Comparative Phycoremediation Potential of Micro-Green Algae and Dinoflagellates in Coastal and Inland Qatar
Abstract
1. Introduction
2. Characteristics and Roles of Microalgae in Marine Environments
2.1. Advantages of Microalgae
2.2. Disadvantages of Microalgae
2.3. Chlorophyta: A Focus on Micro-Green Algae
2.4. Dinoflagellates
Genus | Remediation of Petroleum Hydrocarbons and Heavy Metals | Other Possible Roles | References |
---|---|---|---|
Chlamydomonas | Demonstrates activity in remediation processes of petroleum hydrocarbons | Promising microalgae for production of bioactive agents such as biofuels, biofertilizers, and other various products | [86] |
Chlorella | Demonstrates activity in remediation processes of petroleum hydrocarbons | Promising candidate for producing bioactive agents | [25,87,88] |
Chlorococcum | Needs testing; possible role in phycoremediation of various organic components | Possible production of bioactive agents such as biofuels and other valuable products | [25,89] |
Chlorogonium | Needs testing; possible role in phycoremediation of various organic components and heavy metals | Needs investigation; its presence in freshwater lakes might be a sign of high levels of nutrients and pollution | [90] |
Dunaliella | Efficient in remediating heavy metals such as Cd, Co, Cu, and Zn | Possible resistance mechanism against heavy metal pollution | [13,91] |
Oedogonium | Removes heavy metals from water and soil; possible role in remediation of organic components | May convert the biomass of this alga into biochar via a pyrolysis process | [92] |
Pandorina | Possible role in remediation of organic components; needs testing | Needs investigation into the bioactive agents produced by activity | [85,93] |
Scenedesmus | Efficient in removing petroleum hydrocarbons and heavy metals such as Cd, Cr, and Cu | Potential source of novel bioactive compounds such as antibacterial and nutritional components; possible candidate for biotechnological applications | [94,95,96,97] |
Spirogyra | Efficient in absorbing oil components compared to some herb plants; remediates mine drainage | Produces various types of bioactive components | [98,99,100] |
Volvox | Possible role in remediating wastewater and heavy metals; needs more confirmation | May produce bioactive agents such as biofuels | [13,101,102] |
Zygnema | No scientific evidence; needs testing | May produce bioactive compounds such as pigments and phenolic compounds with various roles | [103,104] |
Genus | No. of Recorded Species | Remediation of Organic and Inorganic Components | Other Features and Possible Roles | References |
---|---|---|---|---|
Alexandrium | Not known | Needs testing | Mixotrophic mode; it is a well-known genus for its bloom-forming behavior and potential to produce toxins | [107,108] |
Amphidinium * | Not known | Shows possible role in remediation of petroleum hydrocarbons | Diverse range of trophic modes: producing bioactive compounds, serving in pharmaceutical applications, acting as food source for other marine organisms, and contributing to harmful algal blooms (HABs) | [84,109,110,111] |
Ceratium | 53 | Needs testing and confirmation | Mixotrophic mode, harmless and non-toxic in nature, found in predators and prey in the ecosystem; fish kills result from depleting oxygen levels caused by blooms; high nitrogen levels compared to phosphorus encourage their growth; some species produce HABs | [112,113,114] |
Ceratocorys | 1 | Needs testing | Autotrophic mode, no data available; further investigation is needed regarding its ability to absorb heavy metals, remove excess nutrients such as nitrogen and phosphorus, and degrade organic compounds | [115,116] |
Dinophysis | 6 | Needs testing; some indications are promising | Mixotrophic mode; might produce diarrhetic toxins; possible role in production of bioactive agents | [84,117,118] |
Diplopsalis | 1 | Possible remediation of heavy metals | Heterotrophic mode; the presence of some dinoflagellates showed a significant positive correlation with heavy metals; some species produce HABs; possible toxic impact on marine life; its presence might be a sign of pollution | [119,120,121] |
Exuviaella ** | 2 | Needs testing | Little information about its role in phycoremediation; possible toxic impacts on marine life | [10,84] |
Glenodinium ** | 1 | Little information about its role in phycoremediation, needs investigation | More investigations are needed regarding its role in the production of bioactive agents and HABs | [122,123] |
Gonyaulax ** | 12 | Possible role in remediation of oil and gas components | Some toxins are produced within the cells | [124,125] |
Gymnodinium * | 1 | Possible role in remediation of oil and gas components | Nitrogen shortage might have negative effects on growth and toxin production; fatty acid synthesis was stimulated and anti-oxidant defense systems were upregulated; produces HABs that might cause toxic effects on marine organisms | [126,127,128] |
Hemidinium | 1 | Needs testing | Heterotrophic; might produce HABs; needs testing for bioactive agents | [129] |
Histioneis | 1 | Needs testing | Heterotrophic; further investigation needed to show production of HABs and bioactive agents | [130] |
Noctiluca | 1 | Needs testing | Heterotrophic; produces HABs; might produce some bioactive agent during bloom production | [131,132,133] |
Ornithocercus | 2 | Needs confirmation | Heterotrophic; further investigation needed to show and confirm the production of HABs and bioactive agents | [123,130,134] |
Oxytoxum *** | 6 | Needs information and confirmation via testing | No indication of production of HABs and bioactive agents | [115,135] |
Peridinium | 2 | Good indications of remediation roles; needs testing and confirmation | Mixotrophic mode; HABs were found with the presence of Peridinium umbonatum | [136] |
Phalacroma * | 6 | Needs testing | Might produce HABs and bioactive agents | [137] |
Podolampas ** | 3 | Little information but needs further investigation | Little data available; needs further information | [138] |
Prorocentrum ** | 3 | Could be a candidate to remediate petroleum hydrocarbons and heavy metals, more studies are needed | Might produce HABs that could be toxic to marine life and fish; associated bacteria could help this dinoflagellate to resist and remediate petroleum hydrocarbons and heavy metals | [139,140] |
Protopreidinium | 41 | Possible role in remediation of petroleum hydrocarbons; needs to be monitored | Heterotrophic, non-toxic blooms consume other microalgae such as diatoms and dinoflagellates | [90,141,142] |
