Light-Triggered Core Coalescence of Double-Emulsion Droplets for High-Throughput Microreaction on a LiNbO3 Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Platform and Photovoltaic Field Generation
2.2. Preparation of Double-Emulsion Droplets
2.3. Temperature Measurement and Control Experiments
3. Results and Discussion
3.1. Coalescence Process of Double-Core Droplets
3.2. Mechanism of Core Droplet Coalescence
3.3. Coalescence of Multiple Core Droplets
4. Simulation Analysis
5. Application
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samimi, A.; Hengoju, S.; Rosenbaum, M.A. Combinatorial sample preparation platform for droplet-based applications in microbiology. Sens. Actuators B Chem. 2024, 417, 136162. [Google Scholar] [CrossRef]
- Tan, Z.; Zheng, Y.; Shi, H.; Xu, W.; Jia, X.; Dan, Z.; Liao, J.; Dai, Z.; Xu, C. Research progress and application exploration of typical microreactor technologies for health monitoring and disease Diagnosis/Treatment. Chem. Eng. J. 2024, 499, 155938. [Google Scholar] [CrossRef]
- Lee, S.S.; Abbaspourrad, A.; Kim, S.-H. Nonspherical Double Emulsions with Multiple Distinct Cores Enveloped by Ultrathin Shells. ACS Appl. Mater. Interfaces 2014, 6, 1294–1300. [Google Scholar] [CrossRef]
- Sprogies, T.; Kohler, J.; Gros, G. Evaluation of static micromixers for flow-through extraction by emulsification. Chem. Eng. J. 2008, 135, S199–S202. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Li, J.; Guo, M.; Wan, J.; Weitz, D.A.; Stone, H.A. Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab A Chip 2011, 11, 2312–2315. [Google Scholar] [CrossRef]
- Lee, T.Y.; Praveenkumar, R.; Oh, Y.-K.; Lee, K.; Kim, S.-H. Alginate microgels created by selective coalescence between core drops paired with an ultrathin shell. J. Mater. Chem. B 2016, 4, 3232–3238. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Hou, L.; Ren, Y.; Deng, X.; Lang, Q.; Jia, Y.; Hu, Q.; Tao, Y.; Liu, J.; Jiang, H. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets. Biomicrofluidics 2016, 10, 034111. [Google Scholar] [CrossRef]
- Chen, X.; Hou, L.; Yin, Z.; Wang, K.; Zhang, Z.; Bao, F. NIR light-triggered core-coalescence of double-emulsion drops for micro-reactions. Chem. Eng. J. 2023, 454, 140050. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, L.; Mao, W.; Gao, A.; Gao, X.; Gao, F.; Bo, F.; Zhang, G.; Xu, J. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Res. 2020, 8, 311–317. [Google Scholar] [CrossRef]
- Bo, F.; Wang, J.; Cui, J.; Ozdemir, S.K.; Kong, Y.; Zhang, G.; Xu, J.; Yang, L. Lithium-Niobate-Silica Hybrid Whispering-Gallery-Mode Resonators. Adv. Mater. 2015, 27, 8075–8081. [Google Scholar] [CrossRef]
- Chen, K.; Razinskas, G.; Feichtner, T.; Grossmann, S.; Christiansen, S.; Hecht, B. Electromechanically Tunable Suspended Optical Nanoantenna. Nano Lett. 2016, 16, 2680–2685. [Google Scholar] [CrossRef]
- Yang, T.; Paiè, P.; Nava, G.; Bragheri, F.; Vazquez, R.M.; Minzioni, P.; Veglione, M.; Di Tano, M.; Mondello, C.; Osellame, R.; et al. An integrated optofluidic device for single-cell sorting driven by mechanical properties. Lab A Chip 2015, 15, 1262–1266. [Google Scholar] [CrossRef]
- Gao, Z.; Yan, J.; Shi, L.; Liu, X.; Wang, M.; Li, C.; Huai, Z.; Wang, C.; Wang, X.; Zhang, L.; et al. Efficient Surfactant-Mediated Photovoltaic Manipulation of fL-Scale Aqueous Microdroplets for Diverse Optofluidic Applications on LiNbO3 Platform. Adv. Mater. 2023, 35, 2304081. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Gao, Z.; Shi, L.; Wang, M.; Liu, X.; Li, C.; Huai, Z.; Wang, C.; Zhang, L.; Wang, X.; et al. Photovoltaic Rotation and Transportation of a Fragile Fluorescent Microrod Toward Assembling a Tunable Light-Source System. ACS Nano 2024, 18, 18743–18757. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Huai, Z.; Li, Y.; Shi, L.; Wang, M.; Gao, Z.; Liu, X.; Zhang, X.; Gao, B.; Cao, X.; et al. 3D Multimodal, omnidirectional router of aqueous microdroplets based on the synergy of photovoltaic and triboelectric effects. Nano Energy 2024, 124, 109509. [Google Scholar] [CrossRef]
