Advancements in Organic Solvent Nanofiltration: The Critical Role of Polyamide Membranes in Sustainable Industrial Applications
Abstract
1. Introduction
2. Polyamide Membrane Fabrication
2.1. Materials Used
2.2. Fabrication Techniques
2.2.1. Phase Inversion Process
2.2.2. Interfacial Polymerization
2.2.3. Other Methods
Stretching Method
Track-Etching Method
Electrospinning Method
Layer-by-Layer (LbL) Assembly
3. Modification Strategies for Enhanced Performance
3.1. Surface Modification Techniques
3.2. Incorporation of Nanoparticles
3.2.1. Types of Nanoparticles Used
3.2.2. Modification Techniques
3.2.3. Performance Enhancements
3.3. Blending with Other Polymers
3.3.1. Blending with Flexible Polymers
3.3.2. Incorporation of Hyperbranched Polymers
3.3.3. Blending with Thermoplastic Polyurethanes
3.3.4. Challenges and Considerations
4. Properties of Polyamide Membranes
4.1. Structural Characteristics
4.1.1. Pore Structure and Size Distribution
4.1.2. Layer Structure
4.1.3. Morphological Features
4.2. Chemical Composition
4.2.1. Basic Chemical Structure
4.2.2. Additives and Modifications
4.2.3. Crosslinking and Density
4.2.4. Chemical Stability
4.3. Mechanical Properties
4.3.1. Tensile Strength
4.3.2. Elongation at Break
4.3.3. Stiffness and Young’s Modulus
4.3.4. Impact of Additives and Modification
4.3.5. Durability and Resistance to Deformation
4.4. Thermal Stability
4.4.1. Thermal Stability Characteristics
4.4.2. Thermal Response Under Operational Conditions
4.4.3. Comparative Studies on Fabrication Conditions
4.4.4. Long-Term Stability
5. Application of Polyamide Membranes in Industry
5.1. Pharmaceutical Industry
5.2. Chemical Industry
5.3. Food and Beverage Industry
5.4. Semiconductor Industry
6. Challenges and Limitations
6.1. Membrane Fouling
6.2. Chemical Stability
6.3. Cost of Production
7. Future Perspectives
7.1. Advancements in Ultrathin Membranes
7.2. Enhanced Antifouling Properties
7.3. Sustainability and Environmental Impact
7.4. Broader Application Spectrum
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, H.; Feng, Y.; Goundry, W.R.F.; Karlsson, S. Organic Solvent Nanofiltration in Pharmaceutical Applications. Org. Process. Res. Dev. 2024, 28, 891–923. [Google Scholar] [CrossRef] [PubMed]
- Abejon, R.; Garea, A.; Irabien, A. Organic solvent recovery and reuse in pharmaceutical purification processes by nanofiltration membrane cascades. Chem. Eng. Trans. 2015, 43, 1057–1062. [Google Scholar]
- Aboagye, E.A.; Chea, J.D.; Yenkie, K.M. Systems level roadmap for solvent recovery and reuse in industries. iScience 2021, 24, 103114. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Chung, T.-S. Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery. Nat. Commun. 2018, 9, 1426. [Google Scholar] [CrossRef]
- Sheikh, T. Green analytical approaches and eco-friendly solvents: Advancing industrial applications and environmental sus-tainability: A comprehensive review. Orient. J. Chem. 2025, 41, 2. [Google Scholar]
- Schuur, B.; Brouwer, T.; Smink, D.; Sparkel, L.M.J. Green solvents for sustainable separation processes. Curr. Option Green Sustain. Chem. 2019, 18, 57–65. [Google Scholar] [CrossRef]
- Yamaki, T.; Yoshimune, M.; Hara, N.; Negishi, H. Energy-Saving Performance of Membrane Separation and Hybrid Membrane Separation/Distillation for Propylene/Propane Binary Systems. J. Jpn. Pet. Inst. 2019, 62, 80–86. [Google Scholar] [CrossRef]
- Chen, J.-F.; Zhai, R.-X.; Sun, C.P.; Dong, H. Geodesic Lower Bound of the Energy Consumption to Achieve Membrane Separation Within Finite Time. PRX Energy 2023, 2, 033003. [Google Scholar] [CrossRef]
- Szekely, G.; Marchetti, P.; Jimenez-Solomon, M.F.; Livingston, A.G. Organic Solvent Nanofiltration. In Encyclopedia of Membrane Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–37. [Google Scholar]
- Fan, H.; He, J.; Heiranian, M.; Pan, W.; Li, Y.; Elimelech, M. The physical basis for solvent flow in organic solvent nanofiltration. Sci. Adv. 2024, 10, 24. [Google Scholar] [CrossRef]
- Phuong, H.A.L. Sustainable Organic Solvent Nanofiltration Membranes. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2022. [Google Scholar]
- Le Phuong, H.A.; Blanford, C.F.; Szekely, G. Reporting the unreported: The reliability and comparability of the literature on organic solvent nanofiltration. Green Chem. 2020, 22, 3397–3409. [Google Scholar] [CrossRef]
- Szekely, G.; Jimenez-Solomon, M.F.; Marchetti, P.; Kim, J.F.; Livingston, A.G. Sustainability assessment of organic solvent nanofiltration: From fabrication to application. Green Chem. 2014, 16, 4440–4473. [Google Scholar] [CrossRef]
- Galizia, M.; Bye, K.P. Advances in Organic Solvent Nanofiltration Rely on Physical Chemistry and Polymer Chemistry. Front. Chem. 2018, 6, 511. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Le Phuong, H.A.; Blanford, C.F.; Szekely, G. Tailoring the Performance of Organic Solvent Nanofiltration Membranes with Biophenol Coatings. ACS Appl. Polym. Mater. 2019, 1, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Solomon, M.F.J.; Szekely, G.; Livingston, A.G. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef]
- Low, Z.-X.; Shen, J. Determining stability of organic solvent nanofiltration membranes by cross-flow aging. Sep. Purif. Technol. 2021, 256, 117840. [Google Scholar] [CrossRef]
- Tong, Y.-H.; Luo, L.-H.; Jia, R.; Han, R.; Xu, S.-J.; Xu, Z.-L. Whether membranes developed for organic solvent nanofiltration (OSN) tend to be hydrophilic or hydrophobic?: A review. Heliyon 2024, 10, e24330. [Google Scholar] [CrossRef]
- Marchetti, P.; Peeva, L.; Livingston, A. The Selectivity Challenge in Organic Solvent Nanofiltration: Membrane and Process Solutions. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 473–497. [Google Scholar] [CrossRef]
- Eltahan, A.; Ismail, N.; Khalil, M.; Ebrahim, S.; Soliman, M.; Nassef, E.; Morsy, A. Advanced fabrication and characterization of thin-film composite polyamide membranes for superior performance in reverse osmosis desalination. Sci. Rep. 2025, 15, 15131. [Google Scholar] [CrossRef]
- Freger, V.; Ramon, G.Z. Polyamide desalination membranes: Formation, structure, and properties. Prog. Polym. Sci. 2021, 122, 101451. [Google Scholar] [CrossRef]
- Gu, Q.-A.; Liu, L.; Wang, Y.; Yu, C. Surface modification of polyamide reverse osmosis membranes with small-molecule zwitterions for enhanced fouling resistance: A molecular simulation study. Phys. Chem. Chem. Phys. 2021, 23, 6623–6631. [Google Scholar] [CrossRef]
