Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques
Abstract
1. Introduction
2. Material and Methods
2.1. Sweet Potatoes and Processing Steps
- Lyophilization: Peels were initially freeze-dried at −40 °C for 2 h in a Martin Crist Alpha 2–4 freeze-drier (Osterode, Germany). The main drying phase took place at 0.01 bar, ranging from −40 to 20 °C over a period of 48 h. This was followed by a final drying step lasting 4 h at 0.005 mbar, with temperatures between 20 and 30 °C. Afterward, all samples were ground using a laboratory mill and passed through 72 and then 71 mesh sieves for homogenization, and they were stored in the refrigerator until further use.
- Convective Drying: Peels were dried in a single layer on a wire mesh tray within a drying chamber maintained at a temperature of 70 ± 1 °C until the samples reached a constant weight.
- Osmotic Dehydration: The osmotic pre-treatment was carried out using an 80% sugar beet molasses solution at room temperature for 5 h. Then, peels were rinsed with distilled water, gently blotted with tissue paper, and then stored in the freezer at −40 °C for 48 h to prepare them for the lyophilization step.
2.2. Color Properties of Sweet Potato Peels
2.3. Extraction Procedure of Sweet Potato Peels
2.4. Phytochemical Composition of Sweet Potato Peels
2.4.1. Spectrophotometric Analysis
2.4.2. HPLC Analysis
2.5. Biological Potential of Sweet Potato Peels
2.5.1. Antioxidant Activity
2.5.2. Pharmacological Activity
2.5.3. Antimicrobial Potential
2.6. Statistical Analysis
3. Results and Discussion
3.1. Color Properties of Sweet Potato Peels
3.2. Spectrophotometric Analysis for Investigating Pigments in Orange and Purple Sweet Potatoes
3.3. Qualitative and Quantitative HPLC Analysis of Phenolic Compounds
3.4. Biological Activities of Different Sweet Potato Peels
3.5. Antimicrobial Potential of Different Sweet Potato Peels
3.6. Application Outlook: Valorization of Sweet Potato Peels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. npj Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Tumbas Šaponjac, V.; Vulić, J.; Stajčić, S. Encapsulation and Degradation Kinetics of Bioactive Compounds from Sweet Potato Peel During Storage. Food Technol. Biotechnol. 2020, 58, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, F.; Ma, R.; Yang, T.; Liu, C.; Shen, W.; Jin, W.; Tian, Y. Advances in Valorization of Sweet Potato Peels: A Comprehensive Review on the Nutritional Compositions, Phytochemical Profiles, Nutraceutical Properties, and Potential Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13400. [Google Scholar] [CrossRef]
- Sagar, V.R.; Suresh Kumar, P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef]
