Application of Ulva intestinalis Linnaeus Biomass-Derived Biosorbents for Eco-Friendly Removal of Metal Contaminants from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biosorbents
2.1.1. Synthesis and Characterization of Calcium Oxide (CaO) Using Green Synthesis
2.1.2. Synthesis of CaO Nanoparticles
2.1.3. Material Characterization
2.2. Biosorption Investigation
2.2.1. Preparation of Metal Ion Solutions
2.2.2. Batch Biosorption Experiments
2.2.3. Metal Ion Concentration Analysis
2.2.4. Kinetics and Adsorption Isotherms
2.3. Industrial Wastewater Testing
2.4. Desorption and Regeneration
3. Results and Discussion
3.1. Characterization of Biosorbents
3.1.1. FTIR Characterization of Biosorbent
3.1.2. XRD Characterization of Biosorbent
3.2. Adsorption Mechanisms
3.2.1. pH-Dependent
3.2.2. Competitive Adsorption Behavior and Concentration Effects
3.2.3. Adsorption Kinetics and Time-Dependent Removal Mechanisms
3.2.4. Optimization of Biosorbent Dosage
3.3. Adsorption Isotherms Analysis
3.4. Kinetic Insights into the Biosorption Performance of UI and CaO-UI Biomass
3.5. CaO-UI Performance in Real Industrial Wastewater
3.6. Regeneration and Reusability of CaO-UI
3.7. Comparative Analysis of Heavy Metal Adsorption Capacities of Various Biosorbents
Biosorbent Category | Material | qmax Pb2+ | qmax Cd2+ | qmax Ni2+ | Reference |
---|---|---|---|---|---|
(mg/g) | |||||
Marine Macroalgae | Enteromorpha compressa | - | 24.98 | 25.07 | [36] |
Agricultural Waste | Magnetic rice husk biochar | 148 | 79 | - | [66] |
Agricultural Waste | Modified apple pomace | 178.57 | 112.35 | 51 | [67] |
Algal Biomass | Padinasanctae-crucis | 80.64 | 78.74 | 93.45 | [68] |
Chitosan Composites | Chitosan–MAA nanoparticles | 11.30 | 1.84 | 0.87 | [69] |
MOF | CS-LDH | 333.3 | 140.8 | - | [71] |
Chitosan | Chitosan produced from silkworm chrysalides | 141.10 | - | 52.86 | [70] |
Activated Carbon | COSAC | 112.35 | 60.02 | 13.54 | [72] |
Activated Carbon | Cherry kernels | 180.26 | 198.74 | 77.71 | [73] |
Activated Carbon | Apricot stone A.C | 22.84 | 33.57 | 26.9 | [74] |
MOF | NH2-MCM-41 | 57.7 | 18.3 | - | [75] |
Activated Carbon | Olive stone waste | 28.39 | 16.97 | 5.17 | [76] |
Chitosan Composites | Chitosan/magnetite | 63.33 | - | 52.55 | [77] |
Sawdust | Shorea acuminata | - | 94 | 328 | [78] |
Modified Algae | CaO-Modified Algae | 577.9 | 571.2 | 665.5 | This study |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Younis, A.M.; Hanafy, S.; Elkady, E.M.; Alluhayb, A.H.; Alminderej, F.M. Assessment of health risks associated with heavy metal contamination in selected fish and crustacean species from Temsah Lake, Suez Canal. Sci. Rep. 2024, 14, 18706. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Kolesnikov, A.; Elkady, E. Phycoremediation of Phenolic Compounds in Wastewater: Ecological Impacts, Mitigation Strategies, and Process Mechanisms. Egypt. J. Aquat. Biol. Fish 2023, 27, 1133–1170. [Google Scholar] [CrossRef]
- Elkady, E.M.; Younis, A.M. The potential accumulation of polycyclic aromatic hydrocarbons in macroalgae from the Egyptian coast of the Red Sea. Egypt. J. Aquat. Res. 2023, 49, 452–459. [Google Scholar] [CrossRef]
- Soliman, N.F.; Younis, A.M.; Elkady, E. Chemical speciation and comprehensive risk assessment of metals in sediments from Nabq protectorate, the Red Sea using individual and synergistic indices. Mar. Pollut. Bull. 2024, 201, 116219. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, D.H.; Mohamedein, L.I.; Younis, A.M. Risk assessment of heavy metals in mangrove trees (Avicennia marina) and associated sea water of Ras Mohammed Protectorate, Red Sea, Egypt. Egypt. J. Aquat. Biol. Fish. 2022, 26, 117. [Google Scholar]