- Baig, U.; Waheed, A. Exploiting interfacial polymerization to fabricate hyper-cross-linked nanofiltration membrane with a constituent linear aliphatic amine for freshwater production. NPJ Clean Water 2022, 5, 46. [Google Scholar] [CrossRef]
- Seah, M.Q.; Lau, W.J.; Goh, P.S.; Tseng, H.-H.; Wahab, R.A.; Ismail, A.F. Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers 2020, 12, 2817. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zhang, Z.; Xiong, S.; Zhou, J.; Wang, Y. Additive manufacturing of defect-healing polyamide membranes for fast and robust desalination. J. Membr. Sci. 2023, 671, 121407. [Google Scholar] [CrossRef]
- Meng, Q.-W.; Cheng, L.; Ge, Q. Recent advances and future challenges of polyamide-based chlorine-resistant membrane. Adv. Membr. 2023, 3, 100075. [Google Scholar] [CrossRef]
- Lai, G.S.; Lau, W.J.; Gray, S.R.; Matsuura, T.; Gohari, R.J.; Subramanian, M.N.; Lai, S.O.; Ong, C.S.; Ismail, A.F.; Emazadah, D.; et al. A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment. J. Mater. Chem. A 2016, 4, 4134–4144. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Jia, Y.; Li, B.; Tang, W.; Shang, C.; Mo, R.; Li, P.; Liu, S.; Zhang, S. Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation. Nat. Commun. 2023, 14, 1112. [Google Scholar] [CrossRef]
- Xu, Y.; Hao, S.; Jia, D.; Qin, Y.; Wang, J.; Gao, J.; Xiao, J.; Hu, Y. Carboxyl-free polyamide reverse osmosis membrane with sustainable anti-fouling performance in treating industrial coke wastewater. Water Res. 2025, 280, 123495. [Google Scholar] [CrossRef]
- Shen, L.; Cheng, R.; Yi, M.; Hung, W.-S.; Japip, S.; Tian, L.; Zhang, X.; Jiang, S.; Li, S.; Wang, Y. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nat. Commun. 2022, 13, 500. [Google Scholar] [CrossRef]
- Liang, J.; Huang, H.; Zhang, H.; Wu, Y.; Zhuang, Y. Preparation of Thin Film Composite (TFC) Membrane with DESPs Interlayer and its Forward Osmosis (FO) Performance for Organic Solvent Recovery. Membranes 2023, 13, 688. [Google Scholar] [CrossRef]
- Ong, C.; Falca, G.; Huang, T.; Liu, J.; Manchanda, P.; Chisca, S.; Nunes, S.P. Green Synthesis of Thin-Film Composite Membranes for Organic Solvent Nanofiltration. ACS Sustain. Chem. Eng. 2020, 8, 11541–11548. [Google Scholar] [CrossRef]
- Aktij, S.A.; Firouzjaei, M.D.; Pilevar, M.; Asad, A.; Rahimpour, A.; Elliott, M.; Soares, J.B.P.; Sadrzadeh, M. Enhancing sus-tainable energy production through co-polyamide membranes for improved pressure-retarded osmosis performance and en-vironmental impact: Synthesis and life cycle analysis. Green Chem. 2025, 27, 586–606. [Google Scholar] [CrossRef]
- Jeon, S.; Nishitani, A.; Cheng, L.; Fang, L.-F.; Kato, N.; Shintani, T.; Matsuyama, H. One-step fabrication of polyamide 6 hollow fibre membrane using non-toxic diluents for organic solvent nanofiltration. RSC Adv. 2018, 8, 19879–19882. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Z.; Li, S.; Bruggen, B.V. Interfacially polymerized thin-film composite membranes for organic solvent nanofiltration. Adv. Mater. Interfaces 2021, 8, 2001671. [Google Scholar] [CrossRef]
- Waheed, A.; Baig, U.; Aljundi, I.H. Fabrication of polyamide thin film composite membranes using aliphatic tetra-amines and terephthaloyl chloride crosslinker for organic solvent nanofiltration. Sci. Rep. 2023, 13, 11691. [Google Scholar] [CrossRef]
- Kim, S.-M.; Hong, S.; Nguyen, B.-T.D.; Thi, H.-Y.N.; Park, S.-H.; Kim, J.-F. Effect of Additives during Interfacial Polymerization Reaction for Fabrication of Organic Solvent Nanofiltration (OSN) Membranes. Polymers 2021, 13, 1716. [Google Scholar] [CrossRef]
- Mehrabi, M.; Vatanpour, V. Polyamide-based separation membranes for liquid separation: A review on the fabrication techniques, applications and future perspectives. Mater. Today Chem. 2024, 35, 101895. [Google Scholar] [CrossRef]
- Wei, W.; Xia, S.; Liu, G.; Dong, X.; Jin, W.; Xu, N. Effects of polydimethylsiloxane (PDMS) molecular weight on performance of PDMS/ceramic composite membranes. J. Membr. Sci. 2011, 375, 334–344. [Google Scholar] [CrossRef]
- Bitter, J.H.; Tashvigh, A.A. Recent Advances in Polybenzimidazole Membranes for Hydrogen Purification. Ind. Eng. Chem. Res. 2022, 61, 6125–6134. [Google Scholar] [CrossRef]
- Abounahia, N.; Shahab, A.A.; Khan, M.M.; Qiblawey, H.; Zaidi, S.J. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. Membranes 2023, 13, 872. [Google Scholar] [CrossRef]
- He, Z.; Lyu, Z.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-based membranes for water and wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123513. [Google Scholar] [CrossRef]
- Geleta, T.A.; Maggay, I.V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes 2023, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Raveshiyan, S.; Amini, Y.; Zadhoush, A. A critical review with emphasis on the rheological behavior and properties of polymer solutions and their role in membrane formation, morphology, and performance. Adv. Colloid Interface Sci. 2023, 319, 102986. [Google Scholar] [CrossRef] [PubMed]
- Poletto, P.; Duarte, J.; Thürmer, M.B.; dos Santos, V.; Zeni, M. Characterization of Polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents. Mater. Res. 2011, 14, 547–551. [Google Scholar] [CrossRef]
- Yang, W.; Jia, M.; Shao, W.; Chen, Z.; He, J.; Wu, Q.; Zhang, P.; Xue, M.; Li, Y. Organic-organic interfacial polymerization for the ultrathin polyamide organic solvent nanofiltration membranes. J. Membr. Sci. 2024, 708, 123049. [Google Scholar] [CrossRef]
- Li, J.-B.; Zhu, C.-Y.; Li, H.-N.; Xin, J.-H.; Fan, H.-Y.; Zhang, C.; Wu, J.; Zhang, L.; Yang, H.-C.; Xu, Z.-K. Polyamide thin-film composite membranes with enhanced interfacial stability for durable organic solvent nanofiltration. J. Membr. Sci. 2024, 704, 122841. [Google Scholar] [CrossRef]
- Falca, G.; Musteata, V.E.; Chisca, S.; Hedhili, M.N.; Ong, C.; Nunes, S.P. Naturally Extracted Hydrophobic Solvent and Self-Assembly in Interfacial Polymerization. ACS Appl. Mater. Interfaces 2021, 13, 44824–44832. [Google Scholar] [CrossRef]
- Paseta, L.; Echaide-Górriz, C.; Téllez, C.; Coronas, J. Vapor phase interfacial polymerization: A method to synthesize thin film composite membranes without using organic solvents. Green Chem. 2021, 23, 2449–2456. [Google Scholar] [CrossRef]
