Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies
Abstract
1. Introduction
2. Organic Loading Rate
3. Ammonia Inhibition: Mechanisms and Mitigation Strategies
3.1. Ammonia Inhibition
3.2. Regulation Strategies of AD System Under High Ammonia Nitrogen
3.2.1. Substrate C/N Ratio Regulation
3.2.2. Microbial Domestication
3.2.3. Ammonia Nitrogen Removal
4. Acid
4.1. Acid Suppression
4.1.1. VFA Inhibition
4.1.2. Inhibition of LCFAs
4.2. Solutions to Acid Inhibition
4.2.1. Alkaline Agent Addition
4.2.2. Trace Element Addition
4.2.3. Microbial Electrochemical and Biofortification Technology
4.2.4. Micro-Aeration-Based AD Technology
4.2.5. Overall Summary
5. Salt
5.1. Salinity Inhibition
5.2. Solutions to Salinity Inhibition
6. Conclusions
7. Research Gaps and Opportunities
7.1. Research Gaps
- Practical application: It is difficult to translate laboratory findings into practical applications. In actual plants, it is challenging to increase the OLR. Research on substrate selection for co-digestion and microbial communities is insufficient and new technologies are costly.
- Environmental impact research: The environmental risk assessment of additives and exogenous remediation factors is incomplete, and the environmental impacts of combined mitigation strategies remain unclear.
- Technical integration challenges: Existing mitigation strategies mostly target single inhibitory factors. The synergy and combination of different technologies are undefined, and their compatibility with existing processes needs to be explored.
- Model prediction defects: Computer models struggle to accurately describe the dynamics of AD systems. Machine learning models are prone to overfitting, and the interpretability of these models is poor.
7.2. Research Opportunities
- Technological integration and innovation: The integration of multiple mitigation strategies is expected to generate synergies, enhancing the efficiency and stability of AD.
- Monitoring technology upgrades: Advanced monitoring technologies should be developed to accurately monitor key parameters and microbial community changes for refined control in real-time.
- Sustainable development direction: Waste should be used as additives or co-substrates to explore environmentally friendly and economically viable mitigation strategies.
- Expansion of application fields: The cross-integration of AD with other fields like biorefining should be promoted to expand its applications in multiple areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
FW | food waste |
OLR | organic loading rate |
FAN | free ammonia |
VFAs | volatile fatty acids |
LCFAs | long-chain fatty acids |
MPA | methane-producing archaea |
CSTR | continuous-stirred tank reactor |
SDSAR | siphon-driven self-agitated reactor |
COD | chemical oxygen demand |
ROS | reactive oxygen species |
AMFC | algal microbial fuel cell phase |
MEC | microbial electrolysis cell |
DIET | direct intermediate electron transfer |
MOF | metal–organic framework |
SRB | sulfate-reducing bacteria |
ETS | electron transport system |
References
- Meng, Q.; Liu, H.; Zhang, H.; Xu, S.; Lichtfouse, E.; Yun, Y. Anaerobic digestion and recycling of kitchen waste: A review. Environ. Chem. Lett. 2022, 20, 1745–1762. [Google Scholar] [CrossRef]
- Yang, S.; Luo, F.; Yan, J.; Zhang, T.; Xian, Z.; Huang, W.; Zhang, H.; Cao, Y.; Huang, L. Biogas production of food waste with in-situ sulfide control under high organic loading in two-stage anaerobic digestion process: Strategy and response of microbial community. Bioresour. Technol. 2023, 373, 128712. [Google Scholar] [CrossRef]
- Rasaq, W.A.; Thiruchenthooran, V.; Telega, P.L.; Bobak, L.; Igwegbe, C.A.; Bialowiec, A. Optimizing hydrothermal treatment for sustainable valorization and fatty acid recovery from food waste. J. Environ. Manag. 2024, 357, 120722. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.; Song, J.; Sheng, C.; Shang, Z.; Wang, R.; Wang, X.; Yang, G.; Feng, Y.; Ren, G. Strategies to improve production of biomethane from organic wastes with anaerobic co-digestion: A systematic review. Biofuels Bioprod. Biorefining Biofpr 2022, 16, 1388–1411. [Google Scholar] [CrossRef]
- Singh, A.; Singhania, R.R.; Soam, S.; Chen, C.-W.; Haldar, D.; Varjani, S.; Chang, J.-S.; Dong, C.-D.; Patel, A.K. Production of bioethanol from food waste: Status and perspectives. Bioresour. Technol. 2022, 360, 127651. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ma, Y.; Liu, Y.; Wang, Q. Waste cooking oil used as carbon source for microbial lipid production: Promoter or inhibitor. Environ. Res. 2022, 203, 111881. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, B.; Liu, Y.; Zhang, J.; Deng, R.; Gu, L. Strategy to enhance semi-continuous anaerobic digestion of food waste by combined use of calcium peroxide and magnetite. Water Res. 2022, 221, 118801. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A review of biochar in anaerobic digestion to improve biogas production: Performances, mechanisms and economic assessments. Bioresour. Technol. 2021, 341, 125797. [Google Scholar] [CrossRef]
