Carbothermic Reduction of Low-Grade Nickel Ores from the “Batamsha” Deposit: Modeling, Pilot-Scale Smelting, and Phase Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tolymbekov, M.Z.; Kelamanov, B.S.; Baisanov, A.S.; Kaskin, K.K. Processing Kazakhstan’s chromonickel ore. Steel Transl. 2008, 38, 660–663. [Google Scholar] [CrossRef]
- Isatayev, K.K.; Seytimova, S.E.; Musayev, E.R. Prospects for the development of hard-to-enrich nickel ores in Kazakhstan. Min. J. Kazakhstan 2020, 2, 45–50. [Google Scholar]
- Bespalov, V.P.; Yermekbayev, K.T. Technological problems of processing low-grade nickel ores and ways to solve them. Bull. KASU 2021, 3, 32–39. [Google Scholar]
- Gurevich, L.I.; Udodov, V.G. Pyrometallurgy of Refractory Metals; Metallurgiya: Moscow, Russia, 1987; 320p. (In Russian) [Google Scholar]
- Derin, B.; Aydin, F.; Topkaya, Y.A. Production of ferro-nickel from nickel laterites in a DC arc furnace. Miner. Eng. 2008, 21, 683–689. [Google Scholar]
- Dalvi, A.D.; Bacon, W.G.; Osborne, R.C. The Past and the Future of Nickel Laterites. In Proceedings of the PDAC International Convention, Toronto, Canada, 26 January 2004; 21p. [Google Scholar]
- Kelamanov, B.; Yessengaliyev, D.; Sariev, O.; Akuov, A.; Samuratov, Y.; Zhuniskaliyev, T.; Kuatbay, Y.; Mukhambetgaliyev, Y.; Kolesnikova, O.; Zhumatova, A.; et al. Technological Analysis of the Production of Nickel-Containing Composite Materials. J. Compos. Sci. 2024, 8, 179. [Google Scholar] [CrossRef]
- Li, X.; Nie, J.; Wang, X.; Li, K.; Zhang, H. Effect of interface form on creep failure and life of dissimilar metal welds involving nickel-based weld metal and ferritic base metal. Chin. J. Mech. Eng. (Engl. Ed.) 2024, 37, 18. [Google Scholar] [CrossRef]
- Zhan, Z.; Shi, Z.; Wang, Z.; Lu, W.; Chen, Z.; Zhang, D.; Chai, F.; Luo, X. Effect of manganese on the strength–toughness relationship of low-carbon copper- and nickel-containing hull steel. Materials 2024, 17, 1012. [Google Scholar] [CrossRef]
- Abdul, F.; Firdausi, S.; Widyartha, A.B.; Setiyorini, Y.; Pintowantoro, S. The Role of Limestone in Enhancing Selective Reduction of Nickel in the Carbothermic Reduction of Laterite Nickel. Trans. Indian Inst. Met. 2023, 76, 2211–2219. [Google Scholar] [CrossRef]
- Prabowo, B.; Yuliah, Y.; Widodo, W. Effects of Reduction Time on Carbothermic Reduction of Lateritic Nickel Ore Using Palm Kernel Shell as Green Reducing Agent. IOP Conf. Ser. Earth Environ. Sci. 2018, 141, 012008. [Google Scholar] [CrossRef]
- Pintowantoro, S.; Abdul, F. Selective Reduction of Laterite Nickel Ore. Mater. Trans. 2019, 60, 2245–2255. [Google Scholar] [CrossRef]
- Ilyas, S.; Srivastava, R.R.; Kim, H.; Ilyas, N.; Sattar, R. Extraction of Nickel and Cobalt from a Laterite Ore Using the Carbothermic Reduction Roasting–Ammoniacal Leaching Process. Sep. Purif. Technol. 2020, 237, 115971. [Google Scholar] [CrossRef]