- Šovljanski, O.; Lončar, B.; Pezo, L.; Saveljić, A.; Tomić, A.; Brunet, S.; Filipović, V.; Filipović, J.; Čanadanović-Brunet, J.; Ćetković, G.; et al. Unlocking the Potential of the ANN Optimization in Sweet Potato Varieties Drying Processes. Foods 2024, 13, 134. [Google Scholar] [CrossRef]
- Pochapski, M.T.; Fosquiera, E.C.; Esmerino, L.A.; dos Santos, E.B.; Farago, P.V.; Santos, F.A.; Groppo, F.C. Phytochemical Screening, Antioxidant, and Antimicrobial Activities of the Crude Leaves’ Extract from Ipomoea Batatas (L.) Lam. Pharmacogn. Mag. 2011, 7, 165–170. [Google Scholar] [CrossRef]
- Wang, S.; Nie, S.; Zhu, F. Chemical Constituents and Health Effects of Sweet Potato. Food Res. Int. 2016, 89, 90–116. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Kido, M.; Kurata, R.; Kobayashi, T. Antibacterial Activity of Sweetpotato (Ipomoea batatas L.) Fiber on Food Hygienic Bacteria. Kagoshima Women’s Jr. Coll. 2011, 27, 5–17. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon. Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Šeregelj, V.; Tumbas Šaponjac, V.; Pezo, L.; Kojić, J.; Cvetković, B.; Ilic, N. Analysis of Antioxidant Potential of Fruit and Vegetable Juices Available in Serbian Markets. Food Sci. Technol. Int. 2024, 30, 472–484. [Google Scholar] [CrossRef]
- Vučetić, A.; Šovljanski, O.; Pezo, L.; Gligorijević, N.; Kostić, S.; Vulić, J.; Čanadanović-Brunet, J. A Comprehensive Antioxidant and Nutritional Profiling of Brassicaceae Microgreens. Antioxidants 2025, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Borjan, D.; Šeregelj, V.; Andrejč, D.C.; Pezo, L.; Šaponjac, V.T.; Knez, Ž.; Vulić, J.; Marevci, M.K. Green Techniques for Preparation of Red Beetroot Extracts with Enhanced Biological Potential. Antioxidants 2022, 11, 805. [Google Scholar] [CrossRef]
- Ranitović, A.; Šovljanski, O.; Aćimović, M.; Pezo, L.; Tomić, A.; Travičić, V.; Saveljić, A.; Cvetković, D.; Ćetković, G.; Vulić, J.; et al. Biological Potential of Alternative Kombucha Beverages Fermented on Essential Oil Distillation By-Products. Fermentation 2022, 8, 625. [Google Scholar] [CrossRef]
- Boukhers, I.; Morel, S.; Kongolo, J.; Domingo, R.; Servent, A.; Ollier, L.; Kodja, H.; Petit, T.; Poucheret, P. Immunomodulatory and Antioxidant Properties of Ipomoea Batatas Flour and Extracts Obtained by Green Extraction. Curr. Issues Mol. Biol. 2023, 45, 6967–6985. [Google Scholar] [CrossRef]
- Belwal, T.; Cravotto, C.; Prieto, M.; Venskutonis, P.R.; Daglia, M.; Devkota, H.P.; Baldi, A.; Ezzat, S.M.; Gómez-Gómez, L.; Salama, M.M.; et al. Effects of Different Drying Techniques on the Quality and Bioactive Compounds of Plant-Based Products: A Critical Review on Current Trends. Dry. Technol. 2022, 40, 1539. [Google Scholar] [CrossRef]
- Ooi, S.F.; Sukri, S.A.M.; Zakaria, N.N.A.; Harith, Z.T. Carotenoids, Phenolics and Antioxidant Properties of Different Sweet Potatoes (Ipomoea Batatas) Varieties. IOP Conf. Ser. Earth Environ. Sci. 2021, 756, 012077. [Google Scholar] [CrossRef]