- Li, C.; Nhat, L.-M.; McDonald, J.A.; Kinsela, A.S.; Fisher, R.M.; Liu, D.; Stuetz, R.M. Occurrence and risk assessment of trace organic contaminants and metals in anaerobically co-digested sludge. Sci. Total Environ. 2022, 816, 151533. [Google Scholar] [CrossRef]
- Lee, E.; Oliveira, D.S.B.L.; Oliveira, L.S.B.L.; Jimenez, E.; Kim, Y.; Wang, M.; Ergas, S.J.; Zhang, Q. Comparative environmental and economic life cycle assessment of high solids anaerobic co-digestion for biosolids and organic waste management. Water Res. 2020, 171, 115443. [Google Scholar] [CrossRef]
- Bolzonella, D.; Battista, F.; Mattioli, A.; Nicolato, C.; Frison, N.; Lampis, S. Biological thermophilic post hydrolysis of digestate enhances the biogas production in the anaerobic digestion of agro-waste. Renew. Sustain. Energy Rev. 2020, 134, 110174. [Google Scholar] [CrossRef]
- Singh, S.; Keating, C.; Ijaz, U.Z.; Hassard, F. Molecular insights informing factors affecting low temperature anaerobic applications: Diversity, collated core microbiomes and complexity stability relationships in LCFA-fed systems. Sci. Total Environ. 2023, 874, 162420. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, M.; Chen, X.; Hu, Z.; Shu, Q.; Jing, C.; Luo, X. Effects of lighter dose of oxytetracycline on the accumulation and degradation of volatile fatty acids in the process of thermophilic anaerobic digestion of swine manure. Sustainability 2021, 13, 4014. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Liu, Y.; Huang, T.; Maurer, C.; Kranert, M. Effects of salt on anaerobic digestion of food waste with different component characteristics and fermentation concentrations. Energies 2019, 12, 3571. [Google Scholar] [CrossRef]
- Yang, P.; Peng, Y.; Tan, H.; Liu, H.; Wu, D.; Wang, X.; Li, L.; Peng, X. Foaming mechanisms and control strategies during the anaerobic digestion of organic waste: A critical review. Sci. Total Environ. 2021, 779, 146531. [Google Scholar] [CrossRef]
- Li, K.; Wang, K.; Wang, J.; Yuan, Q.; Shi, C.; Wu, J.; Zuo, J. Performance assessment and metagenomic analysis of full-scale innovative two-stage anaerobic digestion biogas plant for food wastes treatment. J. Clean. Prod. 2020, 264, 121646. [Google Scholar] [CrossRef]
- Zhang, J.; Loh, K.-C.; Li, W.; Lim, J.W.; Dai, Y.; Tong, Y.W. Three-stage anaerobic digester for food waste. Appl. Energy 2017, 194, 287–295. [Google Scholar] [CrossRef]
- Hu, Y.; Kobayashi, T.; Qi, W.; Oshibe, H.; Xu, K.-Q. Effect of temperature and organic loading rate on siphon-driven self-agitated anaerobic digestion performance for food waste treatment. Waste Manag. 2018, 74, 150–157. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Chen, Z.; Huang, W.; Huang, Y.; Fang, H.; Liu, Q. Evolution of quorum sensing process and their regulatory role on biochemical metabolism during the organic loading rate increase in dry anaerobic digestion. Chemosphere 2024, 363, 142954. [Google Scholar] [CrossRef]
- Parra-Orobio, B.A.; Cruz-Bournazou, M.N.; Torres-Lozada, P. Single-stage and two-stage anaerobic digestion of food waste: Effect of the organic loading rate on the methane production and volatile fatty acids. Water Air Soil Pollut. 2021, 232, 105. [Google Scholar] [CrossRef]
- Yu, Q.; Feng, L.; Zhen, X. Effects of organic loading rate and temperature fluctuation on the microbial community and performance of anaerobic digestion of food waste. Environ. Sci. Pollut. Res. 2021, 28, 13176–13187. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste—Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef]
- Jo, Y.; Kim, J.; Hwang, K.; Lee, C. A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions. Waste Manag. 2018, 78, 509–520. [Google Scholar] [CrossRef]
- Micolucci, F.; Gottardo, M.; Pavan, P.; Cavinato, C.; Bolzonella, D. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. J. Clean. Prod. 2018, 171, 1376–1385. [Google Scholar] [CrossRef]
- Grimberg, S.J.; Hilderbrandt, D.; Kinnunen, M.; Rogers, S. Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester—Assessment of variable loadings on system performance. Bioresour. Technol. 2015, 178, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-J.; Kobayashi, T.; Li, Y.-Y.; Xu, K.-Q. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste. Energy Convers. Manag. 2015, 106, 1174–1182. [Google Scholar] [CrossRef]
- Rusin, J.; Chamradova, K.; Basinas, P. Two-stage psychrophilic anaerobic digestion of food waste: Comparison to conventional single-stage mesophilic process. Waste Manag. 2021, 119, 172–182. [Google Scholar] [CrossRef]