- Harjanto, S.; Rhamdhani, M.A. Sulfides Formation in Carbothermic Reduction of Saprolitic Nickel Laterite Ore with Addition of Sodium Thiosulfate and Soda Ash. Minerals 2019, 9, 631. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, C.; Xue, Z.; Li, F.; Li, S.; Duan, H.; Zhang, H. High-Grade Ferronickel Concentrates Prepared from Laterite Nickel Ore by a Carbothermal Reduction and Magnetic Separation Method. Minerals 2024, 14, 7132. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, Z.; Wang, Z.; Sun, T. Effect of Co-Reduction Conditions of Nickel Laterite Ore and Red Mud on Ferronickel Particle Size Characteristics. Minerals 2022, 12, 357. [Google Scholar] [CrossRef]
- Setiawan, I.; Harjanto, S.; Subagja, R. Low-Temperature Carbothermic Reduction of Indonesia Nickel Lateritic Ore with Sub-Bituminous Coal. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012019. [Google Scholar] [CrossRef]
- Pickles, C.A.; Forster, J.; Elliott, R. Thermodynamic Analysis of the Carbothermic Reduction Roasting of a Nickeliferous Limonitic Laterite Ore. Miner. Eng. 2014, 61, 33–40. [Google Scholar] [CrossRef]
- Kelamanov, B.; Samuratov, Y.E.; Akuov, A.; Sariev, O.; Tastanova, L.; Abdirashit, A. Thermodynamic-diagram analysis of Fe–Ni–C–O system. Metalurgija 2022, 61, 261–264. [Google Scholar]
- Method for Processing Oxidized Nickel Ores to Produce a Nickel–Chromium-Containing Ferroalloy. RU Patent 2453617 C2 Russian Federation. No. 2010129269/02. 27 May 2012. Available online: https://patentimages.storage.googleapis.com/84/14/03/b822c146a5f8d1/RU2453617C2.pdf (accessed on 5 June 2025).
- Method for Processing Oxidized Nickel Ore. RU Patent 2624880 C2 Russian Federation. No. 2016133276. 6 July 2017. Available online: https://patenton.ru/patent/RU2624880C2 (accessed on 5 June 2025).
- Yildirim, H.; Turan, A.; Kahraman, N. Nickel Pig Iron Production from Lateritic Nickel Ores [Electronic Resource]//ResearchGate. 2018. Available online: https://www.researchgate.net/profile/Ahmet-Turan-3/publication/323177473_NICKEL_PIG_IRON_PRODUCTION_FROM_LATERITIC_NICKEL_ORES (accessed on 5 June 2025).
- Abdirashit, A.; Kelamanov, B.; Sariyev, O.; Yessengaliyev, D.; Abilberikova, A.; Zhuniskaliyev, T.; Kuatbay, Y.; Naurazbayev, M.; Nazargali, A. Study of Nickel–Chromium-Containing Ferroalloy Production. Processes 2025, 13, 1258. [Google Scholar] [CrossRef]
- GOST 22772.4-77; Manganese Ores, Concentrates and Agglomerates. Methods for Determination of Iron Content (Total). State Committee for Standards of the Council of Ministers of the USSR: Moscow, Russia, 1979.
- GOST 22772.6-77; Manganese Ores, Concentrates and Agglomerates. Methods for the Determination of Phosphorus. Committee for Standards of the Council of Ministers of the USSR: Moscow, Russia, 1979.
- GOST 22772.7-96; Manganese Ores, Concentrates and Agglomerates. Methods for Determination of Sulfur. Committee for Standards of the Council of Ministers of the USSR: Moscow, Russia, 1999.