- Younis, A.M.; Elkady, E.M.; Soliman, N.F. Fractionation, chemometric analysis, and sophisticated risk assessment indices to appraise sediment contamination of a tropical mangrove forests, the Red Sea. Mar. Pollut. Bull. 2025, 214, 117792. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Wu, R. Removal of Heavy Metal Ions from Industrial Wastewater Based on Chemical Precipitation Method. Ekoloji Derg. 2019, 2019, 2443–2452. [Google Scholar]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Al-Enezi, G.; Hamoda, M.; Fawzi, N. Ion exchange extraction of heavy metals from wastewater sludges. J. Environ. Sci. Health Part A 2004, 39, 455–464. [Google Scholar] [CrossRef]
- Dabrowski, A.Z.P.E.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Brower, J.B.; Ryan, R.L.; Pazirandeh, M. Comparison of ion-exchange resins and biosorbents for the removal of heavy metals from plating factory wastewater. Environ. Sci. Technol. 1997, 31, 2910–2914. [Google Scholar] [CrossRef]
- Chauhan, M.S.; Rahul, A.K.; Shekhar, S.; Kumar, S. Removal of heavy metal from wastewater using ion exchange with membrane filtration from Swarnamukhi river in Tirupati. Mater. Today Proc. 2023, 78, 1–6. [Google Scholar] [CrossRef]
- Blöcher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N.K.; Matis, K.A. Hybrid flotation—Membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 2003, 37, 4018–4026. [Google Scholar] [CrossRef]
- Tran, T.K.; Leu, H.J.; Chiu, K.F.; Lin, C.Y. Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions. J. Chin. Chem. Soc. 2017, 64, 493–502. [Google Scholar] [CrossRef]
- Lumami Kapepula, V.; García Alvarez, M.; Sang Sefidi, V.; Buleng Njoyim Tamungang, E.; Ndikumana, T.; Musibono, D.D.; Van Der Bruggen, B.; Luis, P. Evaluation of commercial reverse osmosis and nanofiltration membranes for the removal of heavy metals from surface water in the Democratic Republic of Congo. Clean Technol. 2022, 4, 1300–1316. [Google Scholar] [CrossRef]
- Thaçi, B.S.; Gashi, S.T. Reverse osmosis removal of heavy metals from wastewater effluents using biowaste materials pretreatment. Pol. J. Environ. Stud. 2019, 28, 337–341. [Google Scholar] [CrossRef]
- Vidu, R.; Matei, E.; Predescu, A.M.; Alhalaili, B.; Pantilimon, C.; Tarcea, C.; Predescu, C. Removal of heavy metals from wastewaters: A challenge from current treatment methods to nanotechnology applications. Toxics 2020, 8, 101. [Google Scholar] [CrossRef]
- Abbas, S.H.; Ismail, I.M.; Mostafa, T.M.; Sulaymon, A.H. Biosorption of heavy metals: A review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Elkady, E.M.; AYounis, M.; El-Naggar, M.H. Investigating the Biosorption Potential of Ulva intestinalis Linnaeus for Efficient Removal of Phenol from Aqueous Solutions. Egypt. J. Aquat. Biol. Fish. 2023, 27, 411–431. [Google Scholar] [CrossRef]
- Soufi, J.; El Hammoudani, Y.; Haboubi, K.; Hanafi, I.; Dimane, F. Ulva spp (Ulva intestinalis, U. fasciata, U. lactuca, and U. rigida) composition and abiotic environmental factors. BIO Web Conf. 2024, 109, 01012. [Google Scholar] [CrossRef]
- Roy, U.B.; Premalatha, S.J.; Parimala, B.; Sathish, S.V.; Deekshitha, M.B.; Pramod, T.; Usha, M.S.; Patil, S.J. A Review on Seaweed Potential on Environmental Remediation and Biomedical Applications. J. Adv. Zool. 2024, 45, 1. [Google Scholar]