- Rosell, M.d.L.Á.; Quizhpe, J.; Ayuso, P.; Peñalver, R.; Nieto, G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato (Ipomoea Batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants 2024, 13, 954. [Google Scholar] [CrossRef]
- Ahmed, I.; Qazi, I.M.; Jamal, S. Developments in Osmotic Dehydration Technique for the Preservation of Fruits and Vegetables. Innov. Food Sci. Emerg. Technol. 2016, 34, 29–43. [Google Scholar] [CrossRef]
- Šovljanski, O.; Cvetanović Kljakić, A.; Saveljić, A.; Tomić, A. Bioactivity and Bioavailability of Phenols from Plants. In Natural Products: Phytochemistry, Botany, Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–44. ISBN 978-3-642-36202-6. [Google Scholar]
- Makori, S.; Mu, T.; Sun, H.-N. Total Polyphenol Content, Antioxidant Activity, and Individual Phenolic Composition of Different Edible Parts of 4 Sweet Potato Cultivars. Nat. Prod. Commun. 2020, 15, 1934578X20936931. [Google Scholar] [CrossRef]
- Althawab, S.; Mousa, H.; Elzahar, K.; Mostafa, A. Protective Effect of Sweet Potato Peel against Oxidative Stress in Hyperlipidemic Albino Rats. Food Nutr. Sci. 2019, 10, 503–516. [Google Scholar] [CrossRef]
- Jiao, Y.; Jiang, Y.; Zhai, W.; Yang, Z. Studies on Antioxidant Capacity of Anthocyanin Extract from Purple Sweet Potato (Ipomoea Batatas L.). Afr. J. Biotechnol. 2012, 11, 7046–7054. [Google Scholar] [CrossRef]
- Gabilondo, J.; Corbino, G.; Chludil, H.; Malec, L. Bioactive Compounds of Two Orange-Fleshed Sweet Potato Cultivars (Ipomoea Batatas (L.) Lam.) in Fresh, Stored and Processed Roots. Appl. Food Res. 2022, 2, 100061. [Google Scholar] [CrossRef]
- Savych, A. Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activity. Farmacia 2021, 69, 595–601. [Google Scholar] [CrossRef]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. Phytother. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Basílio, L.S.P.; Nunes, A.; Minatel, I.O.; Diamante, M.S.; Di Lázaro, C.B.; Silva, A.C.A.F.e.; Vargas, P.F.; Vianello, F.; Maraschin, M.; Lima, G.P.P. The Phytochemical Profile and Antioxidant Activity of Thermally Processed Colorful Sweet Potatoes. Horticulturae 2024, 10, 18. [Google Scholar] [CrossRef]
- Naz, S.; Naqvi, S.A.R.; Khan, Z.A.; Mansha, A.; Ahmad, M.; Zahoor, A.F.; Hussain, Z. Antioxidant, Antimicrobial and Antiproliferative Activities of Peel and Pulp Extracts of Red and White Varieties of Ipomoea Batatas (L) Lam. Trop. J. Pharm. Res. 2017, 16, 2221–2229. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, M.; Singhal, P.; Goyal, S.; Upadhyay, S. In Vitro Antimicrobial Activities of Vegetables (Potato, Cucumber, Sweet Potato and Ginger) Peel Wastes for Ecofriendly Microbial Management. Int. J. Bot. 2021, 6, 134–137. [Google Scholar]