Pseudophalacroma | 1 | No studies on remediation processes; needs testing | Heterotrophic; might produce HABs and bioactive agents | [138] |
Pyrocystis | 5 | No studies; needs further testing | Autotrophic; needs investigation; might produce HABs and bioactive agents | [143,144] |
Pyrophacus ** | 1 | No studies; needs further testing | Needs investigation; might produce HABs and bioactive agents | [6,7] |
Triadinium | 2 | No studies; needs further testing | Autotrophic; needs investigation; might produce HABs and bioactive agents | [84] |
2.5. Silicoflagellates
3. Remediation of Petroleum Hydrocarbons and Heavy Metals
4. Comparative Analysis of Micro-Green Algae and Dinoflagellates
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Imarah, F.J.M.; Hantoosh, A.A.; Nasir, A.M. Petroleum hydrocarbons in water and sediments of northwest Arabian Gulf 1980–2005. Aquat. Ecosyst. Health Manag. 2007, 10, 335–340. [Google Scholar] [CrossRef]
- Freije, A.M. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review. J. Assoc. Arab Univ. Basic Appl. Sci. 2015, 17, 90–100. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef] [PubMed]
- Ben Chekroun, K.; Sanchez, E.; Baghour, M. The role of algae in bioremediation of organic pollutants. Int. Res. J. Public Environ. Health 2014, 1, 19–32. [Google Scholar]
- Al-Thani, R.F.; Yasseen, B.T. Methods using marine aquatic photoautotrophs along the Qatari coastline to remediate oil and gas industrial water. Toxics 2024, 12, 625. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Cyanoremediation of polluted seawater in the Arabian Gulf: Risks and benefits to human health. Processes 2024, 12, 2733. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. The role of phytoplankton in phycoremediation of polluted seawater: Risks, benefits to human health, and a focus on diatoms in the Arabian Gulf. Water 2025, 17, 920. [Google Scholar] [CrossRef]
- Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef]
- Eze, C.N.; Onyejiaka, C.K.; Ihim, S.A.; Ayoka, T.O.; Aduba, C.C.; Ndukwe, J.K.; Nwaiwu, O.; Helen Onyeaka, H. Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS Microbiol. 2023, 9, 55–74. [Google Scholar] [CrossRef]
- Dell’ Anno, F.; Rastelli, E.; Sansone, C.; Brunet, C.; Ianora, A.; Dell’ Anno, A. Bacteria, fungi, and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms 2021, 9, 1695. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef] [PubMed]
- Flayyih, A.H.; AL Magdamy, B.A. Phytoremediation of petroleum hydrocarbon by micro green algae: A review. J. Biotechnol. Res. Center 2024, 18, 134–144. [Google Scholar] [CrossRef]
- Chugh, M.; Kumar, L.; Shah, M.P.; Bharadvaja, N. Algal bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022, 7, 100129. [Google Scholar] [CrossRef]
- Bora, A.; Rajan, A.S.T.; Ponnuchamy, K.; Muthusamy, G.; Alagarsamy, A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater—A critical review. Sci. Total Environ. 2024, 946, 174230. [Google Scholar] [CrossRef]
- Da Rosa, M.D.H.; Alves, C.J.; dos Santos, F.N.; de Souza, A.O.; Zavareze, E.d.-R.; Ernani Pinto, E.; Noseda, M.D.; Ramos, D.; de Pereira, C.M.P. Macroalgae and microalgae biomass as feedstock for products applied to bioenergy and food industry: A brief review. Energies 2023, 16, 1820. [Google Scholar] [CrossRef]
- Saini, S.; Gill, J.K.; Kaur, J.; Saikia, H.R.; Singh, N.; Kaur, I.; Katnoria, J.K. Biosorption as environmentally friendly technique for heavy metal removal from wastewater. In Fresh Water Pollution Dynamics and Remediation; Qadri, H., Bhat, R., Mehmood, M., Dar, G., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Touliabah, H.E.; El-Sheekh, M.M.; Ismail, M.M.; El-Kassas, H. A review of microalgae-and cyanobacteria -based biodegradation of organic pollutants. Molecules 2022, 27, 1141. [Google Scholar] [CrossRef]
- Devi, A.; Verma, M.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Mulla, S.I.; Bharagava, R.N. Microalgae: A green eco-friendly agent for bioremediation of tannery wastewater with simultaneous production of value-added products. Chemosphere 2023, 336, 139192. [Google Scholar] [CrossRef]
- Mahlangu, D.; Mphahlele, K.; De Paola, F.; Mthombeni, N.H. Microalgae-mediated biosorption for effective heavy metals removal from wastewater: A review. Water 2024, 16, 718. [Google Scholar] [CrossRef]
- Soto-Ramírez, R.; Lobos, M.-G.; Córdova, O.; Poirrier, P.; Chamy, R. Effect of growth conditions on cell wall composition and cadmium adsorption in Chlorella vulgaris: A new approach to biosorption research. J. Hazard. Mater. 2021, 411, 125059. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Sarma, U.; Hoque, M.E.; Thekkangil, A.; Venkatarayappa, N.; Rajagopal, S. Microalgae in removing heavy metals from wastewater—An advanced green technology for urban wastewater treatment. J. Hazard. Mater. 2024, 15, 100444. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. Environ. Pollut. 2020, 259, 113694. [Google Scholar] [CrossRef] [PubMed]
- Al-Thani, R.F.; Yasseen, B.T. Perspectives of future water sources in Qatar by phytoremediation: Biodiversity at ponds and modern approach. Int. J. Phytoremediat. 2021, 23, 866–889. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Alhumairi, A.M.; Saddiq, A.A. Simultaneous bioremediation of petroleum hydrocarbons and production of biofuels by the micro-green alga, cyanobacteria, and its consortium. Heliyon 2023, 9, e16656. [Google Scholar] [CrossRef]
- Satpati, G.G.; Gupta, S.; Biswas, R.K.; Choudhury, A.K.; Kim, J.-W.; Davoodbasha, M.A. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement, and regulations. Chemosphere 2023, 344, 140337. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Wichmann, J.; Lauersen, K.J.; Kruse, O. Green algal hydrocarbon metabolism is an exceptional source of sustainable chemicals. Curr. Opin. Biotechnol. 2020, 61, 28–37. [Google Scholar] [CrossRef]
- Dey, S.; Samanta, P.; Ghosh, A.R.; Banerjee, S.; Sen, K. State-of-the-art microalgae-based bioreactor wastewater treatment for the elimination of emerging contaminants: A mechanistic review. Clean. Water 2024, 2, 100027. [Google Scholar] [CrossRef]
- Koedooder, C.; Stock, W.; Willems, A.; Mangelinckx, S.; De Troch, M.; Vyverman, W.; Sabbe, K. Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Front. Microbiol. 2019, 10, 1255. [Google Scholar] [CrossRef]
- Thompson, H.F. Investigating Relationships Between Hydrocarbonoclastic Bacteria and Micro-Algae. Ph.D. Thesis, School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, UK, 2017. [Google Scholar]