- Lin, S.; Semiao, A.C.; Zhang, Y.; Lu, S.; Lau, C.H. Interfacial polymerization using biobased solvents and their application as desalination and organic solvent nanofiltration membranes. J. Membr. Sci. 2024, 692, 122281. [Google Scholar] [CrossRef]
- Zhao, G.; Gao, H.; Qu, Z.; Fan, H.; Meng, H. Anhydrous interfacial polymerization of sub-1 Å sieving polyamide membrane. Nat. Commun. 2023, 14, 7624. [Google Scholar] [CrossRef]
- Yang, X. Controllable Interfacial Polymerization for Nanofiltration Membrane Performance Improvement by the Polyphenol Interlayer. ACS Omega 2019, 4, 13824–13833. [Google Scholar] [CrossRef]
- Li, S.; Yang, F.; Liu, S.; Li, H.; Su, B.; Han, L.; Gao, X.; Gao, C. Effective regulating interfacial polymerization process of OSN membrane via in situ constructed nano-porous interlayer of 2D TpHz covalent organic frameworks. J. Membr. Sci. 2023, 665, 121101. [Google Scholar] [CrossRef]
- Wen, T.; Gao, Y.; Zhou, J.; Qiu, J.; Wang, S.; Loos, J.; Wang, D.; Dong, X. Fast Fabrication of Porous Amphiphilic Polyamides via Nonconventional Evaporation Induced Phase Separation. ACS Macro Lett. 2023, 12, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, X.; Zhang, J.; Zhang, F.; Fang, W.; Jin, J. Polymer membranes for organic solvent nanofiltration: Recent progress, challenges, and perspectives. Adv. Membr. 2023, 3, 100063. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Korolkov, I.V.; Dosmagambetova, S.S.; Zdorovets, M.V.; Güven, O. Recent Progress in the Membrane Distillation and Impact of Track-Etched Membranes. Polymers 2021, 13, 2520. [Google Scholar] [CrossRef]
- Zhao, Z.; Shehzad, M.A.; Wu, B.; Wang, X.; Yasmin, A.; Zhu, Y.; Wang, X.; He, Y.; Ge, L.; Li, X.; et al. Spray-deposited thin-film composite MOFs membranes for dyes removal. J. Membr. Sci. 2021, 635, 119475. [Google Scholar] [CrossRef]
- Yeszhanov, A.B.; Muslimova, I.B.; Melnikova, G.B.; Petrovskaya, A.S.; Seitbayev, A.S.; Chizhik, S.A.; Zhappar, N.K.; Korolkov, I.V.; Güven, O.; Zdorovets, M.V. Graft Polymerization of Stearyl Methacrylate on PET Track-Etched Membranes for Oil-Water Separation. Polymers 2022, 14, 3015. [Google Scholar] [CrossRef]
- Jaafar, J.; Nasir, A.M. Grand Challenge in Membrane Fabrication: Membrane Science and Technology. Front. Membr. Sci. Technol. 2022, 1, 883913. [Google Scholar] [CrossRef]
- You, X.; Chong, J.Y.; Goh, K.S.; Tian, M.; Chew, J.W.; Wang, R. Electrospun polyimide-based thin-film composite membranes for organic solvent nanofiltration. J. Membr. Sci. 2021, 640, 119825. [Google Scholar] [CrossRef]
- Rist, M.; Greiner, A. Bio-based electrospun polyamide membrane—Sustainable multipurpose filter membranes for micro-plastic filtration. RSC Appl. Polym. 2024, 2, 642–655. [Google Scholar] [CrossRef]
- Wang, L.; Fang, M.; Liu, J.; He, J.; Li, J.; Lei, J. Layer-by-Layer Fabrication of High-Performance Polyamide/ZIF-8 Nanocomposite Membrane for Nanofiltration Applications. ACS Appl. Mater. Interfaces 2015, 7, 24082–24093. [Google Scholar] [CrossRef]
- Helali, N.; Shamaei, L.; Rastgar, M.; Sadrzadeh, M. Development of layer-by-layer assembled polyamide-imide membranes for oil sands produced water treatment. Sci. Rep. 2021, 11, 8098. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.J.; Small, L.J.; Spoerke, E.D.; Rempe, S.B. Polyelectrolyte layer-by-layer deposition on nanoporous supports for ion selective membranes. RSC Adv. 2018, 8, 32992–32999. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Bandyopadhyay, P.; Kshetri, T.; Kim, N.H.; Ku, B.-C.; Moon, B.; Lee, J.H. Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas barrier application. Compos. Part B Eng. 2017, 114, 339–347. [Google Scholar] [CrossRef]
- Choi, W.; Choi, J.; Bang, J.; Lee, J.-H. Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications. ACS Appl. Mater. Interfaces 2013, 5, 12510–12519. [Google Scholar] [CrossRef]
- Jalalah, M.; Ahmad, A.; Saleem, A.; Qadir, M.B.; Khaliq, Z.; Khan, M.Q.; Nazir, A.; Faisal, M.; Alsaiari, M.; Irfan, M.; et al. Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications. Membranes 2022, 12, 1158. [Google Scholar] [CrossRef]
- Chen, J.-K.; Lin, F.-P.; Chang, C.-J.; Lu, C.-H.; Huang, C.-F. Facile Molecular Weight Determination of Polymer Brushes Grafted from One-Dimensional Diffraction Grating by SI-ATRP Using Reflective Laser System. Polymers 2021, 13, 4270. [Google Scholar] [CrossRef]
- Shintani, T.; Matsuyama, H.; Kurata, N. Effect of heat treatment on performance of chlorine-resistant polyamide reverse osmosis membranes. Desalination 2009, 247, 370–377. [Google Scholar] [CrossRef]
- Khorshidi, B.; Biswas, I.; Ghosh, T.; Thundat, T.; Sadrzadeh, M. Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Sci. Rep. 2018, 8, 784. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Mohammad, A.W.; Mahmoudi, E.; Ang, W.L.; Leo, C.P.; Teow, Y.H. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. Membranes 2022, 12, 1276. [Google Scholar] [CrossRef]
- Bergamasco, R.; Coldebella, P.F.; Camacho, F.P.; Rezende, D.; Yamaguchi, N.U.; Klen, M.R.F.; Tavares, C.J.M.; Amorim, M.T.S.P. Self-assembly modification of polyamide membrane by coating titanium dioxide nanoparticles for water treatment applications. Ambient. E Agua Interdiscip. J. Appl. Sci. 2019, 14, e2297. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, L.; Chen, Q.; Lu, H.; Wang, J. Modification of cation exchange membranes with conductive polyaniline for electrodialysis applications. J. Membr. Sci. 2019, 582, 211–223. [Google Scholar] [CrossRef]
- Liu, Z.; An, X.; Dong, C.; Zheng, S.; Mi, B.; Hu, Y. Modification of thin film composite polyamide membranes with 3D hyperbranched polyglycerol for simultaneous improvement in their filtration performance and antifouling properties. J. Mater. Chem. A 2017, 5, 23190–23197. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Kuzminova, A.; Zolotarev, A.; Liamin, V.; Plisko, T.; Burts, K.; Bildyukevich, A.; Ermakov, S.; Penkova, A. Novel high flux poly-phenylene isophthalamide)/TiO2 membranes for ultrafiltration with enhanced antifouling performance. Poly-mers 2021, 13, 2804. [Google Scholar]
- Azadi, E.; Singh, N.; Dinari, M.; Kim, J.S. Recent advances in the fabrication of organic solvent nanofiltration membranes using covalent/metal organic frameworks. Chem. Commun. 2024, 60, 2865–2886. [Google Scholar] [CrossRef]
- Gao, T.; Wu, H.; Tao, L.; Qu, L.; Li, C. Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration. J. Mater. Chem. A 2018, 6, 19563–19569. [Google Scholar] [CrossRef]