- Jiang, M.; Qiao, W.; Wang, Y.; Zou, T.; Lin, M.; Dong, R. Balancing acidogenesis and methanogenesis metabolism in thermophilic anaerobic digestion of food waste under a high loading rate. Sci. Total Environ. 2022, 824, 153867. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, W.; Dong, Q.; Wu, D.; Yang, P.; Peng, Y.; Li, L.; Peng, X. Integrated multi-omics analyses reveal the key microbial phylotypes affecting anaerobic digestion performance under ammonia stress. Water Res. 2022, 213, 118152. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, L.; Chen, Z.; Wu, C.; Deng, Z.; Li, H. Material flow analysis of an upgraded anaerobic digestion treatment plant with separated utilization of carbon and nitrogen of food waste. Bioresour. Technol. 2024, 406, 131005. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, M.; Liang, C.; Chui, C.; Wang, N.; Shi, J.; Liu, L. Multivariate insights into enhanced biogas production in thermophilic dry anaerobic co-digestion of food waste with kitchen waste or garden waste: Process properties, microbial communities and metagenomic analyses. Bioresour. Technol. 2022, 361, 127684. [Google Scholar] [CrossRef] [PubMed]
- Fotidis, I.A.; Karakashev, D.; Angelidaki, I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int. J. Environ. Sci. Technol. 2014, 11, 2087–2094. [Google Scholar] [CrossRef]
- Lv, Z.; Leite, A.F.; Harms, H.; Glaser, K.; Liebetrau, J.; Kleinsteuber, S.; Nikolausz, M. Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition. Appl. Microbiol. Biotechnol. 2019, 103, 519–533. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Hu, Y.; Du, B.; Meng, J.; Wu, G.; Liu, H.; Zhan, X. Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures. Water Res. 2022, 224, 119029. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ni, J.; Cheng, H.; Zhu, A.; Guo, G.; Qin, Y.; Li, Y.-Y. Methanogenic performance and microbial community during thermophilic digestion of food waste and sewage sludge in a high-solid anaerobic membrane bioreactor. Bioresour. Technol. 2021, 342, 125938. [Google Scholar] [CrossRef]
- Christou, M.L.; Vasileiadis, S.; Kalamaras, S.D.; Karpouzas, D.G.; Angelidaki, I.; Kotsopoulos, T.A. Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community dynamics. Bioresour. Technol. 2021, 320, 124323. [Google Scholar] [CrossRef]
- He, L.; Yu, J.; Lin, Z.; Huang, Y.; He, X.; Shi, S.; Zhou, J. Organic matter removal performance, pathway and microbial community succession during the construction of high-ammonia anaerobic biosystems treating anaerobic digestate food waste effluent. J. Environ. Manag. 2022, 317, 115428. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Wang, Y.; Xu, F.; Li, J.; Tao, J.; Sun, Y.; Song, Y.; Duan, Z.; Li, S.; Chen, G. Emerging strategies for enhancing propionate conversion in anaerobic digestion: A review. Molecules 2023, 28, 3883. [Google Scholar] [CrossRef]
- Kayhanian, M. Ammonia inhibition in high-solids biogasification: An overview and practical solutions. Environ. Technol. 1999, 20, 355–365. [Google Scholar] [CrossRef]
- Sprott, G.D.; Shaw, K.M.; Jarrell, K.F. Ammonia-potassium exchange in methanogenic bacteria. J. Biol. Chem. 1984, 259, 2602–2608. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Moscoviz, R.; Astals, S.; Robles, A.; Steyer, J.P. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion. Renew. Sustain. Energy Rev. 2020, 117, 109487. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Xue, L.; Chen, C.; Liu, G.; Zhang, R. Effects of ammonia on anaerobic digestion of food waste: Process performance and microbial community. Energy Fuels 2016, 30, 5749–5757. [Google Scholar] [CrossRef]
- Calli, B.; Mertoglu, B.; Inanc, B.; Yenigun, O. Methanogenic diversity in anaerobic bioreactors under extremely high ammonia levels. Enzym. Microb. Technol. 2005, 37, 448–455. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Ding, K.; Zhao, X.; Liu, M.; Xu, L.; Gu, L.; Li, J.; Li, L.; He, Q.; et al. Improved anaerobic digestion of food waste under ammonia stress by side-stream hydrogen domestication. Water Res. 2025, 268, 122770. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, W.; Liu, Y.; Chen, Y.; He, S.; Ding, J.; Zhao, Q.; Wei, L. Inhibition mechanisms of ammonia and sulfate in high-solids anaerobic digesters for food waste treatment: Microbial community and element distributions responses. Chin. Chem. Lett. 2023, 34, 107439. [Google Scholar] [CrossRef]
- Quispe-Cardenas, E.; Rogers, S. Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. Water Res. 2021, 204, 117596. [Google Scholar] [CrossRef]
