Numerical Investigations and Optimization for the Supersonic Gas Atomization System for Manufacturing Metal Powder
Abstract
1. Introduction
2. Numerical Simulation Model Description
3. Model Implementation
4. Results and Discussion
4.1. Gas Flow Dynamics
4.2. Droplet Breakup Dynamics
4.3. Inlet Parameter Optimization
5. Conclusions
- The use of a full-factorial DOE combined with CFD studies allowed for effective optimization and prediction of the required inlet gas pressure and temperature within a specific range for obtaining the desired fineness of the gas-atomized metal powder in a supersonic gas atomizer.
- Overexpanded and underexpanded gas jets showed distinct impacts on flow fields and powder morphology, with shockwave patterns significantly influencing atomization quality.
- Higher inlet gas pressures and temperatures improved the atomization process and reduced particle size, with pressure having a stronger influence.
- CFD simulations revealed a series of shockwaves in the flow field, which played a pivotal role in the secondary droplet breakup process.
- Increasing the inlet gas pressure significantly enlarged the shock cell size and enhanced the atomization performance.These results advance the understanding of HPGA physics and support the efficient and sustainable production of fine metal powders through numerical optimization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Parameter | Definition |
, | constants for the KH model |
Oh | Ohnesorge number |
r | radius of droplets |
t | time (s) |
Ta | Taylor number |
inlet gas pressure (atm) | |
inlet gas temperature (K) | |
mean particle size (µm) | |
V | velocity (m/s) |
We | Weber number |
Greek symbols | |
Constant coefficient | |
coefficient for the effect of inlet gas pressure (atm) | |
coefficient for the effect of inlet gas temperature (K) | |
wavelength (m) | |
σ | surface tension (N/m) |
density (kg/m3) | |
maximum wavelength growth rate (m/s) | |
Subscripts | |
b | breakup |
g | gas |
l | liquid |
P | parent |
rel | relative |
Abbreviations | |
ANOVA | analysis of variance |
CFD | computational fluid dynamics |
DOE | design of experiments |
DPM | discrete-phase model |
FDM | factorial design method |
HPGA | high-pressure gas atomization |
KH | Kelvin–Helmholtz |
RT | Rayleigh–Taylor |
TAB | Taylor analogy breakup |
VIF | variance inflation factor |
References
- Arachchilage, K.H.; Haghshenas, M.; Park, S.; Zhou, L.; Sohn, Y.; McWilliams, B.; Cho, K.; Kumar, R. Numerical simulation of high-pressure gas atomization of two-phase flow: Effect of gas pressure on droplet size distribution. Adv. Powder Technol. 2019, 30, 2726–2732. [Google Scholar] [CrossRef]
- Neikov, O.D.; Yefimov, N.; Naboychenko, S. Handbook of Non-Ferrous Metal Powders: Technologies and Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Mandal, S.; Sadeghianjahromi, A.; Wang, C.-C. Experimental and numerical investigations on molten metal atomization techniques–A critical review. Adv. Powder Technol. 2022, 33, 103809. [Google Scholar] [CrossRef]
- Kuhn, H.A.; Lawley, A. New techniques and analyses. In Powder Metallurgy Processing; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Nasr, G.G.; Yule, A.J.; Bendig, L. Industrial Sprays and Atomization: Design, Analysis and Applications; Springer Science & Business Media: Berlin, Germany, 2002. [Google Scholar]
- Zheng, B.; Lavernia, E. Melt Atomization. In Handbook of Atomization and Sprays: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 837–848. [Google Scholar]