- Li, X.; Huang, G.; Chen, X.; Huang, J.; Li, M.; Yin, J.; Liang, Y.; Yao, Y.; Li, Y. A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment. Sci. Total. Environ. 2021, 792, 148462. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, P.; Wang, H.; Yu, H.; Zhang, S.; Zhu, H.; Peng, F.; Zhao, H. Facile Formation of Branched Titanate Nanotubes to Grow a Three-Dimensional Nanotubular Network Directly on a Solid Substrate. Langmuir 2010, 26, 1574–1578. [Google Scholar] [CrossRef]
- Mayyahi, A.A. TiO2 polyamide thin-film nanocomposite reverse osmosis membrane for water desalination. Membranes 2018, 8, 66. [Google Scholar] [CrossRef]
- Tang, Y.-J.; Xu, Z.-L.; Huang, B.-Q.; Wei, Y.-M.; Yang, H. Novel polyamide thin-film composite nanofiltration membrane modified with poly(amidoamine) and SiO2 gel. RSC Adv. 2016, 6, 45585–45594. [Google Scholar] [CrossRef]
- Zheng, P.; Jiang, L.; Zhang, Q.; Liu, Q.; Zhu, A. Fabrication of polyamide nanofiltration membrane with tannic acid/poly(sodium 4-styrenesulfonate) network-like interlayer for enhanced desalination performance. J. Colloid Interface Sci. 2024, 662, 707–718. [Google Scholar] [CrossRef]
- Ruan, H.; Li, B.; Ji, J.; Sotto, A.; Van der Bruggen, B.; Shen, J.; Gao, C. Preparation and characterization of an amphiphilic polyamide nanofiltration membrane with improved antifouling properties by two-step surface modification method. RSC Adv. 2018, 8, 13353–13363. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, J.; Li, S.; Guo, Z.; Van der Bruggen, B. Flexible Aliphatic–Aromatic Polyamide Thin Film Composite Membrane for Highly Efficient Organic Solvent Nanofiltration. ACS Appl. Mater. Interfaces 2020, 12, 31962–31974. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, Y.; Yang, L.; Su, M.; Niu, Y.; Liu, Y.; Sun, H.; Zhu, Z.; Liang, W.; Li, A. Highly efficient removal of PM and VOCs from air by a self-supporting bifunctional conjugated microporous polymers membrane. J. Membr. Sci. 2022, 659, 120728. [Google Scholar] [CrossRef]
- Choi, Y.Y.; To, D.T.H.; Kim, S.; Cwiertny, D.M.; Myung, N.V. Mechanically durable tri-composite polyamide 6/hematite nanoparticle/tetra-n-butylammonium bromide (PA6/α-Fe2O3/TBAB) nanofiber-based membranes for phosphate remediation. Front. Chem. 2024, 12, 1472640. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Han, S.; Lin, S.; Qi, Z.; Huang, F.; Feng, X.; Yao, Z.; Wang, J.; Zhang, L. Tailoring the selectivity of quasi-PIMs nanofiltration membrane via molecular flexibility of acyl chloride monomers for desalination from dye effluents. J. Membr. Sci. 2023, 671, 121382. [Google Scholar] [CrossRef]
- Emhjellen, L.K.; Xing, W.; Li, Z.; Haugsrud, R. Oxygen permeability and surface kinetics of composite oxygen transport membranes based on stabilized δ-Bi2O3. J. Membr. Sci. 2022, 660, 120875. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, H.; Lu, H.; Si, Y.; Dong, Y.; Zhu, Y.; Qian, C.; Fu, Y. Anisotropic shape memory composite for dynamically ad-justable electromagnetic interference shielding. ACS Appl. Polym. Mater. 2023, 5, 4400–4410. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Liu, Q.; Zheng, Z.; Guo, H. Single-layer membranes for organic solvent nanofiltration: A molecular dynamics simulation and comparative experimental study. RSC Adv. 2022, 12, 7189–7198. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhu, J.; Volodine, A.; Van der Bruggen, B. Controllable synthesis of a chemically stable molecular sieving nanofilm for highly efficient organic solvent nanofiltration. Chem. Sci. 2020, 11, 4263–4271. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, Y.; Liu, C.; Lee, K.-R.; Hung, W.-S.; Wang, Z.; Li, Y.; Elimelech, M.; Jin, J.; Lin, S. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 2020, 11, 2015. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, D.; Li, X.; Rehman, L.M.; Roy, A.; Lai, Z. Fabrication of highly permeable polyamide membranes with large “leaf-like” surface nanostructures on inorganic supports for organic solvent nanofiltration. J. Membr. Sci. 2020, 601, 117932. [Google Scholar] [CrossRef]
- Schauer, J.; Hnát, J.; Brožová, L.; Žitka, J.; Bouzek, K. Heterogeneous anion-selective membranes: Influence of a water-soluble component in the membrane on the morphology and ionic conductivity. J. Membr. Sci. 2012, 401, 83–88. [Google Scholar] [CrossRef]
- El-Gendi, A. A critical review of the preparation, characterization and applications of polyamide membranes. Desalination Water Treat. 2022, 255, 120–135. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Feng, S.; Wan, Y.; Luo, J. Enhancing the Antifouling Ability of a Polyamide Nanofiltration Membrane by Narrowing the Pore Size Distribution via One-Step Multiple Interfacial Polymerization. ACS Appl. Mater. Interfaces 2022, 14, 36132–36142. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Shinde, D.B.; Sheng, G.; Lu, D.; Li, P.; Lai, Z. Tuning the Surface Structure of Polyamide Membranes Using Porous Carbon Nitride Nanoparticles for High-Performance Seawater Desalination. Membranes 2020, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi, B.; Thundat, T.; Fleck, B.A.; Sadrzadeh, M. A Novel Approach Toward Fabrication of High-Performance Thin Film Composite Polyamide Membranes. Sci. Rep. 2016, 6, 22069. [Google Scholar] [CrossRef]
- Mo, J.; Son, S.H.; Jegal, J.; Kim, J.; Lee, Y.H. Preparation and characterization of polyamide nanofiltration composite membranes with TiO2 layers chemically connected to the membrane surface. J. Appl. Polym. Sci. 2007, 105, 1267–1274. [Google Scholar] [CrossRef]
- Korycka, P.; Mirek, A.; Kramek-Romanowska, K.; Grzeczkowicz, M.; Lewińska, D. Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design. Beilstein J. Nanotechnol. 2018, 9, 2466–2478. [Google Scholar] [CrossRef]
- Liu, W.; Walker, G.; Price, S.; Yang, X.; Li, J.; Bunt, C. Electrospun Membranes as a Porous Barrier for Molecular Transport: Membrane Characterization and Release Assessment. Pharmaceutics 2021, 13, 916. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kujawski, W.; Fatyeyeva, K. Fabrication of polyamide-6 membranes: The effect of gelation time on their morphological, physical, and transport properties. Membranes 2022, 12, 315. [Google Scholar] [CrossRef]
- Huang, T.; Moosa, B.A.; Hoang, P.; Liu, J.; Chisca, S.; Zhang, G.; AlYami, M.; Khashab, N.M.; Nunes, S.P. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat. Commun. 2020, 11, 5882. [Google Scholar] [CrossRef] [PubMed]