- Vo, T.P.; Danaee, S.; Chaiwong, C.; Pham, B.T.; Poddar, N.; Kim, M.; Kuzhiumparambil, U.; Songsomboon, C.; Pernice, M.; Ngo, H.H.; et al. Microalgae-bacteria consortia for organic pollutants remediation from wastewater: A critical review. J. Environ. Chem. Eng. 2024, 12, 114213. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Biological soil crusts and extremophiles adjacent to native plants at Sabkhas and Rawdahs, Qatar: The possible roles. Front. Environ. Microbiol. 2018, 4, 55–70. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Solutes in native plants in the Arabian Gulf Region and the role of microorganisms: Future research. J. Plant Ecol. 2018, 11, 671–684. [Google Scholar] [CrossRef]
- Wiedenbeck, J.; Cohan, F.M. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 2011, 35, 957–976. [Google Scholar] [PubMed]
- Huang, J. Horizontal gene transfer in eukaryotes: The weak link model. Bioessays 2013, 35, 868–875. [Google Scholar]
- Bode, H.B.; Müller, R. Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol. 2003, 132, 1153–1161. [Google Scholar]
- Vinayamohan, P.G.; Pellissery, A.J.; Venkitanarayanan, K. Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Curr. Opin. Food Sci. 2022, 47, 100882. [Google Scholar] [CrossRef]
- Schönknecht, G.; Chen, W.-H.; Ternes, C.M.; Barbier, G.G.; Shrestha, R.P.; Stanke, M.; Bräutigam, A.; Baker, B.J.; Banfield, J.F.; Garavito, R.M.; et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 2013, 339, 1207–1210. [Google Scholar] [CrossRef]
- Yasseen, B.T.; Al-Thani, R.F. Endophytes and halophytes to remediate industrial wastewater and saline soils: Perspectives from Qatar. Plants 2022, 11, 1497. [Google Scholar] [CrossRef]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A promising source of valuable bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef]
- Gurreri, L.; Rindina, M.C.; Luciano, A.; Lima, S.; Scargiali, F.; Fino, D.; Mancini, G. Environmental sustainability of microalgae-based production systems: Roadmap and challenges towards the industrial implementation. Sustain. Chem. Pharm. 2023, 35, 101191. [Google Scholar] [CrossRef]
- Ahmad, A.; Ashraf, S.S. Harnessing microalgae: Innovations for achieving UN Sustainable Development Goals and climate resilience. J. Water Process Eng. 2024, 68, 106506. [Google Scholar] [CrossRef]
- Parida, P.K.; Selvi, G.A.; Vinodhini, S.M.; Reddy, M.B. Carbon sequestration by terrestrial, aquatic, and marine biodiversity, Chapter 13. In Impact of Societal Development and Infrastructure on Biodiversity Decline; IGI Global Platform: Hershey, PA, USA, 2024; pp. 215–245. [Google Scholar] [CrossRef]
- Hosny, S.; Elshobary, M.E.; El-Sheekh, M.M. Unleashing the power of microalgae: A pioneering path to sustainability and achieving the Sustainable Development Goals. Environ. Sci. Pollut. Res. 2025, 1–31. [Google Scholar] [CrossRef]
- Dutta, S.; Kataki, S.; Banerjee, I.; Pohrmen, C.B.; Jaiswal, K.K.; Jaiswal, A.K. Microalgal biorefineries in sustainable biofuel production and other high-value products. New Biotechnol. 2025, 87, 39–59. [Google Scholar] [CrossRef]
- Silva, M.; Geada, P.; Pereira, R.N.; Teixeira, J.A. Microalgae biomass—A source of sustainable dietary bioactive compounds towards improved health and well-being. Food Chem. Adv. 2025, 6, 100926. [Google Scholar] [CrossRef]
- Kukreja, S.; Thakur, K.; Salaria, N.; Goutam, U. Changing Trends in Microalgal Energy Production- Review of Conventional and Emerging Approaches. J. Pure Appl. Microbiol. 2017, 11, 993–1007. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F. Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ. Chall. 2021, 5, 100207. [Google Scholar] [CrossRef]
- Siddiki, Y.-A.; Mofijur, M.; Kumar, P.S.; Ahmed, S.F.; Inayat, A.; Kusumo, F.; Badruddin, I.A.; Yunus Khan, T.M.; Nghiem, L.D.; Ong, H.C.; et al. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel 2022, 307, 121782. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Gárate-Osuna, A.J.; Ambriz-Pérez, D.L.; Angel, V.-O.; Ballardo, D.U.S. Microalgae as a promising alternative for development of biorefineries: Main technological and economical challenges. Arquivos Ciências Mar 2022, 55, 369–412. [Google Scholar] [CrossRef]
- Naik, B.; Mishra, R.; Kumar, V.; Mishra, S.; Gupta, U.; Rustagi, S.; Gupta, A.K.; Preet, M.S.; Bhatt, S.C.; Rizwanuddin, S. Micro-algae: Revolutionizing food production for a healthy and sustainable future. J. Agric. Food Res. 2024, 15, 100939. [Google Scholar] [CrossRef]
- Perkins, J.C.; Zenger, K.R.; Kjeldsen, S.R.; Liu, Y.; Strugnell, J.M. Assessment of dinoflagellate diversity using DNA metabarcoding reveals toxic dinoflagellate species in Australian coastal waters. Mar. Pollut. Bull. 2025, 210, 117319. [Google Scholar] [CrossRef] [PubMed]
- Pospelova, V.; Chmura, G.L.; Walker, H.A. Environmental factors influencing spatial distribution of dinoflagellate cyst assemblages in shallow lagoons of Southern New England (USA). Rev. Palaeobot. Palynol. 2004, 128, 7–34. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Y.; Liu, H.; Zhang, G.; Zhang, X.; Thangaraj, S.; Sun, J. Water quality shifts the dominant phytoplankton group from diatoms to dinoflagellates in the coastal ecosystem of the Bohai Bay. Mar. Pollut. Bull. 2022, 183, 114078. [Google Scholar] [CrossRef] [PubMed]
- Herawati, E.Y.; Valina, R.; Dini, C.F.A.; Cahyani, V.; Handayani, M.P.; Khasanah, R.I.; Wiratno, E.N.; Samuel, P.D. Eutrophication, and distribution of dinoflagellates as an indicator of water quality in the Probolinggo Coast, East Java, Indonesia. Aquac. Aquar. Conserv. Legis. 2023, 16, 2174–2184. [Google Scholar]
- Wang, D.Z. Neurotoxins from marine dinoflagellates: A brief review. Mar. Drugs 2008, 6, 349–371. [Google Scholar] [CrossRef]
- Botana, L.M.; Alfonso, A.; Vale, C.; Vilariño, N.; Rubiolo, J.; Alonso, E.; Cagide, E. The mechanistic complexities of phycotoxins: Toxicology of azaspiracids and yessotoxins. In Advances in Molecular Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 8, pp. 1–33. [Google Scholar] [CrossRef]
- Naar, J.; Flewelling, L.; Lenzi, A.; Abbott, J.P.; Granholm, A.; Jacocks, H.M.; Gannon, D.; Henry, M.S.; Pierce, R.H.; Baden, D.; et al. Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish. Toxicon 2007, 50, 707–723. [Google Scholar] [CrossRef]
- Watkins, S.M.; Reich, A.; Fleming, L.E.; Hammond, R. Neurotoxic shellfish poisoning. Mar. Drugs 2008, 6, 431–455. [Google Scholar] [CrossRef]
- Louzao, M.C.; Vilariño, N.; Vale, C.; Costas, C.; Cao, A.; Raposo-Garcia, S.; Vieytes, M.R.; Botana, L.M. Current trends, and new challenges in marine phycotoxins. Mar. Drugs 2022, 20, 198. [Google Scholar] [CrossRef]
- Steidinger, K.A. Some taxonomic and biologic aspects of toxic dinoflagellates. In Algal Toxins in Seafood and Drinking Water; Academic Press: Cambridge, MA, USA, 1993; pp. 1–28. [Google Scholar] [CrossRef]