Color Parameters of I. batatas Peel | ||||
---|---|---|---|---|
Type of I. batatas peel | Method of drying | L* | a* | b* |
White | Lyophilization | 72.85 ± 0.74 b | 1.83± 0.09 a | 13.34 ± 0.17 b |
Convective drying | 74.92 ± 0.13 b | 1.75 ± 0.03 a | 12.24 ± 0.05 a | |
Osmotic dehydration | 45.98 ± 0.20 a | 6.02 ± 0.04 b | 13.89 ± 0.34 b | |
Pink | Lyophilization | 66.85 ± 0.50 b | 3.32 ± 0.11 a | 14.19 ± 0.03 c |
Convective drying | 69.04 ± 0.36 b | 3.40 ± 0.05 a | 10.85 ± 0.05 a | |
Osmotic dehydration | 44.49 ± 0.54 a | 6.55 ± 0.04 b | 12.30 ± 0.12 b | |
Orange | Lyophilization | 71.03 ± 0.01 b | 6.55 ± 0.04 b | 12.35 ± 0.16 a |
Convective drying | 73.03 ± 0.07 b | 3.22 ± 0.08 a | 12.27 ± 0.13 a | |
Osmotic dehydration | 43.98 ± 0.17 a | 8.78 ± 0.19 c | 13.70 ± 0.32 b | |
Purple | Lyophilization | 46.09 ± 0.27 b | 18.59 ± 0.04 c | −3.51 ± 0.06 c |
Convective drying | 46.59 ± 0.22 b | 16.81 ± 0.09 b | −1.40 ± 0.01 b | |
Osmotic dehydration | 33.49 ± 0.85 a | 13.21 ± 0.48 a | −0.43 ± 0.03 a |
Pigments | ||
---|---|---|
Carotenoids (mg β-carotene/100 g) | ||
Orange I. batatas | Lyophilization | 21.31 ± 0.25 c |
Convective drying | 12.73 ± 0.94 a | |
Osmotic dehydration | 17.88 ± 0.66 b | |
Anthocyanins (mg cyanidine-3-glucodise/100 g) | ||
Purple I. batatas | Lyophilization | 124.16 ± 1.68 a |
Convective drying | 218.33 ± 7.96 b | |
Osmotic dehydration | 229.58 ± 6.28 b |
HPLC Analysis of Identified Phenolic Compounds | ||||||
---|---|---|---|---|---|---|
Phenolics (mg/100 g dw) | White I. batatas peel | Pink I. batatas peel | ||||
Lyophilization | Convective drying | Osmotic dehydration | Lyophilization | Convective drying | Osmotic dehydration | |
caffeic acid | 434.57 ± 11.43 c | 137.78 ± 3.40 b | 28.16 ± 0.62 a | 16.48 ± 0.23 a | 112.99 ± 6.20 c | 28.84 ± 0.14 b |
gallic acid | 29.57 ± 0.35 b | 11.97± 0.57 a | 29.67 ± 0.22 b | 31.31 ± 1.02 b | 17.05 ± 0.41 a | 31.64 ± 0.09 b |
sinapic acid | nd | 17.97 ± 0.13 a | nd | nd | 19.23 ± 0.33 a | nd |
p-hydroxybenzoic acid | 35.27 ± 0.21 a | nd | 58.07 ± 0.98 b | 42.80 ± 1.89 a | nd | nd |
cinnamic acid | 430.91 ± 16.28 c | 115.65 ± 4.58 b | 36.96 ± 0.46 a | 4.61 ± 0.17 a | 234.70 ± 9.21 c | 45.70 ± 0.62 b |
rosmarinic acid | nd | 28.63 ± 0.71 a | nd | nd | 30.40 ± 0.56 a | nd |
syringic acid | nd | nd | nd | nd | 55.72 ± 0.77 a | nd |
catechin | nd | nd | nd | nd | nd | 338.80 ± 12.09 a |
Phenolics (mg/100 g dw) | Orange I. batatas peel | Purple I. batatas peel | ||||
Lyophilization | Convective drying | Osmotic dehydration | Lyophilization | Convective drying | Osmotic dehydration | |
caffeic acid | 75.67 ± 2.12 a | 163.68 ± 5.20 c | 147.96 ± 4.06 b | 202.96 ± 6.13 b | 112.75 ± 3.09 a | 229.68 ± 7.12 c |
gentisic acid | 79.34 ± 1.06 b | nd | 33.65 ± 2.70 a | nd | 16.59 ± 1.20 a | nd |