- Gohil, J.M.; Suresh, A.K. Performance and structure of thin-film composite reverse osmosis membranes prepared by interfacial polymerization in the presence of an acid acceptor. J. Membr. Sci. Res. 2019, 5, 3–10. [Google Scholar]
- Maaskant, E.; Vogel, W.; Dingemans, T.J.; Benes, N.E. The use of a star-shaped trifunctional acyl chloride for the preparation of polyamide thin film composite membranes. J. Membr. Sci. 2018, 567, 321–328. [Google Scholar] [CrossRef]
- Miao, M.-H.; Qiu, J.-K.; Xu, Z.-L.; Lian, C.; Liu, H.-L.; Li, J.-H.; Tang, Y.-J. The effect of diamine structure on the chemical stability of polyamide nanofiltration membranes: Experimental and density functional theory studies. J. Membr. Sci. 2023, 687, 122094. [Google Scholar] [CrossRef]
- Puspasari, T.; Chakrabarty, T.; Genduso, G.; Peinemann, K.-V. Unique cellulose/polydimethylsiloxane blends as an advanced hybrid material for organic solvent nanofiltration and pervaporation membranes. J. Mater. Chem. A 2018, 6, 13685–13695. [Google Scholar] [CrossRef]
- Ren, L.; Liu, J. Synthesis and gas transport properties of polyamide membranes containing PDMS groups. RSC Adv. 2019, 9, 9737–9744. [Google Scholar] [CrossRef]
- Wu, H.; Chen, X.-L.; Huang, X.; Ruan, H.-M.; Ji, Y.-L.; Liu, L.-F.; Gao, C.-J. A novel semi-aromatic polyamide TFC reverse osmosis membrane fabricated from a dendritic molecule of trimesoylamidoamine through a two-step amine-immersion mode. RSC Adv. 2017, 7, 39127–39137. [Google Scholar] [CrossRef]
- Sundet, S.A.; Arthur, S.D.; Campos, D.; Eckman, T.J.; Brown, R.G. Aromatic/cycloaliphatic polyamide membrane. Desalination 1987, 64, 259–269. [Google Scholar] [CrossRef]
- Liu, C.; Yang, D.J.; Guo, B.B.; Agarwal, S.; Greiner, A. Interfacial polymerization at the alkane/ionic liquid interface. Angew. Int. Ed. Chem. 2021, 60, 14636–14643. [Google Scholar] [CrossRef]
- Alhazmi, B.; Ignacz, G.; Vincenzo, M.D.; Hedhili, M.N.; Szekely, G.; Nunes, S.P. Ultra-selective macrocycle membranes for pharmaceutical ingredient separation in organic solvents. Nat. Commun. 2024, 15, 7151. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, F.; Zhao, Z.; Afsar, N.U.; Sheng, F.; Ge, L.; Li, X.; Zhang, X.; Xu, T. Novel Poly(Ester Amide) Membranes with Tunable Crosslinked Structures for Nanofiltration. ACS Appl. Mater. Interfaces 2022, 14, 10782–10792. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Z.; Zhao, S.; Ng, D.; Zhang, J.; Xie, Z. Dopamine incorporating forward osmosis membranes with enhanced selectivity and antifouling properties. RSC Adv. 2018, 8, 22469–22481. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Smith, J.W.; Chen, W.; Ou, Z.; Chen, Q. Charting the quantitative relationship between two-dimensional morphology parameters of polyamide membranes and synthesis conditions. Mol. Syst. Des. Eng. 2020, 5, 102–109. [Google Scholar] [CrossRef]
- Tandel, A.M.; Guo, W.; Bye, K.; Huang, L.; Galizia, M.; Lin, H. Designing organic solvent separation membranes: Polymers, porous structures, 2D materials, and their combinations. Mater. Adv. 2021, 2, 4574–4603. [Google Scholar] [CrossRef]
- Mulhearn, W.D.; Stafford, C.M. Highly Permeable Reverse Osmosis Membranes via Molecular Layer-by-Layer Deposition of Trimesoyl Chloride and 3,5-Diaminobenzoic Acid. ACS Appl. Polym. Mater. 2020, 3, 116–121. [Google Scholar] [CrossRef]
- Al-Sayed, M.; Deri, F. Preparation of polyamide membranes and studies of their chemical, physical, and mechanical properties and their application. Int. J. Chem. Tech. Res. 2014, 6, 3098–3106. [Google Scholar]
- Xu, S.-J.; Shen, Q.; Chen, G.-E.; Xu, Z.-L. Novel β-CD@ZIF-8 Nanoparticles-Doped Poly(m-Phenylene Isophthalamide) (PMIA) Thin-Film Nanocomposite (TFN) Membrane for Organic Solvent Nanofiltration (OSN). ACS Omega 2018, 3, 11770–11787. [Google Scholar] [CrossRef]
- Adeniyi, A.; Gonzalez-Ortiz, D.; Pochat-Bohatier, C.; Mbakop, S.; Onyango, M.S. A Comparison of Unmodified and Sawdust Derived-Cellulose Nanocrystals (CNC)-Modified Polyamide Membrane Using X-Ray Photoelectron Spectroscopy and Zeta Potential Analysis. Polymers 2022, 15, 57. [Google Scholar] [CrossRef]
- Tashvigh, A.A.; Feng, Y.; Weber, M.; Maletzko, C.; Chung, T.-S. 110th Anniversary: Selection of Cross-Linkers and Cross-Linking Procedures for the Fabrication of Solvent-Resistant Nanofiltration Membranes: A Review. Ind. Eng. Chem. Res. 2019, 58, 10678–10691. [Google Scholar] [CrossRef]
- Roh, I.J.; Kim, J.-J.; Park, S.Y. Mechanical properties and reverse osmosis performance of interfacially polymerized polyamide thin films. J. Membr. Sci. 2002, 197, 199–210. [Google Scholar] [CrossRef]
- Karami, P.; Khorshidi, B.; Soares, J.B.P.; Sadrzadeh, M. Fabrication of Highly Permeable and Thermally Stable Reverse Osmosis Thin Film Composite Polyamide Membranes. ACS Appl. Mater. Interfaces 2020, 12, 2916–2925. [Google Scholar] [CrossRef]
- Yu, J.; Gu, K.; Yang, B.; Wang, K.; Zhou, Y.; Gao, C. The Permeability and Selectivity of the Polyamide Reverse Osmosis Membrane were Significantly Enhanced by PhSiCl3. Membranes 2021, 11, 142. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Zhang, K.; Wang, Z.; Ly, Q.V.; Hu, Y.; Liu, C. Improving the water permeability and antifouling property of the nanofiltration membrane grafted with hyperbranched polyglycerol. J. Membr. Sci. 2020, 612, 118417. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, C.; Van Ginkel, S.W.; Ontiveros-Valencia, A.; Shin, J.; Rittmann, B.E. Hydrogen permeability of the hollow fibers used in H2-based membrane biofilm reactors. J. Membr. Sci. 2012, 407, 176–183. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Wu, P.; Shi, W.; Wang, Z.; Hu, Y. In Situ Surface Modification of Thin-Film Composite Polyamide Membrane with Zwitterions for Enhanced Chlorine Resistance and Transport Properties. ACS Appl. Mater. Interfaces 2019, 11, 12043–12052. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhang, L.; Li, P.; Sun, H.; Hou, Y.; Niu, Q.J. Ultrathin Film Composite Membranes Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination. ACS Appl. Mater. Interfaces 2020, 12, 25304–25315. [Google Scholar] [CrossRef]