- Sun, H.; Ma, M.; Fan, M.; Sun, K.; Xu, W.; Wang, K.; Li, B.; Jiang, J. Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production. Energy 2022, 261, 125369. [Google Scholar] [CrossRef]
- Lin, W.; Gu, H.; Zhou, J.; Ye, Z.; Yang, F.; Li, H.; Sun, S. Calcium oxide-modified activated sludge as a low-cost biomass adsorbent for Cd (II) removal in aqueous solution: Biosorption behavior and mechanism. Biomass Convers. Biorefinery 2021, 13, 8915–8925. [Google Scholar] [CrossRef]
- Anantharaman, A.; Ramalakshmi, S.; George, M. Green synthesis of calcium oxide nanoparticles and its applications. Int. J. Eng. Res. Appl. 2016, 6, 27–31. [Google Scholar]
- Ashraf, M.A.; Wajid, A.; Mahmood, K.; Maah, M.J.; Yusoff, I. Low cost biosorbent banana peel (Musa sapientum) for the removal of heavy metals. Sci. Res. Essays 2011, 6, 4055–4064. [Google Scholar]
- Krishnani, K.K.; Meng, X.; Christodoulatos, C.; Boddu, V.M. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard. Mater. 2008, 153, 1222–1234. [Google Scholar] [CrossRef]
- Mahmood-ul-Hassan, M.; Yasin, M.; Yousra, M.; Ahmad, R.; Sarwar, S. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust. Environ. Sci. Pollut. Res. 2018, 25, 12570–12578. [Google Scholar] [CrossRef]
- Kang, J.K.; Pham, B.N.; Lee, C.G.; Park, S.J. Biosorption of Cd2+, Cu2+, Ni2+, Pb2+ by four different macroalgae species (Costaria costata, Hizikia fusiformis, Gracilaria verrucosa, and Codium fragile). Int. J. Environ. Sci. Technol. 2023, 20, 10113–10122. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, S.; Balomajumder, C.; Kumar, S. Efficacy of Sargassum filipendula for the removal of Pb2+, Cd2+ and Ni2+ ions from aqueous solution: A comparative study. Desalination Water Treat. 2018, 129, 216–226. [Google Scholar] [CrossRef]
- Yu, M.Y.; Wu, J.; Yin, G.; Jiao, F.Z.; Yu, Z.Z.; Qu, J. Dynamic regulation of hydrogen bonding networks and solvation structures for synergistic solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Nano-Micro Lett. 2024, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhang, S.; Li, H.; Liu, S.; Koh, J.J.; Zhou, M.; Sun, Z.; Liu, Y.; Qu, H.; Yu, Z.; et al. Precisely manipulating polymer chain interactions for multifunctional hydrogels. Matter 2025, 8, 101785. [Google Scholar] [CrossRef]
- Wu, J.; Yin, G.; Liu, J.; Yu, Z.Z.; Li, X. Multifunctional Solar-Driven Interfacial Evaporation System for Simultaneous Clean Water Production and High-Value-Added Ions Extraction. Mater. Horizons 2025, 12, 2878–2898. [Google Scholar] [CrossRef]
- Jadhav, V.; Bhagare, A.; Wahab, S.; Lokhande, D.; Vaidya, C.; Dhayagude, A.; Khalid, M.; Aher, J.; Mezni, A.; Dutta, M. Green synthesized calcium oxide nanoparticles (CaO NPs) using leaves aqueous extract of moringa oleifera and evaluation of their antibacterial activities. J. Nanomater. 2022, 2022, 9047507. [Google Scholar] [CrossRef]
- Younis, A.M.; Saleh, S.M.; Albadri, A.E.; Elkady, E.M. Enteromorpha compressa Macroalgal Biomass Nanoparticles as Eco-Friendly Biosorbents for the Efficient Removal of Harmful Metals from Aqueous Solutions. Analytica 2024, 5, 322–342. [Google Scholar] [CrossRef]
- Long, S.E.; Martin, T.D. Methods for the Determination of Inorganic Compounds in Drinking Water: Methods 300.0 and 200.8; US Environmental Monitoring Systems Laboratory, Office of Research and Development: Las Vegas, NV, USA, 1989.