- Lim, E.Y.; Lee, J.T.E.; Zhang, L.; Tian, H.; Ong, K.C.; Tio, Z.K.; Zhang, J.; Tong, Y.W. Abrogating the inhibitory effects of volatile fatty acids and ammonia in overloaded food waste anaerobic digesters via the supplementation of nano-zero valent iron modified biochar. Sci. Total Environ. 2022, 817, 152968. [Google Scholar] [CrossRef]
- Niu, Q.; Kubota, K.; Qiao, W.; Jing, Z.; Zhang, Y.; Yu-You, L. Effect of ammonia inhibition on microbial community dynamic and process functional resilience in mesophilic methane fermentation of chicken manure. J. Chem. Technol. Biotechnol. 2015, 90, 2161–2169. [Google Scholar] [CrossRef]
- Liu, C.; Huang, H.; Duan, X.; Chen, Y. Integrated metagenomic and metaproteomic analyses unravel ammonia toxicity to active methanogens and syntrophs, enzyme synthesis, and key enzymes in anaerobic digestion. Environ. Sci. Technol. 2021, 55, 14817–14827. [Google Scholar] [CrossRef]
- Gao, M.; Guo, B.; Li, L.; Liu, Y. Role of syntrophic acetate oxidation and hydrogenotrophic methanogenesis in co-digestion of blackwater with food waste. J. Clean. Prod. 2021, 283, 125393. [Google Scholar] [CrossRef]
- Hao, Z.; Zhao, L.; Liu, J.; Pu, Q.; Chen, J.; Meng, B.; Feng, X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. Sci. Total Environ. 2024, 906, 167601. [Google Scholar] [CrossRef]
- Shang, Z.; Wang, R.; Zhang, X.; Tu, Y.; Sheng, C.; Yuan, H.; Wen, L.; Li, Y.; Zhang, J.; Wang, X.; et al. Differential effects of petroleum-based and bio-based microplastics on anaerobic digestion: A review. Sci. Total Environ. 2023, 875, 162674. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Lu, F.; Chen, L.; Zhang, H.; He, P. Machine learning for enhancing prediction of biogas production and building a VFA/ALK soft sensor in full-scale dry anaerobic digestion of kitchen food waste. J. Environ. Manag. 2024, 371, 123190. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Pandey, R.; Aryal, N.; Lohani, S.P. Recent advances in co-digestion conjugates for anaerobic digestion of food waste. J. Environ. Manag. 2023, 345, 118785. [Google Scholar] [CrossRef]
- Morken, J.; Gjetmundsen, M.; Fjortoft, K. Determination of kinetic constants from the co-digestion of dairy cow slurry and municipal food waste at increasing organic loading rates. Renew. Energy 2018, 117, 46–51. [Google Scholar] [CrossRef]
- Peng, Y.; Li, L.; Yuan, W.; Wu, D.; Yang, P.; Peng, X. Long-term evaluation of the anaerobic co-digestion of food waste and landfill leachate to alleviate ammonia inhibition. Energy Convers. Manag. 2022, 270, 116195. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Z.; Guan, D.; Zhao, J.; Wang, Y.; Zhang, Q.; Xie, J.; Sun, Y.; Guo, L.; Wang, D. A comprehensive review on food waste anaerobic co-digestion: Current situation and research prospect. Process Saf. Environ. Prot. 2023, 179, 546–558. [Google Scholar] [CrossRef]
- Fotidis, I.A.; Karakashev, D.; Kotsopoulos, T.A.; Martzopoulos, G.G.; Angelidaki, I. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. FEMS Microbiol. Ecol. 2013, 83, 38–48. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, M.; Chen, Y.; Yu, M.; Ruan, W. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition. Bioresour. Technol. 2015, 198, 372–379. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Huang, H.; Duan, X.; Dong, L. Improved anaerobic digestion under ammonia stress by regulating microbiome and enzyme to enhance VFAs bioconversion: The new role of glutathione. Chem. Eng. J. 2022, 433, 134562. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, Y.; Wu, S.; Zhou, L. Consolidation of hydrogenotrophic methanogenesis by sulfidated nanoscale zero-valent iron in the anaerobic digestion of food waste upon ammonia stress. Sci. Total Environ. 2022, 822, 153531. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, L.; Dong, Q.; Yang, P.; Liu, H.; Ye, W.; Wu, D.; Peng, X. Evaluation of digestate-derived biochar to alleviate ammonia inhibition during long-term anaerobic digestion of food waste. Chemosphere 2023, 311, 137150. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zuo, J.; Zhang, M.; Wang, Y.; Yu, H.; Li, B. Enhanced biogas production and in situ ammonia recovery from food waste using a gas-membrane absorption anaerobic reactor. Bioresour. Technol. 2019, 292, 121864. [Google Scholar] [CrossRef]
- Wu, L.-J.; Li, X.-X.; Yang, F.; Lyu, Y.-K. Thermophilic and mesophilic digestion of high-solid oily food waste: How to ensure long-term and stable continuous operation? J. Environ. Manag. 2024, 367, 121973. [Google Scholar] [CrossRef]
- Yan, M.; Hu, Z.; Duan, Z.; Sun, Y.; Dong, T.; Sun, X.; Zhen, F.; Li, Y. Microbiome re-assembly boosts anaerobic digestion under volatile fatty acid inhibition: Focusing on reactive oxygen species metabolism. Water Res. 2023, 246, 120711. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liu, B.; Yanagawa, K.; Nguyen Thi, H.; Goel, R.; Terashima, M.; Yasui, H. Effects of low pH conditions on decay of methanogenic biomass. Water Res. 2020, 179, 115883. [Google Scholar] [CrossRef]
