Sustainable Hydrochar from Orange Peel and Bagasse: A Wet Pyrolysis Approach for Efficient Fe2+ and Mn2+ Removal from Water Using a Factorial Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Biomass Acquisition and Preparation
2.3. Hydrochar Synthesis
2.4. Experimental Design
2.5. Thermal Activation of Hydrochars
2.6. Characterization of the Hydrochars
2.6.1. Determination of Brønsted Acid Sites
2.6.2. Elemental Analysis (CHNS)
2.6.3. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.6.4. X-Ray Diffraction (XRD) Analysis
2.6.5. Nitrogen Physisorption Analysis
2.6.6. Determination of the Point of Zero Charge (pHPZC)
2.6.7. Determination of Zeta Potential
2.6.8. Scanning Electron Microscopy (SEM) Analysis
2.6.9. Thermogravimetric Analysis (TGA)
2.6.10. Immediate Analysis
2.7. Adsorption of Fe2+ and Mn2+ by the Hydrochars
2.8. Evaluation of Initial pH Effects
2.9. Adsorption Kinetics
2.10. Adsorption Isotherms
2.11. Evaluation of Potential Interferents in the Removal Efficiency of Fe2+ and Mn2+
2.12. Regeneration and Reuse of Hydrochar
3. Results
3.1. Physicochemical Characterization of the Hydrochars
3.2. Application of Hydrochars in the Removal of Fe2+ and Mn2+
3.3. Application of Hydrochars in the Removal of Fe2+ and Mn2+ in the Presence of Interferents
3.4. Regeneration and Reuse of HC62
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez-Bastida, C.; Martínez-Miranda, V.; Solache-Ríos, M.; Linares-Hernández, I.; Teutli-Sequeira, A.; Vázquez-Mejía, G. Drinking water characterization and removal of manganese. Removal of manganese from water. J. Environ. Chem. Eng. 2018, 6, 2119–2125. [Google Scholar] [CrossRef]
- Barquilha, C.E.R.; Braga, M.C.B. Adsorption of organic and inorganic pollutants onto biochars: Challenges, operating conditions, and mechanisms. Bioresour. Technol. Rep. 2021, 15, 100728. [Google Scholar] [CrossRef]
- Lopes, R.P.; Astruc, D. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coord. Chem. Rev. 2021, 426, 213585. [Google Scholar] [CrossRef]
- Olugbenga, O.S.; Adeleye, P.G.; Oladipupo, S.B.; Adeleye, A.T.; John, K.I. Biomass-derived biochar in wastewater treatment—A circular economy approach. Waste Manag. Bull. 2024, 1, 1–14. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.W.; Bhatnagar, A.; Song, H. Adsorption of As(V) and Ni(II) by Fe-Biochar composite fabricated by co-pyrolysis of orange peel and red mud. Environ. Res. 2020, 188, 109809. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.; Xi, J.; Yao, D.; Zhou, Z.; Tian, Y.; Lu, X. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour. Technol. 2017, 232, 204–210. [Google Scholar] [CrossRef]
- Khan, T.A.; Mukhlif, A.A.; Khan, E.A. Uptake of Cu 2+ and Zn 2+ from simulated wastewater using muskmelon peel biochar: Isotherm and kinetic studies. Egypt. J. Basic Appl. Sci. 2017, 4, 236–248. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Kaushal, P.; Vijay, V.K. Potential of rice straw derived activated biochar to remove arsenic and manganese from groundwater: A cleaner approach in the Indo-Gangetic Plain. Appl. Surf. Sci. Adv. 2023, 17, 100443. [Google Scholar] [CrossRef]
- Christofi, A.; Tsipiras, D.; Malamis, D.; Moustakas, K.; Mai, S.; Barampouti, E.M. Biofuels production from orange juice industrial waste within a circular economy vision. J. Water Process Eng. 2022, 49, 103028. [Google Scholar] [CrossRef]
- Hu, Q.; Jung, J.; Chen, D.; Leong, K.; Song, S.; Li, F.; Mohan, B.C.; Yao, Z.; Prabhakar, A.K.; Lin, X.H.; et al. Biochar industry to circular economy. Sci. Total Environ. 2021, 757, 143820. [Google Scholar] [CrossRef] [PubMed]
- Oyedeji, O.A.; Osinfade, G.B. Removal of copper (II), iron (III) and lead (II) ions from Mono-component Simulated Waste Effluent by Adsorption on Coconut Husk. Afr. J. Environ. Sci. Technol. 2010, 4, 382–387. [Google Scholar] [CrossRef]