- Ali, H.E.A.; El-fayoumy, E.A.; Soliman, R.M.; Elkhatat, A.; Al-Meer, S.; Elsaid, K.; Hussein, H.A.; Rozaini, M.Z.H.; Abdullah, M.A. Nanoparticle applications in Algal-biorefinery for biofuel production. Renew. Sustain. Energy Rev. 2024, 192, 114267. [Google Scholar] [CrossRef]
- Wu, J.; Sun, X.; Wu, J.; Yu, X. Eggshell-enhanced biochar with in-situ formed CaO/Ca (OH) 2 for efficient removal of Pb2+ and Cd2+ from wastewater: Performance and mechanistic insights. Sep. Purif. Technol. 2025, 354, 129352. [Google Scholar] [CrossRef]
- Alsaiari, N.S.; Alzahrani, F.M.; Amari, A.; Osman, H.; Harharah, H.N.; Elboughdiri, N.; Tahoon, M.A. Plant and microbial approaches as green methods for the synthesis of nanomaterials: Synthesis, applications, and future perspectives. Molecules 2023, 28, 463. [Google Scholar] [CrossRef]
- Ma, F.; Gui, Y.; Liu, P.; Xue, Y.; Song, W. Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation. Chem. Eng. J. 2020, 390, 124597. [Google Scholar] [CrossRef]
- Fahim, A.M.; Dacrory, S.; Hashem, A.H.; Kamel, S. Antimicrobial, anticancer activities, molecular docking, and DFT/B3LYP/LANL2DZ analysis of heterocyclic cellulose derivative and their Cu-complexes. Int. J. Biol. Macromol. 2024, 269, 132027. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Cao, Y.; Zhu, J.; Wang, Y.; Yu, B.; Li, J.; Huang, J. Facile construction of phenolic hydroxyl anchored covalent organic frameworks/chitosan composite aerogels for efficient adsorption of Pb (II) from water. Sep. Purif. Technol. 2025, 354, 129087. [Google Scholar] [CrossRef]
- Genua, F.; Lancellotti, I.; Leonelli, C. Geopolymer-Based Stabilization of Heavy Metals, the Role of Chemical Agents in Encapsulation and Adsorption. Polymers 2025, 17, 670. [Google Scholar] [CrossRef] [PubMed]
- Al-Hazmi, G.A.; Elsayed, N.H.; Alnawmasi, J.S.; Alomari, K.B.; Alessa, A.H.; Alshareef, S.A.; El-Bindary, A.A. Elimination of Ni (II) from wastewater using metal-organic frameworks and activated algae encapsulated in chitosan/carboxymethyl cellulose hydrogel beads: Adsorption isotherm, kinetic, and optimizing via Box-Behnken design optimization. Int. J. Biol. Macromol. 2025, 299, 140019. [Google Scholar] [CrossRef]
- Hemmami, H.; Zeghoud, S.; Ben Amor, I.; Alnazza Alhamad, A.; Tliba, A.; Alsalme, A.; Cornu, D.; Bechelany, M.; Barhoum, A. Green synthesis of CaO nanoparticles from chicken eggshells: Antibacterial, antifungal, and heavy metal (Pb2+, Cr2⁺, Cd2+ and Hg2+) adsorption properties. Front. Environ. Sci. 2024, 12, 1450485. [Google Scholar] [CrossRef]
- Hokkanen, S.; Repo, E.; Westholm, L.J.; Lou, S.; Sainio, T.; Sillanpää, M. Adsorption of Ni2+, Cd2+, PO43− and NO3− from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite. Chem. Eng. J. 2014, 252, 64–74. [Google Scholar] [CrossRef]