- Zhang, W.; Li, L.; Wang, X.; Xing, W.; Li, R.; Yang, T.; Lv, D. Role of trace elements in anaerobic digestion of food waste: Process stability, recovery from volatile fatty acid inhibition and microbial community dynamics. Bioresour. Technol. 2020, 315, 123796. [Google Scholar] [CrossRef]
- Gebreeyessus, G.D.; Jenicek, P. Thermophilic versus mesophilic anaerobic digestion of sewage sludge: A comparative review. Bioengineering 2016, 3, 15. [Google Scholar] [CrossRef]
- Han, Y.; Green, H.; Tao, W. Reversibility of propionic acid inhibition to anaerobic digestion: Inhibition kinetics and microbial mechanism. Chemosphere 2020, 255, 126840. [Google Scholar] [CrossRef]
- Dolfing, J. Comment on “Thermodynamically enhancing propionic acid degradation by using sulfate as an external electron acceptor in a thermophilic anaerobic membrane reactor” by Qiao, W., Takayanagi, K., Li, Q., Shofie, M., Gao, F., Dong, R., Li, Y-Y. Water Res. (2016). Water Res. 2017, 116, 266–267. [Google Scholar] [CrossRef]
- Ma, G.; Chen, Y.; Ndegwa, P. Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis. Renew. Sustain. Energy Rev. 2022, 153, 111752. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, S.H.; Dennehy, C.; Lawlor, P.G.; Hu, Z.H.; Wu, G.X.; Zhan, X.M.; Gardiner, G.E. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review. Renew. Sustain. Energy Rev. 2020, 120, 109654. [Google Scholar] [CrossRef]
- Lee, H.-S.; Xin, W.; Katakojwala, R.; Mohan, S.V.; Tabish, N.M.D. Microbial electrolysis cells for the production of biohydrogen in dark fermentation—A review. Bioresour. Technol. 2022, 363, 127934. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Xu, H.; Mu, H.; Hua, D.; Jin, F.; Meng, G. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH. J. Biosci. Bioeng. 2019, 128, 50–55. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Li, K.; Wang, Q.; Gong, C.; Li, M. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef]
- Ganidi, N.; Tyrrel, S.; Cartmell, E. Anaerobic digestion foaming causes—A review. Bioresour. Technol. 2009, 100, 5546–5554. [Google Scholar] [CrossRef]
- Sousa, D.Z.; Salvador, A.F.; Ramos, J.; Guedes, A.P.; Barbosa, S.; Stams, A.J.M.; Alves, M.M.; Pereira, M.A. Activity and viability of methanogens in anaerobic digestion of unsaturated and saturated long-chain fatty acids. Appl. Environ. Microbiol. 2013, 79, 4239–4245. [Google Scholar] [CrossRef]
- Duan, J.-L.; Han, Y.; Feng, L.-J.; Ma, J.-Y.; Sun, X.-D.; Liu, X.-Y.; Geng, F.-S.; Jiang, J.-L.; Liu, M.-Y.; Sun, Y.-C.; et al. Single bubble probe atomic force microscope and impinging-jet technique unravel the interfacial interactions controlled by long chain fatty acid in anaerobic digestion. Water Res. 2023, 231, 119657. [Google Scholar] [CrossRef] [PubMed]
- Gaspari, M.; Treu, L.; Centurion, V.B.; Kotsopoulos, T.A.; Campanaro, S.; Kougias, P.G. Impacts of long chain fatty acids injection on biogas reactors performance stability and microbial community structure and function. J. Clean. Prod. 2023, 418, 138048. [Google Scholar] [CrossRef]
- Kim, M.; Jung, S.; Kang, S.; Rhie, M.N.; Song, M.; Shin, J.; Shin, S.G.; Lee, J. Magnetite particles accelerate methanogenic degradation of highly concentrated acetic acid in anaerobic digestion process. Environ. Res. 2024, 255, 119132. [Google Scholar] [CrossRef]
- Emmanuel, J.K.; Juma, M.J.; Mlozi, S.H. Biogas generation from food waste through anaerobic digestion technology with emphasis on enhancing circular economy in Sub-Saharan Africa—A review. Energy Rep. 2024, 12, 3207–3217. [Google Scholar] [CrossRef]
- Zhang, W.; Li, L.; Xing, W.; Chen, B.; Zhang, L.; Li, A.; Li, R.; Yang, T. Dynamic behaviors of batch anaerobic systems of food waste for methane production under different organic loads, substrate to inoculum ratios and initial pH. J. Biosci. Bioeng. 2019, 128, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-H.; Lian, S.-J.; Wang, R.-N.; Zou, H.; Guo, R.-B.; Fu, S.-F. Enhanced anaerobic digestion of food waste by metal cations and mechanisms analysis. Renew. Energy 2023, 218, 119386. [Google Scholar] [CrossRef]
- Feng, K.; Wang, Q.; Li, H.; Zhang, Y.; Deng, Z.; Liu, J.; Du, X. Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates. Renew. Energy 2020, 154, 385–393. [Google Scholar] [CrossRef]