- Moreno-Piraján, J.C.; Garcia-Cuello, V.S.; Giraldo, L. The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells. Adsorption 2011, 17, 505–514. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality. World Health Organization; World Health Organization: Geneva, Swizerland, 2003. [Google Scholar]
- Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour. Technol. 2015, 183, 221–228. [Google Scholar] [CrossRef]
- de Oliveira Fontoura, C.R.; Dutra, L.V.; Guezgüan, S.M.; Nascimento, M.A.; de Oliveira, A.F.; Lopes, R.P. Optimization of one-pot H3PO4-activated hydrochar synthesis by Doehlert design: Characterization and application. J. Anal. Appl. Pyrolysis 2022, 168, 105775. [Google Scholar] [CrossRef]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar] [CrossRef]
- Jais, F.M.; Ibrahim, S.; Chee, C.Y.; Ismail, Z. High removal of crystal violet dye and tetracycline by hydrochloric acid assisted hydrothermal carbonization of sugarcane bagasse prepared at high yield. Sustain. Chem. Pharm. 2021, 24, 100541. [Google Scholar] [CrossRef]
- Cavali, M.; Junior, N.L.; de Sena, J.D.; Woiciechowski, A.L.; Soccol, C.R.; Belli Filho, P.; Bayard, R.; Benbelkacem, H.; de Castilhos Junior, A.B. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Sci. Total Environ. 2023, 857, 159627. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.; Feng, Q.; Yao, D.; Chen, H.; Wang, H.; Zhou, Z.; Li, H.; Tian, Y.; Lu, X. Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. J. Clean. Prod. 2017, 165, 221–230. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Q.; He, R.; Zhao, X.; Li, G. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 2017, 241, 236–243. [Google Scholar] [CrossRef]
- Tag, A.T.; Duman, G.; Yanik, J. Influences of feedstock type and process variables on hydrochar properties. Bioresour. Technol. 2018, 250, 337–344. [Google Scholar] [CrossRef]
- Parshetti, G.K.; Hoekman, S.K.; Balasubramanian, R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol. 2013, 135, 683–689. [Google Scholar] [CrossRef]
- Erdogan, E.; Atila, B.; Mumme, J.; Reza, M.T.; Toptas, A.; Elibol, M.; Yanik, J. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol. 2015, 196, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Jafri, N.; Wong, W.Y.; Doshi, V.; Yoon, L.W.; Cheah, K.H. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 2018, 118, 152–166. [Google Scholar] [CrossRef]
- Seow, Y.X.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J. Environ. Chem. Eng. 2022, 10, 107017. [Google Scholar] [CrossRef]
- dos Santos Silva, A.A.; Bousada, G.M.; Mazzini, L.F.M.; Guezguan, S.M.; de Freitas, C.P.M.; Monteiro, K.A.; dos Santos Renato, N.; Moreira, R.P.L. Biochar from malt residue: Toward a circular economy for sustainable fluoroquinolone removal in aqueous systems. J. Anal. Appl. Pyrolysis 2024, 183, 106707. [Google Scholar] [CrossRef]
- Yao, Z.; Ma, X. Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo. Bioresour. Technol. 2018, 247, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Fuat, G.; Cumali, Y. Synthesis, characterization, and lead (II) sorption performance of a new magnetic separable composite: MnFe2O4@wild plants-derived biochar. J. Environ. Chem. Eng. 2021, 9, 104567. [Google Scholar] [CrossRef]
- Licona–Aguilar, A.I.; Torres–Huerta, A.M.; Domínguez–Crespo, M.A.; Negrete–Rodríguez, M.L.X.; Conde–Barajas, E.; Brachetti–Sibaja, S.B.; Rodríguez–Salazar, A.E. Valorization of agroindustrial orange peel waste during the optimization of activated carbon–multiwalled carbon nanotubes–zinc oxide composites used in the removal of methylene blue in wastewater. Chem. Eng. J. 2024, 492, 152102. [Google Scholar] [CrossRef]
- Liou, T.-H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 2010, 158, 129–142. [Google Scholar] [CrossRef]