- Firmansyah, D.A.; Kaiser, R.; Zahaf, R.; Coker, Z.; Choi, T.-Y.; Lee, D. Numerical simulations of supersonic gas atomization of liquid metal droplets. Jpn. J. Appl. Phys. 2014, 53, 05HA09. [Google Scholar] [CrossRef]
- Mates, S.P.; Settles, G.S. A study of liquid metal atomization using close-coupled nozzles, Part 1: Gas dynamic behavior. At. Sprays 2005, 15, 19–40. [Google Scholar] [CrossRef]
- Ünal, A. Flow separation and liquid rundown in a gas-atomization process. Metall. Trans. B 1989, 20, 613–622. [Google Scholar] [CrossRef]
- Markus, S.; Fritsching, U. Discrete break-up modeling of melt sprays. Int. J. Powder Metall. 1986 2006, 42, 23–32. [Google Scholar]
- Zeoli, N.; Gu, S. Numerical modelling of droplet break-up for gas atomisation. Comput. Mater. Sci. 2006, 38, 282–292. [Google Scholar] [CrossRef]
- Du, K.; Gao, X.; Li, Z.; Shen, J.; Ma, Y.; Hu, Y.; Sun, H. Numerical analysis on secondary breakup process of metal droplet in gas atomization. At. Sprays 2019, 29, 455–476. [Google Scholar] [CrossRef]
- Urionabarrenetxea, E.; Martín, J.M.; Avello, A.; Rivas, A. Simulation and validation of the gas flow in close-coupled gas atomisation process: Influence of the inlet gas pressure and the throat width of the supersonic gas nozzle. Powder Technol. 2022, 407, 117688. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, W.; Sun, W.; Zhang, S.; Yang, B.; Wang, J. Impact of gas pressure on particle feature in Fe-based amorphous alloy powders via gas atomization: Simulation and experiment. J. Mater. Sci. Technol. 2022, 105, 203–213. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, C.; Liu, X.; Hao, J. Effect of gas Mach number on the flow field of close-coupled gas atomization, particle size and cooling rate of as-atomized powder: Simulation and experiment. Adv. Powder Technol. 2023, 34, 104007. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Xu, W.-Y.; Li, Z.; Zheng, L.; Liu, Y.-F.; Zhang, G.-Q. Mechanism of rapidly solidified satellites formation in gas atomized powders: Simulation and characterization. Powder Technol. 2023, 418, 118162. [Google Scholar] [CrossRef]
- Liu, A.B.; Mather, D.; Reitz, R.D. Modeling the effects of drop drag and breakup on fuel sprays. SAE Trans. 1993, 102, 83–95. [Google Scholar]
- Zeoli, N.; Gu, S. Computational validation of an isentropic plug nozzle design for gas atomisation. Comput. Mater. Sci. 2008, 42, 245–258. [Google Scholar] [CrossRef]
- Ünal, A. Liquid break-up in gas atomization of fine aluminum powders. Metall. Trans. B 1989, 20, 61–69. [Google Scholar] [CrossRef]
- Dias, G.S.; Machado, D.A.; de Andrade, J.C.; de Souza Costa, F. ENC-2020-0193 hydrous ethanol atomization by impinging jets. In Proceedings of the 18th Brazilian Congress of Thermal Sciences and Engineering, Virtual, 16–20 November 2020. [Google Scholar]
- Chryssakis, C.; Assanis, D.; Tanner, F. Atomization Models. In Handbook of Atomization and Sprays: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–231. [Google Scholar]
- Reitz, R.D. Modeling atomization processes in high-pressure vaporizing sprays. At. Spray Technol. 1987, 3, 309–337. [Google Scholar]
- Si, C.-R.; Zhang, X.-J.; Wang, J.-B.; Li, Y.-J. Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals. Int. J. Miner. Metall. Mater. 2014, 21, 627–635. [Google Scholar] [CrossRef]
- Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 1975, 68, 537–566. [Google Scholar] [CrossRef]
- Mi, J.; Figliola, R.; Anderson, I. A numerical simulation of gas flow field effects on high pressure gas atomization due to operating pressure variation. Mater. Sci. Eng. A 1996, 208, 20–29. [Google Scholar] [CrossRef]