- Mi, Y.; Liu, X.; Gao, Z.; Wang, M.; Shi, L.; Zhang, X.; Gao, K.; Mugisha, E.R.; Yan, W. 3D Photovoltaic Router of Water Microdroplets Aiming at Free-Space Microfluidic Transportation. ACS Appl. Mater. Interfaces 2021, 13, 45018–45032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mugisha, E.R.; Mi, Y.; Liu, X.; Wang, M.; Gao, Z.; Gao, K.; Shi, L.; Chen, H.; Yan, W. Photovoltaic Cycling to-and-fro Actuation of a Water-Microdroplet for Automatic Repeatable Solute Acquisition on Oil-Infused Hydrophobic LN:Fe Surface. ACS Photonics 2021, 8, 639–647. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Z.; Liu, X.; Shi, L.; Mi, Y.; Gao, K.; Zhang, X.; Yan, W. Towards biochemical microreactor: Nonlocal photovoltaic actuation of aqueous microdroplets in oil-infused PDMS channels based on LiNbO3: Fe crystal. Sens. Actuators B Chem. 2021, 349, 130819. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Shi, L.; Gao, Z.; Li, C.; Huai, Z.; Wang, C.; Yan, J.; Zhang, L.; Wang, X.; et al. Photovoltaic high-throughput microfluidic platform for the mass-production of hybrid viscous microdroplets towards diverse applications. Chem. Eng. J. 2024, 487, 150610. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Tang, B.; Tan, X.; Xu, J.J.O.E. Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals. Opt. Express 2009, 17, 9981–9988. [Google Scholar] [CrossRef]
- Blázquez-Castro, A.; García-Cabañes, A.; Carrascosa, M. Biological applications of ferroelectric materials. Appl. Phys. Rev. 2018, 5, 041101. [Google Scholar] [CrossRef]
- Carrascosa, M.; García-Cabañes, A.; Jubera, M.; Ramiro, J.B.; Agulló-López, F. LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects. Appl. Phys. Rev. 2015, 2, 40605. [Google Scholar] [CrossRef]
- Tang, X.; Wang, L. Loss-Free Photo-Manipulation of Droplets by Pyroelectro-Trapping on Superhydrophobic Surfaces. ACS Nano 2018, 12, 8994–9004. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, W.; Wang, L. Furcated droplet motility on crystalline surfaces. Nat. Nanotechnol. 2021, 16, 1106–1112. [Google Scholar] [CrossRef]
- Puerto, A.; Méndez, A.; Arizmendi, L.; García-Cabañes, A.; Carrascosa, M. Optoelectronic Manipulation, Trapping, Splitting, and Merging of Water Droplets and Aqueous Biodroplets Based on the Bulk Photovoltaic Effect. Phys. Rev. Appl. 2020, 14, 024046. [Google Scholar] [CrossRef]
- Rincón, E.; Camarero, P.; Quintanilla, M.; Méndez, A.; García-Cabañes, A.; Haro-González, P.; Carrascosa, M. Manipulation of Cancer Cell Spheroids by Photovoltaic Tweezers: Determination of Their Charge State. Adv. Photonics Res. 2025, 6, 2400124. [Google Scholar] [CrossRef]
- Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat. Nanotechnol. 2010, 5, 429–435. [Google Scholar] [CrossRef]
- Grilli, S.; Miccio, L.; Gennari, O.; Coppola, S.; Vespini, V.; Battista, L.; Orlando, P.; Ferraro, P. Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range. Nat. Commun. 2014, 5, 5314. [Google Scholar] [CrossRef]
- Horiuchi, N. Microdroplet manipulation. Nat. Photonics 2024, 18, 111. [Google Scholar] [CrossRef]