- Sarkar, P.; Wu, C.; Yang, Z.; Tang, C.Y. Empowering ultrathin polyamide membranes at the water-energy nexus: Strategies, limitations, and future perspectives. Chem. Soc. Rev. 2024, 53, 4374–4399. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hoek, E.M. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. J. Membr. Sci. 2009, 336, 140–148. [Google Scholar] [CrossRef]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Sugali, C.S.; Sajja, C.; Srinivas, G.N.; Sundergopal, S. Application of the nanofiltration membrane process for the treatment of laundry wastewater. Water Pract. Technol. 2025, 20, 324–339. [Google Scholar] [CrossRef]
- Rostovtseva, V.; Faykov, I.; Pulyalina, A. A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification. Membranes 2022, 12, 312. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, R.; Gómez, V.; Vankelecom, I.F. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog. Polym. Sci. 2017, 72, 1–15. [Google Scholar] [CrossRef]
- Idrees, M.F.; Tariq, U. Enhancing chlorine resistance in polyamide membranes with surface and structure modification strat-egies. Water Supply 2022, 22, 1199–1215. [Google Scholar] [CrossRef]
- Cassano, A.; Drioli, E.; Galaverna, G.; Marchelli, R.; Di Silvestro, G.; Cagnasso, P. Clarification and concentration of citrus and carrot juices by integrated membrane processes. J. Food Eng. 2003, 57, 153–163. [Google Scholar] [CrossRef]
- Figueira, G.M.; Park, K.J.; Brod, F.P.R.; Honóroi, S.L. Evaluation of desorption isotherms, drying rates, and inulin concentration of chicory roots (Cichorium intybus L.) with and without enzymatic inactivation. J. Food Eng. 2004, 63, 273–280. [Google Scholar] [CrossRef]
- Varela, P. Editorial overview: Sensory science and consumer perception. Curr. Opin. Food Sci. 2015, 3, 4–5. [Google Scholar] [CrossRef]
- Wang, M.; Shi, G.M.; Zhao, D.; Liu, X.; Jiang, J. Machine Learning-Assisted Design of Thin-Film Composite Membranes for Solvent Recovery. Environ. Sci. Technol. 2023, 57, 15914–15924. [Google Scholar] [CrossRef]
- Wenming, F. Preparation of Polyamide-Based Composite Membranes and Investigation of Their Performance in Organic Solvent Separation. Ph.D. Thesis, Kobe University, Kobe, Japan, 2024. [Google Scholar]
- Goh, K.S.; Chen, Y.; Chong, J.Y.; Bae, T.H.; Wang, R. Thin-film composite hollow fiber membrane for pharmaceutical concentration and solvent recovery. J. Membr. Sci. 2021, 621, 119008. [Google Scholar] [CrossRef]
- Elhady, S.; Bassyouni, M.; Mansour, R.A.; Elzahar, M.H.; Abdel-Hamid, S.; Elhenawy, Y.; Saleh, M.Y. Oily Wastewater Treatment Using Polyamide Thin Film Composite Membrane Technology. Membranes 2020, 10, 84. [Google Scholar] [CrossRef]
- Qian, Y.; Li, H.; Lu, J.; Lu, D.; Jin, H.; Xia, Z.; Yao, Z.; Wang, J.; Zhang, L.; Tang, C.Y. Inhibiting Polyamide Intrusion of Thin Film Composite Membranes: Strategies and Environmental Implications. Environ. Sci. Technol. 2023, 57, 10860–10869. [Google Scholar] [CrossRef]
- Gan, Q.; Wu, C.; Long, L.; Peng, L.E.; Yang, Z.; Guo, H.; Tang, C.Y. Does surface roughness necessarily increase the fouling propensity of polyamide reverse osmosis membranes by humic acid? Environ. Sci. Technol. 2023, 57, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Qi, P.; Hao, S.; Shi, W.; Xiao, J.; Wang, J.; Hu, Y. Methylation of reverse osmosis membrane for superior anti-fouling performance via blocking carboxyl groups in polyamide. Nat. Water 2025, 3, 110–121. [Google Scholar] [CrossRef]
- Li, H.; Peng, L.; Luo, Y.; Yu, P. Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine. RSC Adv. 2015, 5, 98566–98575. [Google Scholar] [CrossRef]
- Larranaga, A.L.; Aguirre, J.L.; Salinas, J.S.; Ortiz, J.M.; Molina, S. Thin-film composite polyamide reverse osmosis membrane technology towards a circular economy. Membranes 2022, 12, 864. [Google Scholar] [CrossRef]
- Herzberg, M.; Elimelech, M. Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 2007, 295, 11–20. [Google Scholar] [CrossRef]
- Jafari, M.; Vanoppen, M.; van Agtmaal, J.; Cornelissen, E.; Vrouwenvelder, J.; Verliefde, A.; van Loosdrecht, M.; Picioreanu, C. Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands. Desalination 2021, 500, 114865. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Pająk, L.; Bundschuh, J.; Bujakowski, W. Low-enthalpy geothermal energy as a source of energy and integrated freshwater production in inland areas: Technological and economic feasibility. Desalination 2018, 435, 35–44. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Sun, Z.; Li, B. Preparation of photothermal membrane for vacuum membrane distillation with excellent anti-fouling ability through surface spraying. J. Membr. Sci. 2021, 634, 119434. [Google Scholar] [CrossRef]
- Zhu, X.; Elimelech, M. Colloidal Fouling of Reverse Osmosis Membranes: Measurements and Fouling Mechanisms. Environ. Sci. Technol. 1997, 31, 3654–3662. [Google Scholar] [CrossRef]
- Su, B.; Wang, T.; Wang, Z.; Gao, X.; Gao, C. Preparation and performance of dynamic layer-by-layer PDADMAC/PSS nanofiltration membrane. J. Membr. Sci. 2012, 423, 324–331. [Google Scholar] [CrossRef]
- Kucera, J. Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. Membranes 2019, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Do, V.T.; Tang, C.Y.; Reinhard, M.; Leckie, J.O. Degradation of Polyamide Nanofiltration and Reverse Osmosis Membranes by Hypochlorite. Environ. Sci. Technol. 2012, 46, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Zhang, W.; Zhao, X.; Shao, W.; Wang, H. Research on reverse osmosis (RO)/nanofiltration (NF) membranes based on thin film composite (TFC) structures: Mechanism, recent progress and application. Membranes 2024, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y. Fouling of reverse osmosis (RO) and nanofiltration (NF) membranes by low molecular weight organic compounds (LMWOCs), part 2: Countermeasures and applications. Membranes 2025, 15, 94. [Google Scholar] [CrossRef]
- Jiang, C.; Fei, Z.; Hou, Y. High-Performance Polyamide Reverse Osmosis Membrane Containing Flexible Aliphatic Ring for Water Purification. Polymers 2023, 15, 944. [Google Scholar] [CrossRef]
- An, X.; Xiang, Y.; Ming, S.; Zhang, K.; Luo, H.; Fan, L.; Xie, W.; He, J. The Permeability-Selectivity of Polyamide-Based Membranes: Role of Ambient Temperature in the Interfacial Polymerization. Environ. Sci. Technol. Lett. 2024, 11, 1129–1135. [Google Scholar] [CrossRef]
- Polyamide Market Size, Share & Trends Analysis Report by Product (Polyamide 6, Polyamide 66, Bio-Based Polyamide), by Ap-Plication (Engineering Plastics, Fibers), by Region and Segment Forecasts, 2025–2030; Grand View Research: San Francisco, CA, USA, 2024.