- Serrano, S.; O’Day, P.A.; Vlassopoulos, D.; García-González, M.T.; Garrido, F. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochim. Et Cosmochim. Acta 2009, 73, 543–558. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Tang, J.; Yang, Z.; Zhang, L.; Huang, X. New insights into the interactions between Pb (II) and fruit waste biosorbent. Chemosphere 2022, 303, 135048. [Google Scholar] [CrossRef]
- M Younis, A.; Aly-Eldeen, M.A.; Elkady, E.M. Effect of different molecular weights of chitosan on the removal efficiencies of heavy metals from contaminated water. Egypt. J. Aquat. Biol. Fish. 2019, 23, 149–158. [Google Scholar] [CrossRef]
- Ramrakhiani, L.; Ghosh, S.; Majumdar, S. Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review. Appl. Biochem. Biotechnol. 2016, 180, 41–78. [Google Scholar] [CrossRef]
- Ranasinghe, S.; Navaratne, A.; Priyantha, N. Enhancement of adsorption characteristics of Cr (III) and Ni (II) by surface modification of jackfruit peel biosorbent. J. Environ. Chem. Eng. 2018, 6, 5670–5682. [Google Scholar] [CrossRef]
- Ramrakhiani, L.; Halder, A.; Majumder, A.; Mandal, A.K.; Majumdar, S.; Ghosh, S. Industrial waste derived biosorbent for toxic metal remediation: Mechanism studies and spent biosorbent management. Chem. Eng. J. 2017, 308, 1048–1064. [Google Scholar] [CrossRef]
- Williams, C.; Aderhold, D.; Edyvean, R. Comparison between biosorbents for the removal of metal ions from aqueous solutions. Water Res. 1998, 32, 216–224. [Google Scholar] [CrossRef]
- Younis, A.; Aly-Eldeen, M. Immobilization of Cd (II) using Pistia stratiotes L.(Araceae) biomaterial: Optimization study using statistical design. Aquat. Sci. Fish Resour. (ASFR) 2020, 1, 23–28. [Google Scholar] [CrossRef]
- Younis, A.M.; Elkady, E.M.; El-Naggar, M. Biosorption of Arsenic (III) and Arsenic (V) from Aqueous Solutions: Equilibrium and Kinetic Studies using Mangrove Leaf Biomass (Avicennia marina). Egypt. J. Aquat. Biol. Fish. 2023, 27, 477. [Google Scholar]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- El-Badry, B.A.; Aldaghri, O.; Ibnaouf, K.H.; Younis, A.M.; Albadri, A.; Alluhayb, A.H.; Aissa, M.A.B.; Modwi, A. Efficacy of mesoporous TiO2–ZrO2@ g-C3N4 produced using a simple ultrasonic approach for copper ion removal from wastewater. J. Sci. Adv. Mater. Devices 2024, 9, 100772. [Google Scholar] [CrossRef]
- Das, D.; Chakraborty, S.; Bhattacharjee, C.; Chowdhury, R. Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae. Desalination Water Treat. 2016, 57, 4576–4586. [Google Scholar] [CrossRef]
- Lagergren, S. Ueber die Dämpfung electrischer resonatoren. Ann. Der Phys. 1898, 300, 290–314. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Z.; Zhou, X.; Bai, R. Removal of mercury (II) from aqueous solution with three commercial raw activated carbons. Res. Chem. Intermed. 2017, 43, 2273–2297. [Google Scholar] [CrossRef]