- Mallieswaran, K.; Rajasekaran, S.; Kumar, M.V.; Rajendran, C. Steel shot peening effects on friction stir welded AA2014-T6 aluminum alloys. Mater. Test. 2022, 64, 1202–1213. [Google Scholar] [CrossRef]
- Mallieswaran, K.; Rajendran, C.; Padmanabhan, R.; Rajasekaran, S. Evaluation of nickel shot peening process on strength of friction stir welded AA2014-T6 aluminum alloy joints. Pract. Metallogr. 2023, 60, 442–460. [Google Scholar] [CrossRef]
- Lim, J.-D.; Kim, J.; Kim, D.; Park, Y. Effects of Oxygen Partial Pressure and Slag Basicity on the Behavioral Characteristics of Ni in Slag Drying Smelting. Arch. Metall. Mater. 2024, 69, 437–441. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Chromium Partitioning and Speciation in Spinel-Bearing Slags: Implications for Chromium Leaching Behavior. J. Geochem. Explor. 2015, 154, 226–235. [Google Scholar]
Material | Content, % | ||||||||
FC | Ash | Wp | V | SiO2 | Al2O3 | MgO | Fetot | Ptot | |
Coke | 75.73 | 20.4 | 1.07 | 3.83 | |||||
Coke Ash | 48.50 | 14.57 | 4.34 | 11.84 | 0.04 | ||||
Coal | 55.28 | 9.24 | 5.44 | 37.71 | |||||
Coal Ash | 51.80 | 32.54 | 3.12 | 3.99 | 0.14 | ||||
Material | Content, % | ||||||||
Crtot | Nitot | Fetot | CaO | SiO2 | Al2O3 | MgO | |||
Nickel Ore | 0.30 | 1.05 | 19.62 | 0.46 | 42.83 | 4.39 | 7.07 | ||
Lime | 1.15 | 90 | 1.96 | 3.10 | 3.27 |
t, °C | Ni (Ni2SiO4) | Ni (Cr4Ni26) | Ni (Cr22Ni8) | Ni (Fe8Cr4Ni18) | Ni (Fe18Cr4Ni8) | Ni | Ni (NiSi) | Ni (NiSi2) | Ni (Ni2Si) | Ni (Ni5Si2) |
---|---|---|---|---|---|---|---|---|---|---|
100 | 2.746 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
200 | 2.746 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
300 | 2.746 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
400 | 0.105 | 2.4 × 10−85 | 0 | 2.8 × 10−99 | 4.4 × 10−125 | 2.641 | 6.5 × 10−25 | 8.9 × 10−56 | 2.2 × 10−20 | 1.0 × 10−38 |
500 | 0.011 | 1.2 × 10−70 | 7.1 × 10−284 | 1.8 × 10−78 | 7.5 × 10−96 | 2.736 | 1.2 × 10−20 | 2.1 × 10−46 | 1.0 × 10−16 | 1.6 × 10−31 |
600 | 0.002 | 3.6 × 10−59 | 1.3 × 10−232 | 1.7 × 10−62 | 1.2 × 10−73 | 2.744 | 3.2 × 10−17 | 6.7 × 10−39 | 9.5 × 10−14 | 1.0 × 10−25 |
700 | 3.0 × 10−4 | 7.0 × 10−50 | 2.9 × 10−188 | 2.7 × 10−49 | 4.9 × 10−55 | 2.746 | 2.8 × 10−14 | 1.2 × 10−32 | 3.5 × 10−11 | 1.0 × 10−20 |