- Yadav, D.; Gohain, M.B.; Karki, S.; Ingole, P.G. A Novel Approach for the Development of Low-Cost Polymeric Thin-Film Nanocomposite Membranes for the Biomacromolecule Separation. ACS Omega 2022, 7, 47967–47985. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mahmoud, S.A.; Mohamed, A.A. Nanomaterials-modified reverse osmosis membranes: A comprehensive review. RSC Adv. 2024, 14, 18879–18906. [Google Scholar] [CrossRef]
- Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [Google Scholar] [CrossRef]
- Razali, M.; Kim, J.F.; Attfield, M.; Budd, P.M.; Drioli, E.; Lee, Y.M.; Szekely, G. Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chem. 2015, 17, 5196–5205. [Google Scholar] [CrossRef]
- Alkandari, S.H.; Dominguez, B.C. Advanced and sustainable manufacturing methods of polymer-based membranes for gas separation: A review. Front. Membr. Sci. Technol. 2024, 3, 1390599. [Google Scholar] [CrossRef]
- Liang, Y.; Knauer, K.M. Trends and future outlooks in circularity of desalination membrane materials. Front. Membr. Sci. Technol. 2023, 2, 1169158. [Google Scholar] [CrossRef]
- El-Gendi, A.; Abdallah, H.; Amin, A. Economic study for blend membrane production. Bull. Natl. Res. Cent. 2021, 45, 126. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Shen, L.; Li, R.; Jiao, Y.; Lin, H.; Tang, C.Y. Nano-wrinkled polyamide membrane preparation via interfacial polymerization for enhanced desalination performance. Desalination 2023, 564, 116801. [Google Scholar] [CrossRef]
- Jia, Y.; Wong, K.; Liang, C.Z.; Wu, J.; Chung, T.-S.; Zhang, S. Recent development of membranes for carbon capture: From materials to asymmetric membranes. Prog. Mater. Sci. 2024, 146, 101324. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Al-Juboori, R.A.; Khatri, M.; Ahmed, F.E.; Ibrahim, Y.; Hilal, N. Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste. Membranes 2024, 14, 52. [Google Scholar] [CrossRef]
- Kamaroddin, M.F.A.; Sabli, N.; Abdullah, T.A.T.; Siajam, S.I.; Abdullah, L.C.; Jalil, A.A.; Ahmad, A. Membrane-based elec-trolysis for hydrogen production: A review. Membranes 2021, 11, 810. [Google Scholar] [CrossRef]
Membrane Material | Advantages | Disadvantages | References |
---|---|---|---|
Polyamide (PA) |
|
| [26] |
Polyimide (PI) |
|
| [38] |
Polydimethylsiloxane (PDMS) |
|
| [39] |
Polybenzimidazole (PBI) |
|
| [40] |
Polyacrylonitrile (PAN) |
|
| [41] |
Ceramic membranes |
|
| [42] |
Fabrication Techniques | Pros | Cons |
---|---|---|
Phase inversion | - Morphology control. - Scalability. - Versatility. | - Solvent dependency. - Thickness limitations. - Long processing times. |
Interfacial polymerization | - High selectivity. - Rapid reaction. - Tunability. | - Toxic solvents. - Permeability-selectivity trade-offs. - Substrate dependency. |
Stretching method | - Enhanced porosity. - Mechanical strength. | - Material limitations. - Defect formation. |
Track-etching | - Uniform pores. - Controlled pore density. | - Low porosity. - High cost. |
Electrospinning | - High surface area. - Customizability. | - Slow production rates. - Mechanical weakness. |
Layer-by-layer assembly | - Precise control. - Fouling resistance. | - Time-consuming. - Scalability challenges. |
Nanomaterial | Structural Characteristics | Integration Method | Permeability Impact | Selectivity Impact | Chemical Stability | Ref |
---|---|---|---|---|---|---|
MOFs (e.g., MIL-101(Cr), ZIF-8) | Tunable porosity (0.3–3.4 nm), high surface area, molecular sieving capabilities | Dispersion in the organic phase during interfacial polymerization (IP) | Permeance: MeOH: 1.5 → 3.9 L·m−2·h−1·bar−1; THF: 1.7 → 11.1 L·m−2·h−1·bar−1 | >90% rejection of styrene oligomers (MW 232–295 g·mol−1) | Stable in harsh solvents (DMF, methanol); retains performance after prolonged immersion | [76] |
Graphene Oxide (GO) | 2D nanosheets with oxygen functional groups, hydrophilic | Crosslinking with boronic acid polymer (BA); ODA functionalization for dispersion in hexane | Permeance: Ethanol: 2.8 → 6.0 L·m−2·h−1·bar−1; Methanol: 3.94 L·m−2·h−1·bar−1 | >95.8% rejection of acid fuchsin (AF) in methanol | BA crosslinking enhances stability in DMF/water; functionalization prevents swelling | [77] |
g-C3N4 | 2D layered structure, high porosity, photocatalytic properties | Vacuum filtration; embedding as nanofiller in PA matrix | Water flux: 51.0 L·m−2·h−1 at 0.0100 wt% loading | High salt rejection (Na2SO4 > MgSO4 > NaCl); dye rejection > 99% | Exceptional chlorine resistance (99% salt retention after 10,000 ppm·h chlorination) | [78] |
Titanate Nanotubes | Branched 3D network, inner Ø 6 nm, outer Ø 12 nm, titanate layers | Hydrothermal growth on titanium substrates | Not explicitly quantified for OSN; high surface area benefits separation | Effective for molecular sieving in membrane separation | Thermally/chemically robust; suitable for harsh environments | [79] |
Membrane Type | Pore Size Distribution | Average Pore Size | Method of Fabrication | Key Findings | Reference |
---|---|---|---|---|---|
AIP-PA Membrane | Sub-nanometer to micrometer range | Not specified | Anhydrous interfacial polymerization (AIP) | In comparison to traditional techniques, the AIP membrane exhibited a thinner thickness and reduced pore strength, along with a smaller molecular weight cutoff (MWCO) for solutes. | [52] |
TFC Membrane | Narrowly distributed free volume pores | Smaller than pristine PA layer | Inorganic salt-mediated (IP) | Improved permeance (20–435%) and solute rejection (10–170%) were the results of increased structural homogeneity. | [30] |
TFC Membrane | Wide distribution due to liquid–liquid phase separation | 100–1000 nm | (IP) | A dense, thin layer of the active skin layers created by gelation permits regulated permeability and selectivity. | [95] |
NF Membrane | Uniform sub-nanometer pores | Sub-Angstrom scale | Surfactant-assembly regulated interfacial polymerization (SARIP) | Compared to traditional IP, accurate solute separation was achieved with a sharper pore size distribution. | [92] |
Electrospun Membrane | 0.55 µm to 1.14 µm | Increasing with polymer concentration | Electrospinning | A narrow pore size distribution is beneficial for filtration efficiency, and pore size increases with polymer concentration. | [61] |
Nanofiltration Membrane | Heterogeneous mass transfer leading to wide distribution | Not specified | Multiple interfacial polymerization process | Both separation efficiency and antifouling performance were enhanced by a narrowing pore size distribution. | [96] |
Membrane Type | Layer Structure | Layer Thickness | Fabrication Method | Key Findings | References |
---|---|---|---|---|---|
TFC Membrane | Nanoscale-ordered polyamide layer on porous support | 55 ± 3 nm (PIP/g-C3N4) | Interfacial polymerization (IP) with g-C3N4 nanosheets | Improved homogeneity and hollow channel configuration enhanced selectivity and penetration. | [28] |
TFC Membrane | Dense polyamide layer with diffusion-limited growth | 50–400 nm | In situ IP between MPD and TMC | Spatial heterogeneity characterizes layer formation; a higher density in the center provides a selection barrier. | [30] |
TFN Membrane | Hollow ridge-and-valley structure with embedded nanoparticles | 20–30 nm (PA layer) | Interfacial polymerization with C3N4 nanoparticles | Water permeance was improved by the nanoparticles’ increased surface area and hydrophilicity. | [97] |
AIP Membrane | Thinner selective layer with granular protrusions | ~35 nm (AIP-PA) vs. ~40–50 nm (CIP-PA) | Anhydrous interfacial polymerization (AIP) | Water permeance is improved by a thinner selective layer because it lowers transport resistance. | [52] |
TFC Membrane | Ultrathin PA selective layer over microporous support | ~50–400 nm (PA) over ~140 µm (PES) | In situ IP between MPD and TMC | FTIR and XPS revealed the successful development of the PA skin layer; the preparation temperature affected the surface morphology. | [98] |