- Perkins, J.C.; Zenger, K.R.; Liu, Y.; Strugnell, J.M. Ciguatera poisoning: A review of the ecology and detection methods for Gambierdiscus and Fukuyoa species. Harmful Algae 2024, 139, 102735. [Google Scholar] [CrossRef]
- Holmes, M.J.; Lewis, R.J. Reviewing evidence for disturbance to coral reefs increasing the risk of ciguatera. Toxins 2025, 17, 195. [Google Scholar] [CrossRef]
- Darracq, M.A. Ciguatoxin. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 963–965. [Google Scholar] [CrossRef]
- L’Herondelle, K.; Talagas, M.; Mignen, O.; Misery, L.; Le Garrec, R. Neurological disturbances of ciguatera poisoning: Clinical features and pathophysiological basis. Cells 2020, 9, 2291. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.; Grass, I.; Günzel, D.; Herek, S.; Braeuning, A.; Lampen, A.; Hessel-Pras, S. The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol. In Vitro 2019, 58, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, T.; Zheng, J.; Li, D.; Jiao, Y.; Li, H.; Li, R.; Yang, W. Exposure to okadaic acid could disrupt the colonic microenvironment in rats. Ecotoxicol. Environ. Saf. 2023, 263, 115376. [Google Scholar] [CrossRef] [PubMed]
- Henigman, U.; Mozetič, P.; Francé, J.; Knific, T.; Vadnjal, S.; Dolenc, J.; Kirbiš, A.; Biasizzo, M. Okadaic acid as a major problem for the seafood safety (Mytilus galloprovincialis) and the dynamics of toxic phytoplankton in the Slovenian coastal sea (Gulf of Trieste, Adriatic Sea). Harmful Algae 2024, 135, 102632. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Prego-Faraldo, M.V.; Pásaro, E.; Méndez, J.; Laffon, B. Okadaic acid: More than a diarrheic toxin. Mar. Drugs 2013, 11, 4328–4349. [Google Scholar] [CrossRef]
- Sosa, S.; Tubaro, A. Okadaic acid and other diarrheic toxins: Toxicological profile. In Marine and Freshwater Toxins; Gopalakrishnakone, P., Haddad, V., Kem, W., Tubaro, A., Kim, E., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–17. Available online: http://link.springer.com/referenceworkentry/10.1007/978-94-007-6650-1_4-1 (accessed on 1 January 2020).
- Wiese, M.; D’Agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef]
- Akbar, M.A.; Yusof, N.Y.; Yusof, M.; Tahir, N.I.; Ahmad, A.; Usup, G.; Sahrani, F.K.; Bunawan, H. Biosynthesis of saxitoxin in marine dinoflagellates: An omics perspective. Mar. Drugs 2020, 18, 103. [Google Scholar] [CrossRef]
- Paz, B.; Daranas, A.H.; Norte, M.; Riobó, P.; Franco, J.M.; Fernández, J.J. Yessotoxins, a group of marine polyether toxins: An overview. Mar. Drugs 2008, 6, 73–102. [Google Scholar] [CrossRef]
- Nieves, M.G.; Díaz, P.A.; Araya, M.; Salgado, P.; Rojas, R.; Quiroga, E.; Pizarro, G.; Álvarez, G. Effects of the toxic dinoflagellate Protoceratium reticulatum and its yessotoxins on the survival and feed ingestion of Argopecten purpuratus veliger larvae. Mar. Pollut. Bull. 2024, 199, 116022. [Google Scholar] [CrossRef]
- Aune, T.; Sørby, R.; Yasumoto, T.; Ramstad, H.; Landsverk, T. Comparison of oral and intraperitoneal toxicity of yessotoxin towards mice. Toxicon 2002, 40, 77–82. [Google Scholar] [CrossRef]
- Abulfatih, H.A.; Abdel-Bari, E.M.; Alsubaey, A.; Ibrahim, Y.M. Vegetation of Qatar; Scientific and Applied Research Center (SARC), University of Qatar: Doha, Qatar, 2001. [Google Scholar]
- Abulfatih, H.A.; Al-Thani, R.F.; Al-Naimi, I.S.; Swelleh, J.A.; Elhag, E.A.; Kardousha, M.M. Ecology of Wastewater Ponds in Qatar; Scientific and Applied Research Centre (SARC), University of Qatar: Doha, Qatar, 2002. [Google Scholar]
- Yasseen, B.T.; Abulfatih, H.A.; Nasher, A.K.; Abid, K.Y.; Al-Mofti, M.B. Preliminary assessment of pollution due to faulty sewage system in north of Sana’a, Republic of Yemen. Dirasat 2001, 28, 89–96. [Google Scholar]
- Weis, J.S. Marine Pollution; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Marella, T.K.; Pacheco, I.Y.L.; Parra, R.; Dixit, S.; Tiwari, A. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci. Total Environ. 2020, 724, 137960. [Google Scholar] [CrossRef] [PubMed]
- Marella, T.K.; Saxena, A.; Tiwari, A. Diatom mediated heavy metal remediation: A review. Bioresour. Technol. 2020, 305, 123068. [Google Scholar] [CrossRef]
- Paniagua-Michel, J.; Banat, I.M. Unravelling diatoms’ potential for the bioremediation of oil hydrocarbons in marine environments. Clean Technol. 2024, 6, 93–115. [Google Scholar] [CrossRef]
- Walters, C.; Steyn, M.; Ndlela, L.; Nocanda, X.; Moloi, M.; Oberholster, P. Phycoremediation of industrial wastewater: Review of algae consortia. Int. J. Environ. Sci. Technol. 2025, 22, 6209–6224. [Google Scholar] [CrossRef]
- Bellido-Pedraza, C.M.; Torres, M.J.; Llamas, A. The microalgae Chlamydomonas for bioremediation and bioproduct production. Cells 2024, 13, 1137. [Google Scholar] [CrossRef]
- Kalhor, A.X.; Movafeghi, A.; Mohammadi-Nassab, A.D.; Abedi, E.; Bahrami, A. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar. Pollut. Bull. 2017, 123, 286–290. [Google Scholar] [CrossRef]
- Fang, Y.; Cai, Y.; Zhang, Q.; Ruan, R.; Ting Zhou, T. Research status and prospects for bioactive compounds of Chlorella species: Composition, extraction, production, and biosynthesis pathways. Process Saf. Environ. Prot. 2024, 191, 345–359. [Google Scholar] [CrossRef]
- Gupta, P.K.; Ranjan, S.; Gupta, S.K. Phycoremediation of petroleum hydrocarbon-polluted sites: Application, challenges, and future prospects. In Application of Microalgae in Wastewater Treatment; Gupta, S.K., Bux, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Elgazali, A.; Althalb, H.; Elmusrati, I.; Ahmed, H.M.; Banat, I.M. Remediation approaches to reduce hydrocarbon contamination in petroleum-polluted soil. Microorganisms 2023, 11, 2577. [Google Scholar] [CrossRef]
- Shafik, M. Phytoremediation of some heavy metals by Dunaliella salina. Global Environ. Res. 2008, 2, 1–11. [Google Scholar]
- Mondal, A.K.; Hinkley, C.; Kondaveeti, S.; Vo, P.H.N.; Ralph, P.; Kuzhiumparambil, U. Influence of pyrolysis time on removal of heavy metals using biochar derived from macroalgal biomass (Oedogonium sp.). Bioresour. Technol. 2024, 414, 131562. [Google Scholar] [CrossRef]
- Abioye, O.P. Biological remediation of hydrocarbon and heavy metals and contaminated soil. In Soil Contamination, Open Tech; Pascucci, S., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Dhamotharan, R.; Murugesan, S.; Murthy, A.R.C. Bioremediation of oil refinery effluent by using Scenedesmus obliquus. J. Amer. Sci. 2009, 5, 17–22. Available online: http://www.americanscience.org (accessed on 1 January 2020).