- Panizio, R.; Castro, C.; Pacheco, N.; Assis, A.C.; Longo, A.; Vilarinho, C.; Teixeira, J.C.; Brito, P.; Gonçalves, M.; Nobre, C. Investigation of biochars derived from waste lignocellulosic biomass and insulation electric cables: A comprehensive TGA and Macro-TGA analysis. Heliyon 2024, 10, e37882. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Qu, H.; Jiao, Y.; Xie, J.; Xing, G. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surf. Sci. 2014, 320, 674–680. [Google Scholar] [CrossRef]
- Teng, H.; Yeh, T.-S.; Hsu, L.-Y. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 1998, 36, 1387–1395. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Li, J. Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel. J. Taiwan Inst. Chem. Eng. 2016, 61, 367–375. [Google Scholar] [CrossRef]
- Fang, J.; Gao, B.; Chen, J.; Zimmerman, A.R. Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chem. Eng. J. 2015, 267, 253–259. [Google Scholar] [CrossRef]
- Lei, Q.; Kannan, S.; Raghavan, V. Uncatalyzed and acid-aided microwave hydrothermal carbonization of orange peel waste. Waste Manag. 2021, 126, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.R.; de Moraes Guimarães, Y.; Silva, I.F.; Almeida, C.A.; Silva, M.S.V.; Nascimento, M.A.; da Silva, U.P.; Varejao, E.V.; dos Santos Renato, N.; de Carvalho Teixeira, A.P.; et al. Synthesis of value-added materials from the sewage sludge of cosmetics industry effluent treatment plant. J. Environ. Chem. Eng. 2021, 9, 105367. [Google Scholar] [CrossRef]
- Phounglamcheik, A.; Wang, L.; Romar, H.; Kienzl, N.; Broström, M.; Ramser, K.; Skreiberg, Ø.; Umeki, K. Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips. Energy Fuels 2020, 34, 8353–8365. [Google Scholar] [CrossRef]
- Chingombe, P.; Saha, B.; Wakeman, R.J. Surface modification and characterisation of a coal-based activated carbon. Carbon 2005, 43, 3132–3143. [Google Scholar] [CrossRef]
- Fseha, Y.H.; Sizirici, B.; Yildiz, I. Manganese and nitrate removal from groundwater using date palm biochar: Application for drinking water. Environ. Adv. 2022, 8, 100237. [Google Scholar] [CrossRef]
- Banerjee, S.; Mukherjee, S.; LaminKa-ot, A.; Joshi, S.R.; Mandal, T.; Halder, G. Biosorptive uptake of Fe2+, Cu2+ and As5+ by activated biochar derived from Colocasia esculenta: Isotherm, kinetics, thermodynamics, and cost estimation. J. Adv. Res. 2016, 7, 597–610. [Google Scholar] [CrossRef]
- Kim, H.; Ko, R.-A.; Lee, S.; Chon, K. Removal Efficiencies of Manganese and Iron Using Pristine and Phosphoric Acid Pre-Treated Biochars Made from Banana Peels. Water 2020, 12, 1173. [Google Scholar] [CrossRef]
- Abdić, Š.; Memić, M.; Šabanović, E.; Sulejmanović, J.; Begić, S. Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: Tangerine peel. Int. J. Environ. Sci. Technol. 2018, 15, 2511–2518. [Google Scholar] [CrossRef]
- de Oliveira, M.B.; de Melo, E.I.; Belaz, K.R.A.; Costa, E.D.S.; de Paula Barbosa, A.; Coelho, L.M. Uso do Biochar Produzido a partir da Fibra do Coco para Remoção de Íons Pb2+ em Meio Aquoso. Rev. Process. Quím. 2024, 18, 109–119. [Google Scholar] [CrossRef]
- Surovka, D.; Pertile, E. Sorption of Iron, Manganese, and Copper from Aqueous Solution Using Orange Peel: Optimization, Isothermic, Kinetic, and Thermodynamic Studies. Pol. J. Environ. Stud. 2017, 26, 795–800. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm models for adsorption of heavy metals from water—A review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Akl, M.A. Removal of Iron and Manganese in Water Samples Using Activated Carbon Derived from Local Agro-Residues. J. Chem. Eng. Process Technol. 2013, 4, 1000154. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Ullah, H.; Hussain, Q.; Al-Wabel, M.I.; Ahmad, M.; Hussain, A.; Riaz, M.; Ok, Y.S.; Kong, J. Adsorption and thermodynamic mechanisms of manganese removal from aqueous media by biowaste-derived biochars. J. Mol. Liq. 2018, 266, 373–380. [Google Scholar] [CrossRef]