800 | 4.2 × 10−5 | 3.2 × 10−42 | 4.0 × 10−147 | 8.2 × 10−39 | 1.2 × 10−40 | 2.746 | 1.4 × 10−11 | 1.2 × 10−26 | 7.7 × 10−9 | 3.4 × 10−16 |
900 | 6.3 × 10−6 | 5.1 × 10−36 | 1.8 × 10−111 | 4.0 × 10−31 | 9.1 × 10−31 | 2.746 | 2.7 × 10−9 | 1.0 × 10−21 | 7.5 × 10−7 | 2.1 × 10−12 |
1000 | 1.2 × 10−6 | 8.3 × 10−31 | 8.3 × 10−82 | 2.7 × 10−25 | 7.1 × 10−24 | 2.746 | 2.4 × 10−7 | 1.8 × 10−17 | 3.7 × 10−5 | 3.7 × 10−9 |
1100 | 2.8 × 10−7 | 5.0 × 10−26 | 1.8 × 10−56 | 1.9 × 10−20 | 1.1 × 10−18 | 2.745 | 1.6 × 10−5 | 1.1 × 10−13 | 0.001 | 3.0 × 10−6 |
1200 | 7.5 × 10−8 | 3.5 × 10−22 | 3.6 × 10−35 | 1.4 × 10−16 | 1.3 × 10−14 | 2.722 | 6.2 × 10−4 | 2.1 × 10−10 | 0.022 | 8.9 × 10−4 |
1300 | 2.5 × 10−8 | 3.5 × 10−23 | 2.0 × 10−25 | 4.4 × 10−16 | 5.0 × 10−12 | 2.587 | 0.008 | 4.9 × 10−8 | 0.135 | 0.014 |
1400 | 6.5 × 10−9 | 2.4 × 10−27 | 1.3 × 10−22 | 2.3 × 10−18 | 8.5 × 10−12 | 2.105 | 0.067 | 4.7 × 10−6 | 0.519 | 0.055 |
1500 | 9.2 × 10−10 | 7.6 × 10−35 | 1.1 × 10−20 | 1.5 × 10−23 | 5.7 × 10−14 | 1.429 | 0.336 | 2.1 × 10−4 | 0.947 | 0.034 |
t, °C | Cr (Cr2O3) | Cr (FeCr2O4) | Cr (Cr3C2) | Cr (Cr4C) | Cr (CrSi) | Cr (CrSi2) | Cr (Cr3Si) | Cr (Cr5Si3) | Cr (Fe26Cr4) | Cr |
---|---|---|---|---|---|---|---|---|---|---|
100 | 0.012 | 2.636 | 4.24 × 10−86 | 1.08 × 10−114 | 0 | 0 | 0 | 0 | 0 | 0 |
200 | 0.021 | 2.627 | 3.91 × 10−65 | 7.58 × 10−87 | 0 | 0 | 0 | 0 | 0 | 0 |
300 | 0.037 | 2.611 | 2.36 × 10−50 | 3.20 × 10−67 | 0 | 0 | 0 | 0 | 0 | 0 |
400 | 0.057 | 2.59 | 7.51 × 10−40 | 2.79 × 10−53 | 8.15 × 10−43 | 8.24 × 10−71 | 3.61 × 10−71 | 8.08 × 10−146 | 2.12 × 10−157 | 4.54 × 10−16 |
500 | 0.097 | 2.546 | 5.80 × 10−32 | 8.09 × 10−43 | 2.33 × 10−35 | 1.07 × 10−58 | 2.16 × 10−58 | 2.34 × 10−119 | 3.90 × 10−119 | 3.37 × 10−13 |
600 | 0.168 | 2.469 | 1.11 × 10−25 | 1.75 × 10−34 | 2.14 × 10−29 | 5.34 × 10−49 | 3.46 × 10−48 | 3.68 × 10−98 | 3.53 × 10−90 | 6.43 × 10−11 |
700 | 0.297 | 2.331 | 2.90 × 10−20 | 2.94 × 10−27 | 3.12 × 10−24 | 1.24 × 10−40 | 2.59 × 10−39 | 9.64 × 10−80 | 7.95 × 10−66 | 6.44 × 10−9 |
800 | 0.647 | 1.961 | 2.53 × 10−15 | 1.43 × 10−20 | 1.80 × 10−19 | 5.62 × 10−33 | 4.72 × 10−31 | 1.16 × 10−62 | 3.78 × 10−47 | 5.14 × 10−7 |
900 | 1.323 | 1.249 | 4.25 × 10−11 | 8.78 × 10−15 | 2.32 × 10−15 | 2.11 × 10−26 | 6.83 × 10−24 | 6.61 × 10−48 | 1.40 × 10−34 | 2.42 × 10−5 |