- Ishaq, A.; Peralta, H.M.M.; Basri, H. Bioactive compounds from green microalga—Scenedesmus and its potential applications: A brief review. Pertanika J. Trop. Agric. Sci. 2016, 39, 1–16. [Google Scholar]
- Rajan, P.S.; Gopinath, K.P.; Arun, J.; Pavithra, K.G. Hydrothermal liquefaction of Scenedesmus abundans biomass spent for sorption of petroleum residues from wastewater and studies on recycling of post hydrothermal liquefaction wastewater. Bioresour. Technol. 2019, 283, 36–44. [Google Scholar] [CrossRef]
- Paramasivam, P.; Maniam, G.P. Removal of heavy metals from petroleum industry wastewater using indigenous microalgae Scenedesmus sp. Key Eng. Mater. 2024, 974, 25–30. [Google Scholar] [CrossRef]
- Shaheed, A.; Dashak, D.A.; Joseph, K.O. Assessment of total petroleum hydrocarbons (TPH) contamination with Kyllina pumila and Spirogyra longata around Nigerian national petroleum corporation (NNPC) Jos Depot’s effluent water discharged point. FUDMA J. Sci. 2021, 5, 350–354. [Google Scholar] [CrossRef]
- Almeida, A.; Cotas, J.; Pereira, L.; Carvalho, P.C.S. Potential role of Spirogyra sp. and Chlorella sp. in bioremediation of mine drainage: A review. Phycology 2023, 3, 186–201. [Google Scholar] [CrossRef]
- Guleria, S.; Chawla, P.; Relhan, A.; Kumar, A.; Bhasin, A.; Zhou, J.L. Antibacterial and photocatalytic potential of bioactive compounds extracted from freshwater microalgae species (Spirogyra and Ocillatoria): A comparative analysis. Sci. Total Environ. 2024, 912, 169224. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, Y.; Lund, J. The effects of micro-algae characteristics on the bioremediation rate of Deepwater Horizon crude oil. J. Emerg. Investig. 2013. [Google Scholar] [CrossRef]
- Ameen, F.; Dawoud, T.; Alabdullatif, J.; Arif, I. CO2 sequestration and biodiesel production from Volvox aureus a newly isolated green microalgal species from industrial wastewater. Environ. Res. 2023, 221, 115251. [Google Scholar] [CrossRef]
- Han, J.W.; Yoon, M.; Lee, K.P.; Kim, G.H. Isolation of total RNA from a freshwater green alga, Zygnema cruciatum, containing high levels of pigments isolation of total RNA from a freshwater green alga, Zygnema cruciatum, containing high levels of pigments. Algae 2007, 22, 125–129. [Google Scholar]
- Arc, E.; Pichrtová, M.; Kranner, I.; Holzinger, A. Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. J. Exp. Bot. 2020, 71, 3314–3322. [Google Scholar] [CrossRef] [PubMed]
- Dorgham, M.M.; Al-Muftah, A.M. Plankton studies in the Arabian Gulf. I. Preliminary list of phytoplankton species in Qatari waters. Arab Gulf J. Sci. Res. Agric. Biol. Sci. 1986, 4, 421–436. [Google Scholar]
- Gallardo-Rodríguez, J.; Sánchez-Mirón, A.; García-Camacho, F.; López-Rosales, L.; Chisti, Y.; Molina-Grima, E. Bio-actives from microalgal dinoflagellates. Biotechnol. Adv. 2012, 30, 1673–1684. [Google Scholar] [CrossRef]
- Olajire, A.A.; Essien, J.P. Aerobic degradation of petroleum components by microbial consortia. J. Pet. Environ. Biotechnol. 2014, 5, 195. [Google Scholar] [CrossRef]
- Montuori, E.; De Luca, D.; Penna, A.; Stalberga, D.; Lauritano, C. Alexandrium spp.: From toxicity to potential biotechnological benefits. Mar. Drugs 2023, 22, 31. [Google Scholar] [CrossRef]
- Karafas, S.; Teng, S.T.; Leaw, C.P.; Alves-de-Souza, C. An evaluation of the genus Amphidinium (Dinophyceae) combining evidence from morphology, phylogenetics, and toxin production, with the introduction of six novel species. Harmful Algae 2017, 68, 128–151. [Google Scholar] [CrossRef]
- Durán-Riveroll, L.M.; Juárez, O.E.; Okolodkov, Y.B.; Mejía-Camacho, A.L.; Ramírez-Corona, F.; Casanova-Gracia, D.; Osorio-Ramírez, M.d.C.; Cervantes-Urieta, V.A.; Cembella, A.D. Morphological and molecular characterization of the benthic dinoflagellate Amphidinium from coastal waters of Mexico. Phycology 2023, 3, 305–324. [Google Scholar] [CrossRef]
- Orefice, I.; Balzano, S.; Romano, G.; Sardo, A. Amphidinium spp. as a source of antimicrobial, antifungal, and anticancer compounds. Life 2023, 13, 2164. [Google Scholar] [CrossRef]
- Baek, S.H.; Shimode, S.; Han, M.-S.; Kikuchi, T. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful Algae 2008, 7, 729–739. [Google Scholar] [CrossRef]
- De Zaburlín, N.M.; Vogler, R.E.; Molina, M.J.; Llano, V.M. Potential distribution of the invasive freshwater dinoflagellate Ceratium furcoides (Levander) Langhans (Dinophyta) in South America. J. Phycol. 2016, 52, 200–208. [Google Scholar] [CrossRef]
- Nwankwegu, A.S.; Zhang, L.; Xie, D.; Ohore, O.E.; Li, Y.; Yang, G.; Yao, X.; Song, Z.; Yang, Q. Metabolites dynamics exacerbated by external nutrients inputs into a Ceratium hirundinella-dominated bloom in the Pengxi River, Three Gorges Reservoir, China. Aquat. Toxicol. 2023, 258, 106507. [Google Scholar] [CrossRef] [PubMed]
- Almeda, R.; Connelly, T.L.; Buskey, E.J. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea. Sci. Rep. 2014, 4, 7560. [Google Scholar] [CrossRef]
- Qadri, H.; Uqab, B.; Javeed, O.; Dar, G.H.; Bhat, R.A. Ceratophyllum demersum-An accretion biotool for heavy metal remediation. Sci. Total Environ. 2021, 806, 150548. [Google Scholar] [CrossRef]
- Reguera, B.; Riobó, P.; Rodríguez, F.; Díaz, P.A.; Pizarro, G.; Paz, B.; Franco, J.M.; Blanco, J. Dinophysis toxins: Causative organisms, distribution, and fate in shellfish. Mar. Drugs 2014, 12, 394–461. [Google Scholar] [CrossRef]
- Lim, C.C.; Yoon, J.; Renolds, K.; Gerald, L.B.; Ault, A.P.; Heo, S.; Bell, M.L. Harmful algal bloom aerosols and human health. eBioMedicine 2023, 93, 104604. [Google Scholar] [CrossRef]
- Dale, B. Marine dinoflagellate cysts as indicators of eutrophication and industrial pollution: A discussion. Sci. Total Environ. 2001, 264, 235–240. [Google Scholar]
- Aydin, H.; Yürür, E.E.; Uzar, S.; Küçüksezgin, F. Impact of industrial pollution on recent dinoflagellate cysts in Izmir Bay (Eastern Aegean). Mar. Pollut. Bull. 2015, 94, 144–152. [Google Scholar] [CrossRef]