- Kaveeshwar, A.R.; Ponnusamy, S.K.; Revellame, E.D.; Gang, D.D.; Zappi, M.E.; Subramaniam, R. Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: Adsorption kinetics, isotherm and thermodynamic studies. Process Saf. Environ. Prot. 2018, 114, 107–122. [Google Scholar] [CrossRef]
- Brishti, R.S.; Kundu, R.; Habib, M.A.; Ara, M.H. Adsorption of iron(III) from aqueous solution onto activated carbon of a natural source: Bombax ceiba fruit shell. Results Chem. 2023, 5, 100727. [Google Scholar] [CrossRef]
- de Castro, A.E.; Penido, E.S.; Souza, T.F.; Camargos, J.B.; Lobato, R.L.M.; Ribeiro-Soares, J.; Ferreira, G.M.D.; Ferreira, G.M.D. Biochars from modified sugarcane bagasse for manganese removal from mining effluents. J. Environ. Chem. Eng. 2023, 11, 110761. [Google Scholar] [CrossRef]
- Ingin, Y.P.; Mahringer, D.; El-Athman, F. Hardness properties of calcium and magnesium ions in drinking water. Appl. Food Res. 2024, 4, 100600. [Google Scholar] [CrossRef]
- da Silva, M.D.; da Boit Martinello, K.; Knani, S.; Lütke, S.F.; Machado, L.M.; Manera, C.; Perondi, D.; Godinho, M.; Collazzo, G.C.; Silva, L.F.; et al. Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H2, and d-limonene. Waste Manag. 2022, 152, 17–29. [Google Scholar] [CrossRef]
Assay/(Hydrochar Code) | Temperature (°C) | Residence Time (h) | Activating Agent (0.100 mol L−1) |
---|---|---|---|
1 (HC1) | 200 | 14 | H3PO4 |
2 (HC2) | 200 | 14 | NaOH |
3 (HC3) | 200 | 8 | H3PO4 |
4 (HC4) | 200 | 8 | NaOH |
5 (HC5) | 100 | 14 | H3PO4 |
6 (HC6) | 100 | 14 | NaOH |
7 (HC7) | 100 | 8 | H3PO4 |
8 (HC8) | 100 | 8 | NaOH |
9 (HC9) | 150 | 11 | H2O |
10 (HC10) | 150 | 11 | H2O |
Material | qmax (Mn) mg g−1 | qmax (Fe) mg g−1 | Reference |
---|---|---|---|
Biochar from coconut | 75.65 | 81.89 | [13] |
Activated carbon from agro-industrial residues | 6.66 | 10.64 | [50] |
Orange peel hydrochar | 15.95 | 8.35 | [47] |
Date palm biochar | 3.57 | Not evaluated | [42] |
Activated biochar derived from Colocasia esculenta | Not evaluated | 6.19 | [43] |
Cattle manure biochar | 6.65 | Not evaluated | [51] |
Poultry manure biochar | 2.84 | Not evaluated | |
Pecan shell-based activated charcoal | Not evaluated | 41.67 | [52] |
Activated charcoal from Bombax ceiba fruit shell | Not evaluated | 105.26 | [53] |
Biochars from modified sugarcane bagasse | 13.68 | Not evaluated | [54] |
Hydrochar from orange peel and bagasse | 33.67 | 21.44 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, K.S.; Cortez, M.d.O.B.; Mazzini, L.F.M.; Favero, U.G.; Rodrigues, L.d.N.; da Silva, R.C.; Hespanhol, M.C.; Moreira, R.P.L. Sustainable Hydrochar from Orange Peel and Bagasse: A Wet Pyrolysis Approach for Efficient Fe2+ and Mn2+ Removal from Water Using a Factorial Design. Processes 2025, 13, 2040. https://doi.org/10.3390/pr13072040
da Silva KS, Cortez MdOB, Mazzini LFM, Favero UG, Rodrigues LdN, da Silva RC, Hespanhol MC, Moreira RPL. Sustainable Hydrochar from Orange Peel and Bagasse: A Wet Pyrolysis Approach for Efficient Fe2+ and Mn2+ Removal from Water Using a Factorial Design. Processes. 2025; 13(7):2040. https://doi.org/10.3390/pr13072040
Chicago/Turabian Styleda Silva, Karina Sampaio, Marcela de Oliveira Brahim Cortez, Luísa Faria Monteiro Mazzini, Ueslei G. Favero, Leonarde do Nascimento Rodrigues, Renê Chagas da Silva, Maria C. Hespanhol, and Renata Pereira Lopes Moreira. 2025. "Sustainable Hydrochar from Orange Peel and Bagasse: A Wet Pyrolysis Approach for Efficient Fe2+ and Mn2+ Removal from Water Using a Factorial Design" Processes 13, no. 7: 2040. https://doi.org/10.3390/pr13072040
APA Styleda Silva, K. S., Cortez, M. d. O. B., Mazzini, L. F. M., Favero, U. G., Rodrigues, L. d. N., da Silva, R. C., Hespanhol, M. C., & Moreira, R. P. L. (2025). Sustainable Hydrochar from Orange Peel and Bagasse: A Wet Pyrolysis Approach for Efficient Fe2+ and Mn2+ Removal from Water Using a Factorial Design. Processes, 13(7), 2040. https://doi.org/10.3390/pr13072040