1000 | 1.98 | 0.565 | 1.53 × 10−7 | 6.28 × 10−10 | 6.64 × 10−12 | 7.48 × 10−21 | 6.67 × 10−18 | 1.59 × 10−35 | 4.88 × 10−26 | 0.001 |
1100 | 2.327 | 0.205 | 0 | 9.67 × 10−6 | 6.18 × 10−9 | 4.66 × 10−16 | 8.82 × 10−13 | 6.97 × 10−25 | 6.38 × 10−20 | 0.009 |
1200 | 2.285 | 0.07 | 0.083 | 0.033 | 2.18 × 10−6 | 6.30 × 10−12 | 2.01 × 10−8 | 8.56 × 10−16 | 4.60 × 10−15 | 0.084 |
1300 | 0.937 | 0.018 | 0.566 | 0.762 | 0 | 4.61 × 10−9 | 7.40 × 10−6 | 2.67 × 10−10 | 2.63 × 10−10 | 0.332 |
1400 | 0.154 | 0.002 | 0.537 | 1.265 | 0.002 | 8.49 × 10−7 | 2.68 × 10−4 | 1.14 × 10−6 | 1.26 × 10−7 | 0.683 |
1500 | 0.032 | 0 | 0.2 | 0.805 | 0.041 | 0 | 0.009 | 0.003 | 5.51 × 10−7 | 1.558 |
Material Consumption, kg | Value |
---|---|
Nickel Ore | 88.33 |
Kazakhstan Coke | 9.75 |
Shubarkol Coal | 3 |
Lime | 61.83 |
Alloy Obtained, kg | 15 |
Basicity (CaO/SiO2) | 2.29 |
Slag-to-Metal Ratio | 3.07 |
Average Nickel Recovery, % | 91 |
Electricity Consumption, kWh/t of Ore | 980 |
№ | Alloy | Slag | CaO/ SiO2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | Cr | Fe | Si | C | NiO | Cr2O3 | FeO | SiO2 | MgO | Al2O3 | CaO | ||
1 | 4.89 | 2.05 | 78.45 | 1.76 | 3.50 | 0.168 | 0.10 | 0.41 | 2.42 | 48.39 | 7.85 | 4.47 | 1.85 |
2 | 4.81 | 2.32 | 83.77 | 1.37 | 3.00 | 0.221 | 0.09 | 0.39 | 2.42 | 47.88 | 8.45 | 5.11 | 2.11 |
3 | 4.69 | 1.96 | 83.77 | 1.42 | 3.36 | 0.218 | 0.09 | 0.43 | 1.97 | 46.33 | 9.65 | 4.62 | 2.35 |
4 | 4.78 | 1.38 | 76.25 | 2.96 | 3.77 | 0.228 | 0.09 | 0.25 | 2.57 | 46.12 | 7.02 | 4.67 | 1.82 |
5 | 4.74 | 2.04 | 81.25 | 1.83 | 3.93 | 0.191 | 0.10 | 0.26 | 2.33 | 46.84 | 9.78 | 4.96 | 2.13 |
6 | 5.19 | 1.43 | 79.38 | 1.26 | 4.32 | 0.234 | 0.09 | 0.19 | 1.78 | 47.20 | 7.38 | 4.16 | 2.34 |
7 | 4.68 | 1.72 | 77.50 | 1.32 | 4.23 | 0.189 | 0.11 | 0.34 | 2.65 | 48.45 | 7.99 | 4.89 | 1.85 |
8 | 5.00 | 1.52 | 78.12 | 0.82 | 4.08 | 0.231 | 0.09 | 0.37 | 1.29 | 45.48 | 7.98 | 4.12 | 3.19 |
9 | 4.74 | 1.58 | 76.88 | 0.98 | 4.34 | 0.208 | 0.08 | 0.18 | 0.96 | 44.76 | 7.35 | 4.11 | 4.28 |
10 | 4.78 | 2.00 | 81.88 | 1.10 | 4.47 | 0.204 | 0.18 | 0.24 | 2.25 | 46.91 | 7.32 | 4.87 | 2.16 |
11 | 4.68 | 2.36 | 83.75 | 1.42 | 3.79 | 0.215 | 0.09 | 0.39 | 2.01 | 44.66 | 7.87 | 4.98 | 2.48 |