- Borbor-Cordova, M.J.; Torres, G.; Mantilla-Saltos, G.; Casierra-Tomala, A.; Bermudez, J.F.; Renteria, W.; Bayot, B. Oceanography of harmful algal blooms on the Ecuadorian coast (1997–2017): Integrating remote sensing and biological data. Front. Mar. Sci. 2019, 6, 13. [Google Scholar] [CrossRef]
- Rodríguez-Palacio, M.C.; Crisóstomo-Vázquez, L.; Álvarez-Hernández, S.; Lozano-Ramírez, C. Strains of toxic and harmful microalgae, from waste water, marine, brackish, and fresh water. Food Addit. Contamin. Part A 2011, 29, 304–313. [Google Scholar] [CrossRef]
- Camenzuli, D.; Freidman, B.L. On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Res. 2015, 34, 24492. [Google Scholar] [CrossRef]
- Prakash, A. Growth and Toxicity of a Marine Dinoflagellate, Gonyaulax tamarensis. J. Fish. Res. Board Can. 2011, 24, 1589–1606. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B.; Yang, S.; Jiao, Z.; Zhang, M.; Yang, Y.; Gao, Y. Advances in environmental pollutant detection techniques: Enhancing public health monitoring and risk assessment. Environ. Int. 2025, 197, 109365. [Google Scholar] [CrossRef] [PubMed]
- Flores-Chavarria, A.M.; Rodríguez-Jaramillo, C.; Band-Schmidt, C.J.; Hernández-Sandoval, F.E.; Núñez-Vázquez, E.; Bustillos-Guzmán, J.J. Effect of dissolved metabolites of the dinoflagellate Gymnodinium catenatum (Graham, 1943) on the white shrimp Litopenaeus vannamei (Boone, 1931): A histological study. Heliyon 2023, 9, e17018. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Y.; Song, S.; Gu, H.; Li, C. Physiological and transcriptomic response of dinoflagellate Gymnodinium catenatum to nitrate deficiency. Mar. Pollut. Bull. 2024, 208, 117009. [Google Scholar] [CrossRef]
- Shi, J.; Liu, Y.; Xue, B.; Liang, Y.; Song, S.; Gu, H.; Li, C. Integrated physiological and transcriptomic analysis reveals mechanism of planktonic dinoflagellate Gymnodinium catenatum response to heat and cold stress. Harmful Algae 2025, 147, 102884. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Deng, Y.; Tang, Y.Z. The notorious harmful algal blooms-forming dinoflagellate Prorocentrum donghaiense produces sexual resting cysts, which widely distribute along the coastal marine sediment of China. Front. Mar. Sci. 2022, 9, 826736. [Google Scholar] [CrossRef]
- Anderson, D.M.; Cembella, A.D.; Hallegraeff, G.M. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 2012, 4, 143–176. [Google Scholar] [CrossRef]
- Song, J.; Bi, H.; Cai, Z.; Cheng, X.; He, Y.; Benfield, M.C.; Fan, C. Early warning of Noctiluca scintillans blooms using in-situ plankton imaging system: An example from Dapeng Bay, P.R. China. Ecolog. Indic. 2020, 112, 106123. [Google Scholar] [CrossRef]
- Rameshkumar, P.; Thirumalaiselvan, P.S.; Raman, M.; Remya, L.; Jayakumar, R.; Sakthivel, M.; Tamilmani, G.; Sankar, M.; Anikuttan, K.K.; Menon, N.N.; et al. Monitoring of Harmful Algal Bloom (HAB) of Noctiluca scintillans (Macartney) along the Gulf of Mannar, India using in-situ and satellite observations and its impact on wild and mari-cultured finfishes. Mar. Pollut. Bull. 2023, 188, 114611. [Google Scholar] [CrossRef]
- Xiaodong, L.; Weijing, L.; Fan, J.; Ziqin, C.; Yang, C.; Ziyang, W.; Tan, Y.; Jing, L.; Weicheng, W.; Chen Xinhua, C. The dinoflagellate Noctiluca scintillans in China: A review of its distribution and role in harmful algal blooms. Mar. Pollut. Bull. 2023, 194, 115415. [Google Scholar] [CrossRef] [PubMed]
- Ajani, P.A.; Brett, S.; Krogh, M.; Scanes, P.; Webster, G.; Armand, L.K. The risk of harmful algal blooms (HABs) in the oyster-growing estuaries of New South Wales, Australia. Environ. Monit. Assess. 2012, 185, 5295–5316. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Fachon, E.; Hubbard, K.; Lefebvre, K.A.; Lin, P.; Pickart, R.; Richlen, M.; Sheffield, G.; Van Hemert, C. Harmful algal blooms in the Alaskan Arctic: An emerging threat as the ocean warms. Oceanography 2022, 35, 130–139. [Google Scholar] [CrossRef]
- Laneve, G.; Bruno, M.; Mukherjee, A.; Messineo, V.; Giuseppetti, R.; Pace, R.; Magurano, F.; D’Ugo, E. Remote sensing detection of algal blooms in a lake impacted by petroleum hydrocarbons. Remote Sens. 2022, 14, 121. [Google Scholar] [CrossRef]
- Esqueda-Lara, K.; Hernández-Becerril, D.U. Two new species of the dinoflagellate genus Phalacroma Stein (Dinophyceae) from tropical Mexican Pacific. Nova Hedwigia 2017, 105, 301–312. [Google Scholar]
- Haque, S.; Srivastava, N.; Pal, D.B.; Alkhanani, M.F.; Almalki, A.H.; Areeshi, M.Y.; Naidu, R.; Gupta, V.K. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. Sci. Total Environ. 2022, 833, 155222. [Google Scholar] [CrossRef]
- D’Costa, P.M.; Kunkolienkar, R.S.S.; Naik, A.G.; Naik, R.K.; Roy, R. The response of Prorocentrum sigmoides and its associated culturable bacteria to metals and organic pollutants. J. Basic Microbiol. 2019, 59, 979–991. [Google Scholar] [CrossRef]
- Khanaychenko, A.N.; Telesh, I.V.; Skarlato, S.O. Bloom-forming potentially toxic dinoflagellates Prorocentrum cordatum in marine plankton food webs. Protistology 2019, 13, 95–125. [Google Scholar] [CrossRef]
- Gribble, K.E.; Nolan, G.; Anderson, D.M. Biodiversity, biogeography, and potential trophic impact of Protoperidinium spp. (Dinophyceae) off the southwestern coast of Ireland. J. Plankton Res. 2007, 29, 931–947. [Google Scholar] [CrossRef]
- Sathishkumar, R.S.; Sahu, G.; Mohanty, A.K.; Arunachalam, K.D.; Venkatesan, R. First report of Protoperidinium steinii (Dinophyceae) bloom from the coastal marine ecosystem—An observation from tropical Indian waters. Oceanologia 2021, 63, 391–402. [Google Scholar] [CrossRef]
- Mitra, A. Estuarine Pollution in the Lower Gangetic Delta: Threats and Management; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Perin, L.S.; Moraes, G.V.; Galeazzo, G.A.; Oliveira, A.G. Bioluminescent dinoflagellates as a bioassay for toxicity assessment. Int. J. Mol. Sci. 2022, 23, 13012. [Google Scholar] [CrossRef]