ferulic acid | 39.12 ± 0.32 b | 9.91 ± 0.34 a | nd | nd | nd | nd |
gallic acid | nd | nd | 31.67 ± 0.76 a | 12.10 ± 0.56 a | 20.16 ± 0.75 c | 15.66 ± 0.93 b |
sinapic acid | 32.56 ± 0.17 c | 24.70 ± 0.09 a | 29.54 ± 0.57 b | nd | nd | nd |
syringic acid | nd | nd | nd | nd | nd | 50.57 ± 1.51 a |
cinnamic acid | 213.19 ± 8.71 b | 219.74 ± 3.76 b | 109.27 ± 2.78 a | 127.56 ± 4.50 b | 62.01 ± 1.06 a | 155.43 ± 4.65 c |
rosmarinic acid | 23.78 ± 0.56 a | 25.10 ± 0.17 a | nd | 29.46 ± 1.31 a | nd | nd |
p-hydroxybenzoic acid | nd | nd | nd | nd | nd | 17.46 ± 0.64 a |
Antioxidant Assays (µM TE/100 g) | Pharmacological Activity (%) | |||||
---|---|---|---|---|---|---|
Type of I. batatas Peel | Method of Drying | DPPH | ABTS | RP | AIA | AHgA |
White | Lyophilization | 601.03 ± 11.17 b | 2033.57 ± 97.51 b | 788.02 ± 20.86 b | 18.60 ± 2.59 b | 84.71 ± 2.02 a |
Convective drying | 527.98 ± 3.44 a | 1610.43 ± 52.09 a | 689.71 ± 13.18 a | 49.73 ± 1.37 c | 94.45 ± 1.50 b | |
Osmotic dehydration | 913.70 ± 31.78 c | 2470.89 ± 109.64 c | 1033.03 ± 44.40 c | 2.08 ± 0.99 a | 86.22 ± 1.01 a | |
Pink | Lyophilization | 524.46 ± 11.51 a | 890.41 ± 3.12 a | 694.80 ± 15.08 a | 17.02 ± 1.96 a | 94.78 ± 0.53 a |
Convective drying | 867.17 ± 15.66 b | 1391.61 ± 26.47 b | 1104.35 ± 34.52 b | 47.61 ± 8.54 c | 96.93 ± 0.40 a | |
Osmotic dehydration | 1006.69 ± 36.77 c | 1664.26 ± 72.20 c | 1083.46 ± 28.09 b | 19.47 ± 0.64 b | 96.64 ± 0.07 a | |
Orange | Lyophilization | 1046.60 ± 29.32 b | 2261.70 ± 18.51 b | 1290 ± 11.62 b | 52.04 ± 2.48 b | 94.12 ± 0.93 a |
Convective drying | 1167.48 ± 47.16 c | 2016.57 ± 73.47 a | 1359.30 ± 16.21 c | 68.25 ± 1.88 c | 96.08 ± 1.14 a | |
Osmotic dehydration | 947.59 ± 48.79 a | 2014.68 ± 98.21 a | 945.93 ± 23.07 a | 38.37 ± 1.97 a | 95.74 ± 0.17 a | |
Purple | Lyophilization | 6287.45 ± 47.34 b | 5338.49 ± 296.54 c | 2325.85 ± 67.43 c | 39.13 ± 4.40 c | 70.61 ± 1.27 b |
Convective drying | 5929.55 ± 61.46 a | 1824.83 ± 48.09 a | 1974.07 ± 62.95 a | 34.80 ± 4.16 b | 79.58 ± 1.06 c | |
Osmotic dehydration | 5771.74 ± 184.43 a | 4975.79 ± 220.95 b | 2042.94 ± 75.90 b | 28.66 ± 2.27 a | 68.53 ± 0.44 a |
Purple Peel Sample (100 mg/mL) | Inhibition Zone (mm) | ||
---|---|---|---|
Test Microorganism | Lyophilization | Convective Drying | Osmotic Dehydration |
P. aeruginosa | <7 | <7 | <7 |
S. Typhimurium | <7 | <7 | <7 |
B. cereus | <7 | <7 | <7 |
S. aureus | <7 | <7 | <7 |
S. cerevisiae | 55.3 ± 0.94 | 54.7 ± 0.94 | 54.7 ± 0.94 |
C. albicans | 14.0 ± 0.82 | 12.6 ± 0.4 | 13.3 ± 1.25 |
A. brasiliensis | 23.0 ± 0.82 | 23.7 ± 2.36 | 23.7 ± 2.36 |
P. aurantiogriseum | 23.0 ± 0.82 | 23.0 ± 2.45 | 23.7 ± 1.25 |
Time-Kill Kinetics Study | ||||||||
---|---|---|---|---|---|---|---|---|
Sensitive Microorganism (log CFU/mL) | Contact Time (Hours) | |||||||
