fe–Cu composite based on bimetallic nanoparticles. Vacuum 2019, 159, 441–446. [Google Scholar] [CrossRef]
- Swiatkowska-Warkocka, Z. Bimetal CuFe nanoparticles-synthesis, properties, and applications. Appl. Sci. 2021, 11, 1978. [Google Scholar] [CrossRef]
- Shang, X.; Wang, X.; Chen, S. Effects of ball milling processing conditions and alloy components on the synthesis of Cu-Nb and Cu-Mo alloys. Materials 2019, 12, 1224. [Google Scholar] [CrossRef]
- Alami, A.H.; Abed, J.; Almheiri, M.; Alketbi, A.; Aokal, C. Fe–Cu metastable material as a mesoporous layer for dye-sensitized solar cells. Energy Sci. Eng. 2016, 4, 166–179. [Google Scholar] [CrossRef]
- Naoui, Y.; Settar, A.; Chetehouna, K.; Bouleklab, M.C.; Revo, S.; Hamamda, S. Effect of multiwall carbon nanotube (MWCNT) content on thermal and structural properties enhancement of FeCu-MWCNT nanocomposites synthesized by high-energy ball milling. Appl. Phys. A Mater. Sci. Process. 2020, 126, 283. [Google Scholar] [CrossRef]
- Jiang, D.; Huang, D.; Lai, C.; Xu, P.; Zeng, G.; Wan, J.; Tang, L.; Dong, H.; Huang, B.; Hu, T. Difunctional chitosan-stabilized Fe/Cu bimetallic nanoparticles for removal of hexavalent chromium wastewater. Sci. Total Environ. 2018, 644, 1181–1189. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Chen, Z.; Wang, L.; Zhou, L.; Wu, P.; Wang, F.; Ou, P. Fe/Cu composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal. J. Electrochem. Soc. 2018, 165, E420–E428. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Z.; Xu, J. Electrochemical mechanisms and optimization system of nitrate removal from groundwater by polymetallic nanoelectrodes. Int. J. Environ. Res. Public Health 2023, 20, 1923. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, M.; Feng, L.; Liu, Y. Electrochemical simultaneous denitrification and removal of phosphorus from the effluent of a municipal wastewater treatment plant using cheap metal electrodes. Environ. Sci. Water Res. Technol. 2022, 6, 1095–1105. [Google Scholar]
- Wang, Y.; Wang, Q.; Chang, Q.; Hu, S.; Wang, X.; Yang, K. Effect of particle size on the blue chromate pigment CoAl2O4. J. Ceram. Sci. Technol. 2018, 9, 43–46. [Google Scholar]
- Liu, Y.; Qiao, Y.; Nie, Q.; Xiong, L.; Zeng, Q.; Wang, B.; Lv, H.; Yu, H.; Yang, G. High photoelectric performance of Cu-based AZO multilayer films deposited via TiO2 barrier layer and oxygen-containing atmosphere. Ceram. Int. 2019, 45, 24303–24308. [Google Scholar]
- Wang, X.; Tang, L.; Yang, T.; Shi, Y.; Liu, F.; Jiang, H. Remediation of bensulfuron methyl polluted water and soil by Fe2O3/Fe3O4@C activating peroxymonosulfate: Chloride enhancement effect and phytotoxicity assessment. Chem. Eng. J. 2023, 474, 145439. [Google Scholar] [CrossRef]
- Guettari, F.; Rehamnia, R. Electrochemical removal kinetics of nitrate ions on copper from acidic medium. Pol. J. Environ. Stud. 2023, 32, 5061–5069. [Google Scholar] [CrossRef]
- Vilardi, G.; Di Palma, L. Kinetic study of nitrate removal from aqueous solutions using copper-coated iron nanoparticles. Bull. Environ. Contam. Toxicol. 2017, 98, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Ying, D.; Ye, D.; Zhang, R.; Guo, Q.; Wang, Y.; Jia, J. Electrochemical study of enhanced nitrate removal in wastewater treatment using biofilm electrode. Bioresour. Technol. 2018, 252, 134–142. [Google Scholar] [CrossRef]
- Gao, W.; Gao, L.; Li, D.; Huang, K.; Cui, L.; Meng, J.; Liang, J. Removal of nitrate from water by the electrocatalytic denitrification on the Cu-Bi electrode. J. Electroanal. Chem. 2018, 817, 202–209. [Google Scholar] [CrossRef]
Element | Wt (%) | Atomic (%) |
---|---|---|
Fe | 50.18 | 53.40 |
Cu | 49.82 | 46.60 |
Total | 100.00 | 100.00 |
Cathode | Cathode Area (cm2) | Treatment Time (min) | Chemical | Removal Efficiency (%) | Reference |
---|---|---|---|---|---|
Fe–Cu | 7.5 | 90 | - | 96.90 | This study |
Fe–Cu | 12 | 90 | ✓ | 98.60 | [38] |
Cu–Fe | - | 120 | ✓ | 73 | [45] |
Biofilm | - | 300 | ✓ | 76 | [46] |
Cu–Bi | 1 | 240 | ✓ | 87.5 | [47] |
Aspect | Conventional Systems (e.g., Pt, BDD) | This Work (Fe–Cu Alloy Cathode) |
---|---|---|
Electrode material | CVD, electrodeposition | Fe–Cu alloy (abundant, low cost) |
Fabrication method | Often required | Ball milling + annealing (scalable) |
Catalyst addition | Frequently needed | Not required |
pH adjustment | Frequently needed | No pH control |
Supporting chemicals | Acid/base, buffer, electrolyte salts | None used |
System complexity | Moderate to high | Simple and low maintenance |
Environmental impact | Chemical residues possible | Environmentally benign |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayeedah, H.; Sakulkalavek, A.; Klongratog, B.; Somdock, N.; Srirach, P.; Limsuwan, P.; Naemchanthara, K. Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater. Processes 2025, 13, 2232. https://doi.org/10.3390/pr13072232
Hayeedah H, Sakulkalavek A, Klongratog B, Somdock N, Srirach P, Limsuwan P, Naemchanthara K. Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater. Processes. 2025; 13(7):2232. https://doi.org/10.3390/pr13072232
Chicago/Turabian StyleHayeedah, Hannanatullgharah, Aparporn Sakulkalavek, Bhanupol Klongratog, Nuttakrit Somdock, Pisan Srirach, Pichet Limsuwan, and Kittisakchai Naemchanthara. 2025. "Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater" Processes 13, no. 7: 2232. https://doi.org/10.3390/pr13072232
APA StyleHayeedah, H., Sakulkalavek, A., Klongratog, B., Somdock, N., Srirach, P., Limsuwan, P., & Naemchanthara, K. (2025). Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater. Processes, 13(7), 2232. https://doi.org/10.3390/pr13072232