- Jochem, F.; Bebenerd, B. Naked Dictyocha speculum- A new type of phytoplankton bloom in the Western Baltic. Mar. Biol. 1989, 103, 373–379. [Google Scholar]
- Prego, R.; Carballeira, R.; Pazos, Y.; Bao, R. Oceanographical context of the first bloom of the silicoflagellate Octactis speculum (Ehrenberg) recorded to cause salmon mortality in a Galician Ria: Was this bloom a rare event in the Iberian coast? Toxins 2023, 15, 435. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Huerta, C.; Zhang, S.; Alahmari, M.; Humam, A.A.; Hong, P.Y. Remediation of petroleum hydrocarbons in contaminated groundwater with the use of surfactants and biosurfactants. Chemosphere 2025, 376, 144290. [Google Scholar] [CrossRef]
- Al-Ansi, M.A. Fisheries of the State of Qatar. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 1995. [Google Scholar]
- Hassan, H.M. Effects of Pollution on Marine Crustaceans in Qatari Waters: A Baseline Survey and A Case Study on Genotoxicity Indicators in An Endemic Shrimp. Ph.D. Thesis, University of Salford, Manchester, UK, 2017. [Google Scholar]
- Al-Thani, R.F.; Yasseen, B.T. Possible future risks of pollution consequent to the expansion of oil and gas operations in Qatar. Environ. Pollut. 2023, 12, 12–52. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates, Inc.: Sunderland, UK, 2010. [Google Scholar]
- Patel, A.K.; Albarico, F.P.J.B.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.B.; Anwar, C.; Wani, H.M.; Pal, A.; Saini, R.; et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 2022, 351, 126910. [Google Scholar] [CrossRef]
- Yasseen, B.T.; Al-Thani, R.F. Wild plants in the Qatari peninsula are hidden gene bank for future research: Perspectives of desirable traits. In Cutting Edge Research in Biology; BP International: London, UK, 2023; Volume 8, pp. 207–252. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Kassas, H.Y.; Ali, S.S. Microalgae-based bioremediation of refractory pollutants: An approach towards environmental sustainability. Microb. Cell Fact. 2025, 24, 19. [Google Scholar] [CrossRef]
- Barra, L.; Greco, S. The potential of microalgae in phycoremediation. In Microalgae-Current and Potential Applications; Aydin, S., Ed.; Intech Open: London, UK, 2023. [Google Scholar] [CrossRef]
- Allard, B.; Rager, M.-N.; Templier, J. Occurrence of high molecular weight lipids (C80+) in the trilaminar outer cell walls of some freshwater microalgae. A reappraisal of algaenan structure. Org. Geochem. 2002, 33, 789–801. [Google Scholar] [CrossRef]
- Dunker, S.; Wilhelm, C. Cell wall structure of coccoid green algae as an important trade-off between biotic interference mechanisms and multidimensional cell growth. Front. Microbiol. 2018, 9, 719. [Google Scholar] [CrossRef]
- Stan, D.; Mirica, A.-C.; Mocanu, S.; Stan, D.; Podolean, I.; Candu, N.; El Fergani, M.; Stefan, L.M.; Seciu-Grama, A.-M.; Aricov, L.; et al. Hybrid hydrogel supplemented with algal polysaccharide for potential use in biomedical applications. Gels 2025, 11, 17. [Google Scholar] [CrossRef]
- Silva, A.; Coimbra, R.N.; Escapa, C.; Figueiredo, S.A.; Freitas, O.M.; Otero, M. Green microalgae Scenedesmus Obliquus utilization for the adsorptive removal of nonsteroidal anti-inflammatory drugs (NSAIDs) from water samples. Int. J. Environ. Res. Public. Health. 2020, 17, 3707. [Google Scholar] [CrossRef]
- Alabssawy, A.N.; Hashem, A.H. Bioremediation of hazardous heavy metals by marine microorganisms: A recent review. Arch. Microbiol. 2024, 206, 103. [Google Scholar] [CrossRef]
- Kanamarlapudi, S.L.R.K.; Chintalpudi, V.K.; Muddada, S. Application of biosorption for removal of heavy metals from wastewater. In Biosorption; Derco, J., Vrana, B., Eds.; Intech Open: London, UK; Slovak University of Technology: Bratislava, Slovakia, 2018. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals, and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Poonam, A.R.; Sharma, P.K. Biosorption: Principles, and applications. In Advances in Civil Engineering and Infrastructural Development; Gupta, L.M., Ray, M.R., Labhasetwar, P.K., Eds.; Springer: Singapore, 2021; pp. 501–510. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Bacterial biosorbents, an efficient heavy metals green clean-up strategy: Prospects, challenges, and opportunities. Microorganisms 2022, 10, 610. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhuyan, P.P.; Nayak, R.; Patra, S.; Behera, C.; Ki, J.S.; Ragusa, A.; Lukatkin, A.S.; Jena, M. Micro-algal phycoremediation: A glimpse into a sustainable environment. Toxics 2022, 10, 525. [Google Scholar] [CrossRef]
- Faruque, M.O.; Uddin, S.; Hossain, M.M.; Hossain, S.M.Z.; Shafiquzzaman, M.; Abdur Razzak, S. A comprehensive review on microalgae-driven heavy metals removal from industrial wastewater using living and nonliving. J. Hazard. Mater. Adv. 2024, 16, 100492. [Google Scholar] [CrossRef]
- Tedesco, P.; Balzano, S.; Coppola, D.; Esposito, F.P.; de Pascale, D.; Renata Denaro, R. Bioremediation for the recovery of oil polluted marine environment, opportunities and challenges approaching the Blue Growth. Mar. Pollut. Bull. 2024, 200, 116157. [Google Scholar] [CrossRef]
- Abu-Tahon, M.A.; Housseiny, M.M.; Aboelmagd, H.I.; Daifalla, N.; Khalili, M.; Isichei, A.C.; Ramadan, A.; Abu El-Saad, A.M.; Seddek, N.H.; Ebrahim, D.; et al. A holistic perspective on the efficiency of microbial enzymes in bioremediation process: Mechanism and challenges: A review. Int. J. Biol. Macromol. 2025, 308, 142278. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T. Microbial ecology of Qatar, the Arabian Gulf: Possible roles of microorganisms. Front. Mar. Sci. 2021, 8, 697269. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kurade, M.B.; Abou-Shanab, R.A.I.; Ji, M.-K.; Choi, J.; Kim, J.O.; Jeon, B.-H. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 2016, 205, 183–190. [Google Scholar] [CrossRef]
- Miazek, K.; Brozek-Pluska, B. Effect of PHRs and PCPs on microalgal growth, metabolism, and microalgae-based bioremediation processes: A review. Int. J. Mol. Sci. 2019, 20, 2492. [Google Scholar] [CrossRef]