- Zeoli, N. Multiphase Modelling of the Characteristics of Close Coupled Gas Atomization. Ph.D. Thesis, Aston University, Birmingham, UK, 2011. [Google Scholar]
- Deng, X. A new open-source library based on novel high-resolution structure-preserving convection schemes. J. Comput. Sci. 2023, 74, 102150. [Google Scholar] [CrossRef]
- Deng, X. A unified framework for non-linear reconstruction schemes in a compact stencil. Part 1: Beyond second order. J. Comput. Phys. 2023, 481, 112052. [Google Scholar] [CrossRef]
- Anderson, I.E.; Terpstra, R.L. Progress toward gas atomization processing with increased uniformity and control. Mater. Sci. Eng. A 2002, 326, 101–109. [Google Scholar] [CrossRef]
Molten Metal Properties | Units | Values |
---|---|---|
Boiling point | K | 3003 |
Density | kg/ | 7700 |
Saturation vapor pressure | atm | 3.9872 × |
Specific heat (liquid state) | J/kg·K | 825 |
Specific latent heat | J/kg | 250,000 |
Surface tension | N/m | 1.2 |
Thermal conductivity | W/m·K | 16.3 |
Vaporization point | K | 2273 |
Viscosity | kg/m·s | 0.0056 |
Atomization Gas Properties | Units | Values |
---|---|---|
Molecular weight | kg/kmol | 28.0134 |
Specific heat | J/kg·K | 1040.67 |
Thermal conductivity | W/m·K | 0.0242 |
Viscosity | kg/m·s | 1.663 × |
Parameters | Unit | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|---|
Inlet gas pressure | atm | 10 | 20 | 30 | 40 |
Inlet gas temperature | K | 300 | 450 | 600 | -- |
Runs | Process Variables | |
---|---|---|
Pressure (atm) | Temperature (K) | |
Run 1 | 10 | 300 |
Run 2 | 10 | 450 |
Run 3 | 10 | 600 |
Run 4 | 20 | 300 |
Run 5 | 20 | 450 |
Run 6 | 20 | 600 |
Run 7 | 30 | 300 |
Run 8 | 30 | 450 |
Run 9 | 30 | 600 |
Run 10 | 40 | 300 |
Run 11 | 40 | 450 |
Run 12 | 40 | 600 |
Runs | Process Variables | Response Variable | |
---|---|---|---|
Pressure (atm) | Temperature (K) | Mean Particle Size (µm) | |
Run 1 | 10 | 300 | 46.78193 |
Run 2 | 10 | 450 | 43.85605 |
Run 3 | 10 | 600 | 42.68556 |
Run 4 | 20 | 300 | 39.38840 |
Run 5 | 20 | 450 | 38.32455 |
Run 6 | 20 | 600 | 36.72770 |
Run 7 | 30 | 300 | 23.38708 |
Run 8 | 30 | 450 | 22.43173 |
Run 9 | 30 | 600 | 21.13397 |
Run 10 | 40 | 300 | 17.39616 |
Run 11 | 40 | 450 | 16.57950 |
Run 12 | 40 | 600 | 15.66645 |
Term | Coefficient | Standard Error Coefficient | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Constant | 59.27 | 3.29 | 18.02 | 0.000 | |
Pressure (atm) | −0.9951 | 0.0666 | −14.94 | 0.000 | 1.00 |
Temperature (K) | −0.00895 | 0.00608 | −1.47 | 0.175 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, S.; Wang, C.-C. Numerical Investigations and Optimization for the Supersonic Gas Atomization System for Manufacturing Metal Powder. Processes 2025, 13, 2075. https://doi.org/10.3390/pr13072075
Mandal S, Wang C-C. Numerical Investigations and Optimization for the Supersonic Gas Atomization System for Manufacturing Metal Powder. Processes. 2025; 13(7):2075. https://doi.org/10.3390/pr13072075
Chicago/Turabian StyleMandal, Somjit, and Chi-Chuan Wang. 2025. "Numerical Investigations and Optimization for the Supersonic Gas Atomization System for Manufacturing Metal Powder" Processes 13, no. 7: 2075. https://doi.org/10.3390/pr13072075
APA StyleMandal, S., & Wang, C.-C. (2025). Numerical Investigations and Optimization for the Supersonic Gas Atomization System for Manufacturing Metal Powder. Processes, 13(7), 2075. https://doi.org/10.3390/pr13072075