Composite Membrane | Integrally skinned PA layers over PES support | 5–10 nm (active layer) on PES substrate (~140 µm) | In situ IP reaction of MPD and TMC at the interface of water-organic solutions | XPS was used to check the elemental composition; the absence of support peaks signifies that the membrane formed successfully. | [95] |
Membrane Type | Morphological Features | Surface Roughness | Layer Thickness | Key Findings | Reference |
---|---|---|---|---|---|
Polyamide Membrane | Dome and dimple crumpling observed via TEM | Not specified | Not specified | Membrane synthesis and performance were impacted by quantitative morphometry, which connected morphology characteristics to monomer concentrations. | [102] |
AIP-PA Membrane | Dense surface with granular protrusions observed via SEM | 7.2 nm (AIP-PA) vs. 6.82 nm (CIP-PA) | Not specified | AIP membranes performed better at separation because they had a more consistent structure and a lower free volume than CIP membranes. | [52] |
PIP/g-C3N4-PA Membrane | Nanoscale-ordered hollow structure with arched channels observed via TEM and AFM | Not specified | 55 ± 3 nm (PIP/g-C3N4-PA) vs. 83 ± 5 nm (control) | By increasing surface area and structural homogeneity, g-C3N4 increased permeability characteristics. | [28] |
Polyamide-6 Membrane | Isotropic to anisotropic morphology transition with increased gelation time observed via SEM | Increased with gelation time | Not specified (but noted to change) | The density of the skin layer increased with gelation time, influencing the size of pores and the way they swelled. | [102] |
TFC Membrane | Ridge-and-valley structure observed via FESEM; varying surface features based on preparation temperature | Not specified (but noted to change) | Thinner PA film at lower temperatures; thicker at higher temperatures (TFC 3: ~50–400 nm) | Filtration efficiency was impacted by the considerable variations in surface shape with preparation conditions. | [98] |
Bio-based Electrospun Membrane | Nonwoven fibrous structure with varying fiber diameters observed via SEM and AFM | Not specified; hydrophilicity noted | Not specified; fiber diameter influences pore size distribution | Increased microplastic filtering efficiency as a result of electrospinning’s high surface area and porosity. | [61] |
Membrane Type | Chemical Composition | Key Monomers | Additives/Modifiers | Key Findings | References |
---|---|---|---|---|---|
PA-PDMS Membrane | Polyamide with PDMS groups | p-phenylenediamine (MPD), Trimesoyl Chloride (TMC) | Poly(dimethylsiloxane) (PDMS) | Membranes showed improved permeability and gas selectivity; PA-PDMS-20 demonstrated CO2/N2 selectivity of 41.84. | [108] |
AIP-PA Membrane | Polyamide layer with amide groups | Piperazine (PIP), TMC | None specified | FTIR validated the successful synthesis, which was distinguished by its high crosslinking density and ionic sieving ability. | [52] |
PA-g-C3N4 Membrane | Polyamide with graphite carbon nitride (g-C3N4) nanosheets | Piperazine (PIP), TMC | g-C3N4 nanoparticles | Nanoscale ordered structures improve separation performance; at pH > 3, there is a modest increase in negative charge. | [28] |
TMC-MPD Membrane | Crosslinked polyamide network | MPD, TMC | None specified | Showed good rejection rates for NaCl; the performance was correlated with the synthesis’s monomer ratio. | [115] |
TMC-BA Membrane | Polyamide with carboxylic acid groups | 3,5-diaminobenzoic acid (BA) TMC | None specified | Greater crosslink density than conventional IP membranes, which improves salt rejection and hydrophilicity. | [116] |
PA Composite Membrane | Polyamide with varying degrees of crosslinking | MPD, TMC | None specified | Different levels of crosslinking impacted performance indicators, including chlorine tolerance, according to chemical structure analysis. | [117] |
Membrane Type | Tensile Strength (MPa) | Elongation at Break | Young’s Modulus | Durability | Key Findings | Reference |
---|---|---|---|---|---|---|
PA 6.9 Electrospun membrane | Higher than PVDF and PAN (exact value not specified) | Increased with fiber diameter | Not specified | High durability under operational conditions | When compared to other materials, PA 6.9 membranes demonstrated excellent mechanical capabilities; stiffness rose as porosity decreased | [61] |
Polyamide membrane (25% concentration) | Higher tensile strength compared to lower concentrations | Higher strain is observed in higher concentrations | Lower Young’s modulus compared to others | Good chlorine tolerance and stability in varying pH ranges | Tensile strength and strain were noticeably superior to membranes with lower concentration, and mechanical characteristics improved with polymer concentration | [117] |
AIP-PA membrane | Not specified but noted for high performance | Not specified | 7.2 MPa (surface roughness noted) | Enhanced durability due to crosslinking density from the AIP method | Because of their special structure, AIP membranes demonstrated enhanced mechanical stability and water permeability | [52] |
PA-PDMS membrane | Not specified; focused on gas separation properties | Not specified; focus on gas permeability instead | Not specified; noted for flexibility due to PDMS incorporation | Enhanced durability through blending with PDMS groups, improving flexibility, and reducing brittleness | While keeping strong mechanical qualities, the use of PDMS enhanced gas separation performance | [108] |
Interfacially polymerized polyamide membrane | Up to 37 MPa (constant value for high concentrations) | Not specified | Not specified | High rupture strength correlates with permeation performance | Better permeation behavior, in line with solution–diffusion transport mechanisms, was demonstrated by membranes with greater rupture strength | [121] |
Aspect | Description | Key Findings | Reference |
---|---|---|---|
Thermal stability characteristics | Decomposition temperature and thermal stability metrics | The breakdown temperatures of polyamide membranes usually range from 400 °C to more than 500 °C. The onset degradation temperature rose from 530 °C to 550 °C when TiO2 nanoparticles were present. | [73] |
Thermal response under operational conditions | Performance at elevated temperatures and swelling behavior | Because of increased molecular mobility, higher temperatures increase water flux; nevertheless, extended exposure can cause compaction and decreased performance. Membranes remained intact at temperatures as high as 5 °C. | [73] |
Comparative studies on fabrication conditions | Impact of synthesis temperature on membrane properties | Higher temperatures created thinner, rougher PA films with better hydrophilicity and permeability, while lower temperatures produced denser, thinner films with less water permeability. | [98] |
Long-term stability | Durability under thermal stress and repeated heating cycles | When used within heat constraints, polyamide membranes typically continue to function for extended periods of time. Heat treatment can improve durability and mechanical qualities without causing major deterioration. | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhari, S.; Chakravarty, S.; Cho, Y.; Seo, J.; Shon, M.; Nam, S. Advancements in Organic Solvent Nanofiltration: The Critical Role of Polyamide Membranes in Sustainable Industrial Applications. Processes 2025, 13, 2212. https://doi.org/10.3390/pr13072212
Chaudhari S, Chakravarty S, Cho Y, Seo J, Shon M, Nam S. Advancements in Organic Solvent Nanofiltration: The Critical Role of Polyamide Membranes in Sustainable Industrial Applications. Processes. 2025; 13(7):2212. https://doi.org/10.3390/pr13072212
Chicago/Turabian StyleChaudhari, Shivshankar, Sunilesh Chakravarty, YoungHo Cho, JinWon Seo, MinYoung Shon, and SeungEun Nam. 2025. "Advancements in Organic Solvent Nanofiltration: The Critical Role of Polyamide Membranes in Sustainable Industrial Applications" Processes 13, no. 7: 2212. https://doi.org/10.3390/pr13072212
APA StyleChaudhari, S., Chakravarty, S., Cho, Y., Seo, J., Shon, M., & Nam, S. (2025). Advancements in Organic Solvent Nanofiltration: The Critical Role of Polyamide Membranes in Sustainable Industrial Applications. Processes, 13(7), 2212. https://doi.org/10.3390/pr13072212