12 | 5.17 | 1.81 | 80.00 | 1.58 | 4.02 | 0.242 | 0.08 | 0.40 | 1.53 | 43.76 | 7.02 | 4.65 | 3.04 |
13 | 5.10 | 2.12 | 81.25 | 0.91 | 4.42 | 0.197 | 0.08 | 0.38 | 2.01 | 43.98 | 9.32 | 4.11 | 2.04 |
14 | 4.96 | 1.49 | 82.50 | 0.69 | 4.56 | 0.197 | 0.12 | 0.24 | 1.81 | 42.16 | 7.81 | 4.77 | 2.64 |
15 | 4.62 | 1.05 | 78.75 | 1.13 | 4.47 | 0.230 | 0.18 | 0.27 | 1.36 | 45.98 | 9.32 | 4.73 | 3.48 |
16 | 5.08 | 1.41 | 81.25 | 1.26 | 4.78 | 0.237 | 0.06 | 0.31 | 2.46 | 44.98 | 7.81 | 4.69 | 1.91 |
17 | 4.85 | 1.77 | 80.00 | 1.76 | 4.62 | 0.198 | 0.14 | 0.25 | 2.42 | 43.98 | 8.11 | 4.61 | 1.90 |
18 | 4.81 | 2.27 | 82.50 | 0.91 | 4.54 | 0.212 | 0.11 | 0.26 | 2.08 | 44.65 | 7.81 | 4.81 | 2.31 |
Avg. | 4.80 | 1.79 | 80.40 | 1.36 | 4.12 | 0.21 | 0.10 | 0.31 | 2.02 | 45.70 | 8.10 | 4.63 | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelamanov, B.; Abilberikova, A.; Abdirashit, A.; Sariyev, O.; Yessengaliyev, D.; Zhuniskaliyev, T.; Kuatbay, Y.; Uakhitova, B.; Nurzhanov, A. Carbothermic Reduction of Low-Grade Nickel Ores from the “Batamsha” Deposit: Modeling, Pilot-Scale Smelting, and Phase Analysis. Processes 2025, 13, 2107. https://doi.org/10.3390/pr13072107
Kelamanov B, Abilberikova A, Abdirashit A, Sariyev O, Yessengaliyev D, Zhuniskaliyev T, Kuatbay Y, Uakhitova B, Nurzhanov A. Carbothermic Reduction of Low-Grade Nickel Ores from the “Batamsha” Deposit: Modeling, Pilot-Scale Smelting, and Phase Analysis. Processes. 2025; 13(7):2107. https://doi.org/10.3390/pr13072107
Chicago/Turabian StyleKelamanov, Bauyrzhan, Aigerim Abilberikova, Assylbek Abdirashit, Otegen Sariyev, Dauren Yessengaliyev, Talgat Zhuniskaliyev, Yerbol Kuatbay, Bagdagul Uakhitova, and Alimzhan Nurzhanov. 2025. "Carbothermic Reduction of Low-Grade Nickel Ores from the “Batamsha” Deposit: Modeling, Pilot-Scale Smelting, and Phase Analysis" Processes 13, no. 7: 2107. https://doi.org/10.3390/pr13072107
APA StyleKelamanov, B., Abilberikova, A., Abdirashit, A., Sariyev, O., Yessengaliyev, D., Zhuniskaliyev, T., Kuatbay, Y., Uakhitova, B., & Nurzhanov, A. (2025). Carbothermic Reduction of Low-Grade Nickel Ores from the “Batamsha” Deposit: Modeling, Pilot-Scale Smelting, and Phase Analysis. Processes, 13(7), 2107. https://doi.org/10.3390/pr13072107