- Al-Sulaiti, M.Y.; Al-Shaikh, I.M.; Yasseen, B.T.; Ashraf, S.; Hassan, H.M. Ability of Qatar’s native plant species to phytoremediate industrial wastewater in an engineered wetland treatment system for beneficial water re-use. In Proceedings of the Qatar Foundation Annual Research Forum Proceedings: 2013, EEO 010, Qatar National Convention Center (QNCC), Doha, Qatar, 24–25 November 2013. [Google Scholar] [CrossRef]
- Yasseen, B.T. Phytoremediation of industrial wastewater from oil and gas fields using native plants: The research perspectives in the State of Qatar. Cent. Eur. J. Exp. Biol. 2014, 3, 6–23. [Google Scholar]
- Ali, A.M.; Makhlouf, A.S.H. (Eds.) Handbook of Biodegradable Materials; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Ismael, A.A. Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J. Plankton Res. 2003, 25, 193–202. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, H.; Liu, S.; Lin, S. Biology of the marine heterotrophic dinoflagellate Oxyrrhis marina: Current status and future directions. Microorganisms 2013, 1, 33–57. [Google Scholar] [CrossRef]
- Miao, W.; Wang, S.; Lin, T.; Yan, Y.; Bao, Z.; Zhang, D.; Jiang, Z.; Zhang, H. Interaction patterns and assembly mechanisms of dinoflagellates and diatoms in a coastal bay suffering from long-term eutrophication. mSphere 2024, 9, e0036624. [Google Scholar] [CrossRef]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of soil from petroleum contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Bouyahya, A.; Bakrim, S.; Chamkhi, I.; Taha, D.; El Omari, N.; El Mneyiy, N.; El Hachlafi, N.; El-Shazly, M.; Khalid, A.; Abdalla, A.N.; et al. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomed. Pharmacother. 2024, 170, 115989. [Google Scholar] [CrossRef]
- Marella, T.K.; Bhaskar, M.V.; Tiwari, A. Phycoremediation of eutrophic lakes using diatom algae. In Lake Sciences and Climate Changes; Intech Open: London, UK, 2016. [Google Scholar]
- Voss, P.A.; Gornik, S.G.; Jacobovitz, M.R.; Rupp, S.; Dörr, M.; Maegele, I.; Annika Guse, A. Host nutrient sensing is mediated by mTOR signaling in cnidarian-dinoflagellate symbiosis. Curr. Biol. 2023, 33, 3634–3647. [Google Scholar] [CrossRef]
- Aloui, S.; Zghibi, A.; Mazzoni, A.; Elomri, A.; Triki, C. Groundwater resources in Qatar: A comprehensive review and informative recommendations for research, governance, and management in support of sustainability. J. Hydrol. Reg. Stud. 2023, 50, 101564. [Google Scholar] [CrossRef]
- Al-Thani, R.F.; Yasseen, B.T.; Balakrishnan, P. Microorganisms and halophytes attracted to the northeast coast of Qatar for potential phytoremediation: A case study and analysis. Int. J. Curr. Microbiol. Appl. Sci. 2025, 14, 79–102. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Algae as food. In Microbiology of Fermented Foods, 2nd ed.; Wood, B.J.B., Ed.; Blackie Academic and Professional: London, UK, 1998; pp. 585–602. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2016(SOFIA), Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016; 200p. [Google Scholar]
- Henriksson, P.J.G.; Tran, N.; Mohan, C.V.; Chan, C.Y.; Philips, M.J. Indonesian aquaculture futures-Evaluating environmental and socioeconomic potentials, and limitations. J. Clean. Prod. 2017, 162, 1482–1490. [Google Scholar] [CrossRef]
Genus | No. of Species | Remediation of Organic and Inorganic Components | Other Possible Roles | References |
---|---|---|---|---|
Dictyocha | 1 | Needs testing | Produces blooms | [145,146] |
Mesocena | 1 | Needs testing | Needs investigation | [147] |
Characteristics | Micro-Green Algae | Dinoflagellates |
---|---|---|
Classification | Protista, Chlorophyta | Protista, Dinoflagellata |
Habitat and ecology | Freshwater and marine; base of food chain; oxygen producers; stable in their habitat | Mostly marine, some freshwater; primary producers and predators; key in marine food webs; produce blooms and show bioluminescence |
Cell type | Cellulosic cell wall | Complex cell wall with some cellulose; layered system of membranes, vesicles, and plates |
Photosynthetic pigments | Chlorophylls a and b, giving appearance of green color with some carotenoids and xanthophylls; efficient in light absorption | Chlorophylls a and c, various types of carotenoids and xanthophylls like peridinin, giving a golden-brown color; less efficient in light absorption |
Trophic mode | Autotrophic | Autotrophic, heterotrophic, mixotrophic |
Human health | Low impact unless contaminated; largely safe | Highly toxic; may cause harmful algal blooms (HABs) and fish kills |
Toxin production | Rarely produce harmful toxins | Many are toxic, producing a number of toxins * |
Bioactive agents | Produce bioactive agents such as pharmaceuticals, nutraceuticals, cosmetics, and biotechnology uses | Highly used in marine pharmacology, neurotoxicology, and biotechnology |
Environmental impact | Mostly safe, stable, and commercially useful, especially for nutrition and renewable energy | Harmful blooms, marine toxins, and bioluminescence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Thani, R.F.; Yasseen, B.T. Comparative Phycoremediation Potential of Micro-Green Algae and Dinoflagellates in Coastal and Inland Qatar. Processes 2025, 13, 2190. https://doi.org/10.3390/pr13072190
Al-Thani RF, Yasseen BT. Comparative Phycoremediation Potential of Micro-Green Algae and Dinoflagellates in Coastal and Inland Qatar. Processes. 2025; 13(7):2190. https://doi.org/10.3390/pr13072190
Chicago/Turabian StyleAl-Thani, Roda F., and Bassam Taha Yasseen. 2025. "Comparative Phycoremediation Potential of Micro-Green Algae and Dinoflagellates in Coastal and Inland Qatar" Processes 13, no. 7: 2190. https://doi.org/10.3390/pr13072190
APA StyleAl-Thani, R. F., & Yasseen, B. T. (2025). Comparative Phycoremediation Potential of Micro-Green Algae and Dinoflagellates in Coastal and Inland Qatar. Processes, 13(7), 2190. https://doi.org/10.3390/pr13072190