- Dai, X.; Duan, N.; Dong, B.; Dai, L. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Manag. 2013, 33, 308–316. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, F.; Yan, M.; Tang, S.; Duan, Z.; Sun, Y.; Li, Y. Effect of ammonia on anaerobic digestion: Focusing on energy flow and electron transfer. Chem. Eng. J. 2023, 471, 144638. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, S.; Guo, J.; Zhou, J.; Dong, R. Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: Role of trace elements. Bioresour. Technol. 2015, 178, 297–305. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Li, L.; Sun, Y. Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment. Waste Manag. 2018, 79, 744–751. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, Z.; Chen, S.; Pei, H. Using an an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste. Water Res. 2020, 170, 115305. [Google Scholar] [CrossRef]
- Shi, X.; Zuo, J.; Li, B.; Yu, H. Two-stage anaerobic digestion of food waste coupled with in situ ammonia recovery using gas membrane absorption: Performance and microbial community. Bioresour. Technol. 2020, 297, 122458. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Tian, D.; Jun, H. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell. Bioresour. Technol. 2018, 247, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jin, Z.; Yu, Q.; Zhao, Z.; Zhang, Y. Alleviating acid inhibition in anaerobic digestion of food waste: Coupling ethanol-type fermentation with biochar addition. Environ. Res. 2022, 212, 113355. [Google Scholar] [CrossRef]
- Yamada, C.; Kato, S.; Ueno, Y.; Ishii, M.; Igarashi, Y. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J. Biosci. Bioeng. 2015, 119, 678–682. [Google Scholar] [CrossRef]
- Li, Q.; Xu, M.; Wang, G.; Chen, R.; Qiao, W.; Wang, X. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment. Bioresour. Technol. 2018, 249, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xie, J.; Chen, W.; Liu, M.; Xie, L. Boosting anaerobic digestion of long chain fatty acid with microbial electrolysis cell combining metal organic framework as cathode: Biofilm construction and metabolic pathways. Bioresour. Technol. 2024, 395, 130284. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, J.J.; Hua, B.; Huang, Z.; Droste, R.L.; Chen, L.; Wang, B.; Yang, C.; Yang, S. A new strategy to recover from volatile fatty acid inhibition in anaerobic digestion by photosynthetic bacteria. Bioresour. Technol. 2020, 311, 123501. [Google Scholar] [CrossRef]
- Duarte, M.S.; Silva, S.A.; Salvador, A.F.; Cavaleiro, A.J.; Stams, A.J.M.; Alves, M.M.; Pereira, M.A. Insight into the role of facultative bacteria stimulated by microaeration in continuous bioreactors converting LCFA to methane. Environ. Sci. Technol. 2021, 55, 12130. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, Y.; Wu, B.; Gu, L.; Deng, R. Upgrade the high-load anaerobic digestion and relieve acid stress through the strategy of side-stream micro-aeration: Biochemical performances, microbial response and intrinsic mechanisms. Water Res. 2022, 221, 118850. [Google Scholar] [CrossRef]
- Li, X.; Yan, Y.-J.; Lu, C.-S.; Jiang, H.; Ma, H.; Hu, Y. Micro-aeration based anaerobic digestion for food waste treatment: A review. J. Water Process Eng. 2024, 58, 104814. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Y.; He, L.; Liu, M.; Xiang, J.; Chen, Y.; Gu, L.; Li, J.; Li, L.; Pan, W.; et al. Enhancing anaerobic digestion of food waste by combining carriers and microaeration: Performance and potential mechanisms. ACS EST Eng. 2024, 4, 2506–2519. [Google Scholar] [CrossRef]
- Li, X.; Yan, Y.-J.; Wu, H.-M.; Gadow, S.I.; Jiang, H.; Kong, Z.; Hu, Y. Enhancing mesophilic methanogenesis in oleate-rich environments through optimized micro-aeration pretreatment. Waste Manag. 2025, 193, 171–179. [Google Scholar] [CrossRef]
- Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic digestion: An alternative resource treatment option for food waste in China. Sci. Total Environ. 2021, 779, 146397. [Google Scholar] [CrossRef]
- Mei, W.; Li, L.; Zhao, Q.; Li, X.; Wang, Z.; Gao, Q.; Wei, L.; Wang, K.; Jiang, J. A critical review of effects, action mechanisms and mitigation strategies of salinity in anaerobic digestion. Renew. Sustain. Energy Rev. 2025, 208, 115095. [Google Scholar] [CrossRef]
- Song, Q.; Chen, X.; Hua, Y.; Chen, S.; Ren, L.; Dai, X. Biological treatment processes for saline organic wastewater and related inhibition mechanisms and facilitation techniques: A comprehensive review. Environ. Res. 2023, 239, 117404. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Xiao, C.; Workie, E.; Zhang, J.; He, Y.; Tong, Y.W. Bioelectrochemical enhancement of methanogenic metabolism in anaerobic digestion of food waste under salt stress conditions. ACS Sustain. Chem. Eng. 2021, 9, 13526–13535. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Wang, D.; Chen, F.; Li, X.; Zeng, G.; Yang, Q. Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 2017, 67, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhang, Z.; Yang, K.; Gu, P.; Liu, S.; Jia, Y.; Zhang, Z.; Wang, T.; Yin, J.; Miao, H. Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. Bioresour. Technol. 2022, 363, 127978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Gao, C.; Chen, T.; Xie, Y.; Wang, X. Treatment of fracturing wastewater by anaerobic granular sludge: The short-term effect of salinity and its mechanism. Bioresour. Technol. 2022, 345, 126538. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, C.; Wang, D.; Li, X.; An, H.; Xie, T.; Chen, F.; Xu, Q.; Sun, Y.; Zeng, G.; et al. Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the cofermentation of waste activated sludge and food waste. ACS Sustain. Chem. Eng. 2016, 4, 4675–4684. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, S.-H.; Shin, H.-S. Sodium inhibition of fermentatlive hydrogen production. Int. J. Hydrogen Energy 2009, 34, 3295–3304. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, L.; Li, Q.; Zhao, Y.; Gao, M.; She, Z. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential. Environ. Sci. Pollut. Res. 2017, 24, 16383–16395. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Zhao, J.; Lei, Z.; Shimizu, K.; Zhang, Z. Addition of air-nanobubble water to mitigate the inhibition of high salinity on co-production of hydrogen and methane from two-stage anaerobic digestion of food waste. J. Clean. Prod. 2021, 314, 127942. [Google Scholar] [CrossRef]
- Su, G.; Wang, S.; Yuan, Z.; Peng, Y. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms. J. Biosci. Bioeng. 2016, 121, 293–298. [Google Scholar] [CrossRef]
- Vallero, M.V.G.; Pol, L.W.H.; Lettinga, G.; Lens, P.N.L. Effect of NaCl on thermophilic (55 °C) methanol degradation in sulfate reducing granular sludge reactors. Water Res. 2003, 37, 2269–2280. [Google Scholar] [CrossRef]
- Hou, H.; Zhu, H. Effects of MgCl2 on sludge anaerobic digestion: Hydrolysis, acidogenesis, methanogenesis, and microbial characteristics. J. Water Process Eng. 2024, 57, 104624. [Google Scholar] [CrossRef]
- Qu, Y.; Pan, Y.; Wu, L.; Zhu, H. Mitigation of salinity buildup in hybrid flow-electrode capacitive deionization-osmotic membrane bioreactor for sludge anaerobic digestion. Chem. Eng. J. 2022, 435, 134885. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Pan, S.; Tu, Q.; Dang, W.; Wang, Z.; Zhu, H. Effects of magnesium chloride on the anaerobic digestion and the implication on forward osmosis membrane bioreactor for sludge anaerobic digestion. Bioresour. Technol. 2018, 268, 700–707. [Google Scholar] [CrossRef]
- Issaka, E.; Amu-Darko, J.N.-O.; Yakubu, S.; Fapohunda, F.O.; Ali, N.; Bilal, M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants—A review. Chemosphere 2022, 289, 133208. [Google Scholar] [CrossRef]
- Tanisho, S.; Kamiya, N.; Wakao, N. Hydrogen evolution of enterobacter-aeragenes depending on culture pH—Mechanism of hydrogen evolution from NADH by menans of membrane-bound hydrogenase. Biochim. Biophys. Acta 1989, 973, 1–6. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Chen, C.; Xu, L.; Du, Z.; Gu, L.; Xiang, P.; Shi, D.; Huangfu, X.; Liu, F. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: Microbial response and metagenomics analysis. Environ. Res. 2023, 227, 115779. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Peng, L.; Su, H. Influence of ammonium acetate and betaine supplements on the anaerobic digestion under high salinity conditions. Energy Sci. Eng. 2020, 8, 2621–2627. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Wang, W.; Wachemo, A.C.; Zou, D. Effects of adding osmoprotectant on anaerobic digestion of kitchen waste with high level of salinity. J. Biosci. Bioeng. 2019, 128, 723–732. [Google Scholar] [CrossRef] [PubMed]
Process | Reactor Volume and Type | Operation Temperature | Operation Condition | High OLR (g VS/L d) | Ref. |
---|---|---|---|---|---|
Single-stage | 2 L semi-continuous CSTR | Mesophilic | OLR: 0.5–6, HRT: 200–6.7 | 3 | [23] |
Two-stage | 0.5 L acidogenic reactor and 2 L semi-continuous CSTR | Mesophilic | OLR: 0.5–5, HRT: 200–20 | 4 | |
Single-stage | 230 L CSTR | Thermophilic | OLR: 3.57 HRT: 20 | 6.0–7.0 | [24] |
Two-stage | 200 L and 760 L CSTR | Thermophilic | O OLR: 3.5–7 HRT: 20 | 6.0–7.0 | |
Three-stage | 1 L and 20 L semi-continuous reactor | Mesophilic | OLR: 1.6–10 pH: 5.1–7.8 | 10 | [17] |
Single-stage | 5000 L reactor | Mesophilic | OLR: 0–37 | 6.4 | [25] |
Two-stage | 5000 L and 5 L CSTR reactors | OLR: 0–20 | 8.3 | ||
Single-stage | 6 L CSTR | Mesophilic | OLR: 2.4, HRT: 30 pH: 7.77 | 4 | [26] |
Temperature-phase two-stage | 1.5 L thermophilic CSTR 6 L mesophilic CSTR | OLR: 14.2 and 2.6 HRT: 3 and 12 pH: 5.36 and 7.59 | 6.3 | ||
Single-stage | 60 L typical single-stage vertical CSTR reactor | Mesophilic | OLR: 0.545–10.3 pH: 7 | 5.8 | [27] |
Two-stage | 27 L novel semi-continuous reactor | OLR: 0.545–10.3 HRT: 3 and 12 pH: 5.36 and 7.59 | 6.9 | ||