- Jin, H.; Hanif, M.U.; Capareda, S.; Chang, Z.; Huang, H.; Ai, Y. Copper (II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. J. Environ. Chem. Eng. 2016, 4, 365–372. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Al-Otaify, A.; Younis, A.M.; Mwafy, E.A. Synthesis of Au/Co3O4/PVA hybrid nanocomposites via eco-friendly method based on pulsed laser ablation process for water treatment. Surf. Interfaces 2024, 54, 105230. [Google Scholar] [CrossRef]
- Madeła, M.; Skuza, M. Towards a circular economy: Analysis of the use of biowaste as biosorbent for the removal of heavy metals. Energies 2021, 14, 5427. [Google Scholar] [CrossRef]
- Ali, Z.; Sajid, M.; Raza, N.; Sohail, Y.; Hayat, M.; Manzoor, S.; Shakeel, N.; Gill, K.A.; Ifseisi, A.A.; Ansari, M.Z. Study of modified biomass of Gossypium hirsutum as heavy metal biosorbent. Arab. J. Chem. 2023, 16, 105332. [Google Scholar] [CrossRef]
- Sun, C.; Chen, T.; Huang, Q.; Wang, J.; Lu, S.; Yan, J. Enhanced adsorption for Pb (II) and Cd (II) of magnetic rice husk biochar by KMnO 4 modification. Environ. Sci. Pollut. Res. 2019, 26, 8902–8913. [Google Scholar] [CrossRef]
- Chand, P.; Bafana, A.; Pakade, Y.B. Xanthate modified apple pomace as an adsorbent for removal of Cd (II), Ni (II) and Pb (II), and its application to real industrial wastewater. Int. Biodeterior. Biodegrad. 2015, 97, 60–66. [Google Scholar] [CrossRef]
- Foroutan, R.; Esmaeili, H.; Sanati, A.M.; Ahmadi, M.; Ramavandi, B. Adsorptive removal of Pb (II), Ni (II), and Cd (II) from aqueous media and leather wastewater using Padinasanctae-crucis biomass. Desalination Water Treat. 2018, 135, 236–246. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Mehraban, Z.; Heikkinen, H. Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 2013, 61, 251–263. [Google Scholar] [CrossRef]
- Paulino, A.T.; Guilherme, M.R.; Reis, A.V.; Tambourgi, E.B.; Nozaki, J.; Muniz, E.C. Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation. J. Hazard. Mater. 2007, 147, 139–147. [Google Scholar] [CrossRef]
- Lyu, F.; Yu, H.; Hou, T.; Yan, L.; Zhang, X.; Du, B. Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite. J. Colloid Interface Sci. 2019, 539, 184–193. [Google Scholar] [CrossRef]
- Bohli, T.; Fiol Santaló, N.; Villaescusa Gil, I.; Ouederni, A. Adsorption on activated carbon from olive stones: Kinetics and equilibrium of phenol removal from aqueous solution. J. Chem. Eng. Process Technol. 2013, 4, 165. [Google Scholar]
- Pap, S.; Radonić, J.; Trifunović, S.; Adamović, D.; Mihajlović, I.; Miloradov, M.V.; Sekulić, M.T. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. J. Environ. Manag. 2016, 184, 297–306. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Cd (II), Ni (II), and Pb (II) ions in an aqueous solution by chemically modified nanoporous MCM-41. J. Water Wastewater 2009, 73, 25–33. [Google Scholar]
- Fiol, N.; Villaescusa, I.; Martínez, M.; Miralles, N.; Poch, J.; Serarols, J. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 2006, 50, 132–140. [Google Scholar] [CrossRef]
- Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb (II) and Ni (II) from aqueous solution. Mater. Sci. Eng. C 2010, 30, 304–310. [Google Scholar] [CrossRef]
- Kamari, A.; Ngah, W.S.W.; Ibrahim, R.; Hashim, N.; Isa, I.M.; Mohamed, A. Sorption of Cd (II) and Pb (II) ions onto Shorea acuminata sawdust: Isotherm, kinetics and sorption mechanism studies. J. Sci. Math. Lett. 2012, 4, 32–42. [Google Scholar]
Equilibrium Model | UI | CaO-UI | |||||
---|---|---|---|---|---|---|---|
Parameters | Cd2+ | Ni2+ | Pb2+ | Cd2+ | Ni2+ | Pb2+ | |
Langmuir | qm (mg.g−1) | 432.47 | 335.75 | 446.65 | 571.21 | 665.51 | 577.87 |
KL (mg.g−1) | 0.005 | 0.0086 | 0.0043 | 0.0644 | 0.0457 | 0.0068 | |
RL (L.mg−1) | 0.992 | 0.994 | 0.993 | 0.996 | 0.997 | 0.997 | |
R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | |
Freundlich | n | 1.0021 | 1.0034 | 1.0075 | 1.0029 | 1.0005 | 1.00222 |
KF (L.mg−1) | 1.577 | 1.499 | 1.499 | 1.498 | 1.497 | 1.497 | |
R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | |
Timken | bT (kJ.mol−1) | 13.62 | 13.18 | 13.76 | 12.06 | 13.57 | 10.84 |
KT (L.g−1) | 0.261 | 0.226 | 0.279 | 0.418 | 0.338 | 0.485 | |
R2 | 0.775 | 0.743 | 0.786 | 0.753 | 0.595 | 0.564 |
Kinetics Models | Variables | Parameters Unit | UI | CaO-UI | ||||
---|---|---|---|---|---|---|---|---|
Cd(II) | Ni(II) | Pb(II) | Cd(II) | Ni(II) | Pb(II) | |||
PFO | qe | mg/g | 3.63783964 | 3.4992547 | 3.453713 | 4.8888544 | 4.005849 | 4.914709 |
k1 | L/min | 0.00006375 | 0.0000045 | 0.00023 | 0.000765 | 0.00093 | 0.03399 | |
R2 | - | 0.47217 | 0.41766 | 0.46506 | 0.57043 | 0.56679 | 0.57595 | |
PSO | qe (calculated) | mg/g | 4.755112 | 4.002882 | 4.833486394 | 5.949515 | 5.945533 | 5.173573 |
k2 | mg/mg.min | 4.803613 | 4.722667 | 5.70577 | 10.15032 | 9.001563 | 9.723565 | |
R2 | - | 0.94871 | 0.98169 | 0.95668 | 0.993 | 0.98547 | 0.97827 |
Metal | Concentration | UI | CaO-UI |
---|---|---|---|
mg/L | Removal Efficiency (%) | ||
Cd(II) | 15 | 70 | 77 |
Ni(II) | 8 | 65 | 72 |
Pb(II) | 10 | 76 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, A.M.; Almutairi, G.M. Application of Ulva intestinalis Linnaeus Biomass-Derived Biosorbents for Eco-Friendly Removal of Metal Contaminants from Water. Processes 2025, 13, 1928. https://doi.org/10.3390/pr13061928
Younis AM, Almutairi GM. Application of Ulva intestinalis Linnaeus Biomass-Derived Biosorbents for Eco-Friendly Removal of Metal Contaminants from Water. Processes. 2025; 13(6):1928. https://doi.org/10.3390/pr13061928
Chicago/Turabian StyleYounis, Alaa M., and Ghada M. Almutairi. 2025. "Application of Ulva intestinalis Linnaeus Biomass-Derived Biosorbents for Eco-Friendly Removal of Metal Contaminants from Water" Processes 13, no. 6: 1928. https://doi.org/10.3390/pr13061928
APA StyleYounis, A. M., & Almutairi, G. M. (2025). Application of Ulva intestinalis Linnaeus Biomass-Derived Biosorbents for Eco-Friendly Removal of Metal Contaminants from Water. Processes, 13(6), 1928. https://doi.org/10.3390/pr13061928