Lyophilized Sample | 0 | 3 | 6 | 12 | 18 | 24 | 36 | 48 |
S. cerevisiae | 6.22 ± 0.22 | 4.7 ± 0.12 | 3.2 ± 0.18 | 2.7 ± 0.13 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 | 0 ± 0.0 |
A. brasiliensis | 5.76 ± 0.25 | 4.8 ± 0.16 | 4.4 ± 0.15 | 4.1 ± 0.19 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
P. aurantiogriseum | 5.94 ± 0.2 | 5.4 ± 0.16 | 5.0 ± 0.24 | 4.7 ± 0.12 | 4.2 ± 0.14 | 4.0 ± 0.18 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Osmotic Dehydrated Sample | 0 | 3 | 6 | 12 | 18 | 24 | 36 | 48 |
S. cerevisiae | 6.22 ± 0.21 | 5.3 ± 0.24 | 4.1 ± 0.17 | 2.7 ± 0.11 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
A. brasiliensis | 5.76 ± 0.24 | 4.18 ± 0.1 | 3.2 ± 0.16 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
P. aurantiogriseum | 5.94 ± 0.19 | 5.1 ± 0.17 | 4.9 ± 0.18 | 4.7 ± 0.18 | 3.8 ± 0.18 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Convective Dried Sample | 0 | 3 | 6 | 12 | 18 | 24 | 36 | 48 |
S. cerevisiae | 6.22 ± 0.2 | 5.18 ± 0.2 | 4.9 ± 0.13 | 3.7 ± 0.19 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
A. brasiliensis | 5.76 ± 0.16 | 3.9± 0.18 | 3.4 ± 0.14 | 2.2 ± 0.12 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
P. aurantiogriseum | 5.94 ± 0.24 | 5.3 ± 0.2 | 4.7 ± 0.11 | 2.8 ± 0.07 | 1.7 ± 0.13 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Control | 0 | 3 | 6 | 12 | 18 | 24 | 36 | 48 |
S. cerevisiae | 6.22 ± 0.16 | 6.6 ± 0.24 | 7.2 ± 0.3 | 7.43 ± 0.2 | 7.62 ± 0.2 | 8.0 ± 0.24 | 7.7 ± 0.2 | 7.7 ± 0.3 |
A. brasiliensis | 5.76 ± 0.16 | 6.8 ± 0.2 | 6.8 ± 0.25 | 7.1 ± 0.29 | 7.3 ± 0.2 | 7.4 ± 0.2 | 7.7 ± 0.2 | 7.7 ± 0.3 |
P. aurantiogriseum | 5.94 ± 0.21 | 6.3 ± 0.18 | 6.8 ± 0.27 | 6.9 ± 0.29 | 7.0 ± 0.24 | 7.0 ± 0.24 | 7.2 ± 0.2 | 7.1 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćetković, G.; Vučetić, A.; Cvanić, T.; Šovljanski, O.; Ranitović, A.; Lončar, B.; Filipović, V.; Travičić, V. Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques. Processes 2025, 13, 2004. https://doi.org/10.3390/pr13072004
Ćetković G, Vučetić A, Cvanić T, Šovljanski O, Ranitović A, Lončar B, Filipović V, Travičić V. Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques. Processes. 2025; 13(7):2004. https://doi.org/10.3390/pr13072004
Chicago/Turabian StyleĆetković, Gordana, Anja Vučetić, Teodora Cvanić, Olja Šovljanski, Aleksandra Ranitović, Biljana Lončar, Vladimir Filipović, and Vanja Travičić. 2025. "Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques" Processes 13, no. 7: 2004. https://doi.org/10.3390/pr13072004
APA StyleĆetković, G., Vučetić, A., Cvanić, T., Šovljanski, O., Ranitović, A., Lončar, B., Filipović, V., & Travičić, V. (2025). Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques. Processes, 13(7), 2004. https://doi.org/10.3390/pr13072004