Single-stage | 3 L thermophilic | Mesophilic | OLR: 4.2–10 | 7.3 | [28] |
Single-stage | 10 L SDSAR | Mesophilic | OLR: 3.0, 4.8, 7.3, 7.3, 14.4 | - | [18] |
10 L SDSAR | Thermophilic | OLR: 3.0, 4.8, 7.3, 7.3 | 10 |
Organic Loading Rate | Temperature | Concentration (mg/L) | Inhibition Principle | Ref. |
---|---|---|---|---|
1.8 g-VS/L d | 35 ± 1 °C | TAN: 2400 | The expression levels of acetogenesis, butyrate degradation, propionate degradation, and methane production were significantly inhibited by a high NH4+ concentration | [44] |
5.87 g-VS/L d | 37 ± 1 °C | TAN: 6500 | High TAN levels showed toxicity on Methanosarcina in TAN systems | [45] |
2.5 g-COD/L d | 37.5 ± 0.17 °C | TAN: 1800 | The hydrogenotrophic MPA were dominant | [46] |
22.6 ± 0.82 °C | TAN: 3000 | when the TAN concentrations were high | ||
2.72 g-COD/L d | 35 ± 1 °C | TAN: 1750 | The expression levels of propionate degradation and methane production were significantly inhibited by a high NH4+ concentration | [47] |
0.8 g-COD/L d | 35 ± 1 °C | FAN: 290 | The expression levels of methanogenesis were significantly inhibited by a high FAN concentration | [43] |
0.15 g-COD/L d | 35 ± 1 °C | TAN: 16,000 | The hydrogenotrophic MPA were dominant when the TAN | [48] |
1.0 g-VS/L d | 37 ± 1 °C | TAN: 2100 | inhibition of ammonia on syntrophic acetogenesis was caused by a population decrease in both active syntrophics | [49] |
2 g-COD/L d | 37 ± 1 °C | FAN: 500 | The activity of acetoclastic MPA was completely inhibited | [34] |
Strategy | Mechanism | Advantages | Limitations | Ref. |
---|---|---|---|---|
Alkaline Agent Addition | Adjusts system pH to neutral | Simple operation, low cost, and rapid relief of acid inhibition | Continuous addition incurs high costs | [81,82,84,85] |
Trace Element Addition | Accelerate methanogenesis | Small additions enhance enzyme activity | Potential antagonistic effects between elements | [22,86,87] |
Microbial Electrochemical Technology | Enhance direct interspecies electron transfer | Highly effective in relieving VFA accumulation | High initial investment | [88,89,91,92,95] |
Biofortification Technology | Accelerate VFA degradation and pH recovery | Rapid system stability recovery | Lacking long-term stability | [88,96] |
Micro-aeration | Optimizing microbial community structure | Reduce the accumulation of LCFAs, without the need for chemical additives | Excessive oxygen inhibits anaerobic microbial communities | [98,100,101] |
Stage | Salinity | Results | Ref. |
---|---|---|---|
Hydrolysis and acidogenesis | Salinity: 0 g/L–8 g/L | VFAs: 367.6 mg-COD/g-VSS-638.5 mg-COD/g-VSS | [109] |
Salinity: 0.6% | Production of VFAs peaks | [107] | |
NaCl: 0 g/L–5 g/L | VFAs: 15,624–20,316 mg/L | [106] | |
NaCl: 5 g/L–15 g/L | VFAs: 20,316–5230 mg/L | ||
NaCl: 2 g/L–15 g/L | Soluble proteins in the hydrolysis stage: 2156–3124 mg/L | ||
Soluble carbohydrates in the hydrolysis stage: 8596–12,054 mg/L | |||
Acetogenesis | NaCl: 2.41 g/L–10.14g/L | Hydrogen production activity is inhibited: 30–90% | [110] |
NaCl: 0.0, 0.5, 1.0, 1.5, 2.0, 2.5% and 3.0% | Hydrogen production decreases with increasing concentration | [111] | |
NaCl: >20 g/L | Acetogenesis stages are severely inhibited | [112] | |
NaCl: >18 g/L | Acetogenesis stages are severely inhibited | [109] | |
Methanogenesis | NaCl: 0, 0.05, 0.2, 0.3 and 0.5 mol/L | Methane production decreases as the concentration increases | [113] |
NaCl: 20 g/L | Methanogenesis stage is completely suppressed | [114] | |
NaCl: 6 g/L–22 g/L | Methane production decreases with increasing concentration | [115] | |
NaCl: >16 g/L | Methanogenesis stage is completely suppressed | [83] | |
NaCl: >8 g/L | When salinity further increased, the concentration of coenzyme F420 decreased dramatically; at the same time, the dehydrogenase concentration decreased significantly with increasing salinity | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.-M.; Li, X.; Chen, J.-N.; Yan, Y.-J.; Kobayashi, T.; Hu, Y.; Zhang, X. Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies. Processes 2025, 13, 2090. https://doi.org/10.3390/pr13072090
Wu H-M, Li X, Chen J-N, Yan Y-J, Kobayashi T, Hu Y, Zhang X. Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies. Processes. 2025; 13(7):2090. https://doi.org/10.3390/pr13072090
Chicago/Turabian StyleWu, Hong-Ming, Xiang Li, Jia-Ning Chen, Yi-Juan Yan, Takuro Kobayashi, Yong Hu, and Xueying Zhang. 2025. "Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies" Processes 13, no. 7: 2090. https://doi.org/10.3390/pr13072090
APA StyleWu, H.-M., Li, X., Chen, J.-N., Yan, Y.-J., Kobayashi, T., Hu, Y., & Zhang, X. (2025). Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies. Processes, 13(7), 2090. https://doi.org/10.3390/pr13072090