- Zaltron, A.; Ferraro, D.; Meggiolaro, A.; Cremaschini, S.; Carneri, M.; Chiarello, E.; Sartori, P.; Pierno, M.; Sada, C.; Mistura, G. Optofluidic Platform for the Manipulation of Water Droplets on Engineered LiNbO3 Surfaces. Adv. Mater. Interfaces 2022, 9, 2200345. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, K.; Gao, Z.; Zan, Z.; Shi, L.; Liu, X.; Wang, M.; Chen, H.; Yan, W. Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers. Opt. Lett. 2020, 45, 1180–1183. [Google Scholar] [CrossRef]
- Cremaschini, S.; Cattelan, A.; Ferraro, D.; Filippi, D.; Marinello, F.; Meggiolaro, A.; Pierno, M.; Sada, C.; Zaltron, A.; Umari, P.; et al. Trifurcated Splitting of Water Droplets on Engineered Lithium Niobate Surfaces. ACS Appl. Mater. Interfaces 2024, 16, 4271–4282. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Cao, X.; Wang, C.; Gao, Z.; Liu, X.; Wang, M.; Yan, J.; Huai, Z.; Shi, L.; Yan, W. Dielectrophoresis-electrophoresis transition during the photovoltaic manipulation of water microdroplets on LiNbO3:Fe platform. Opt. Express 2023, 31, 16495–16507. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, R.; Sebastián-Vicente, C.; Denz, C.; Imbrock, J. Light-Induced Virtual Electrodes for Microfluidic Droplet Electro-Coalescence. Adv. Funct. Mater. 2023, 34, 2305286. [Google Scholar] [CrossRef]
- Esseling, M.; Zaltron, A.; Horn, W.; Denz, C. Optofluidic droplet router. Laser Photonics Rev. 2014, 9, 98–104. [Google Scholar] [CrossRef]
- Sturman, B.; Carrascosa, M.; Agullo-Lopez, F. Light-induced charge transport inLiNbO3 crystals. Phys. Rev. B 2008, 78, 245114. [Google Scholar] [CrossRef]
- García-Cabañes, A.; Blázquez-Castro, A.; Arizmendi, L.; Agulló-López, F.; Carrascosa, M. Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate. Crystals 2018, 8, 65. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, C.; Liu, G.; Xu, W.; Zhu, Z.; Si, T.; Xu, R.X. Multiplex coaxial flow focusing for producing multicompartment Janus microcapsules with tunable material compositions and structural characteristics. Lab A Chip 2017, 17, 3168–3175. [Google Scholar] [CrossRef]
- Chen, Z.; Lv, Z.; Zhang, Z.; Weitz, D.A.; Zhang, H.; Zhang, Y.; Cui, W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. Exploration 2021, 1, 20210036. [Google Scholar] [CrossRef]
- Zizzari, A.; Arima, V. Glass Microdroplet Generator for Lipid-Based Double Emulsion Production. Micromachines 2024, 15, 500. [Google Scholar] [CrossRef]
- Herranz-Blanco, B.; Arriaga, L.R.; Mäkilä, E.; Correia, A.; Shrestha, N.; Mirza, S.; Weitz, D.A.; Salonen, J.; Hirvonen, J.; Santos, H.A. Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release. Lab A Chip 2014, 14, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Costantini, M.; Guzowski, J.; Żuk, P.J.; Mozetic, P.; De Panfilis, S.; Jaroszewicz, J.; Heljak, M.; Massimi, M.; Pierron, M.; Trombetta, M.; et al. Electric Field Assisted Microfluidic Platform for Generation of Tailorable Porous Microbeads as Cell Carriers for Tissue Engineering. Adv. Funct. Mater. 2018, 28, 1800874. [Google Scholar] [CrossRef]
- Nagelberg, S.; Totz, J.F.; Mittasch, M.; Sresht, V.; Zeininger, L.; Swager, T.M.; Kreysing, M.; Kolle, M. Actuation of Janus Emulsion Droplets via Optothermally Induced Marangoni Forces. Phys. Rev. Lett. 2021, 127, 144503. [Google Scholar] [CrossRef]
- Gao, D.; Ding, W.; Nieto-Vesperinas, M.; Ding, X.; Rahman, M.; Zhang, T.; Lim, C.; Qiu, C.W. Optical manipulation from the microscale to the nanoscale: Fundamentals, advances and prospects. Light Sci. Appl. 2017, 6, e17039. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef]
- Sun, Z.; Li, N.; Li, W.; Weng, S.; Liu, T.; Wang, Z. Effect of droplet angle on droplet coalescence under high-frequency pulsed electric fields: Experiments and molecular dynamics simulations. Chem. Eng. Sci. 2024, 295, 120195. [Google Scholar] [CrossRef]
- Krakhalev, M.N.; Prishchepa, O.O.; Sutormin, V.S.; Zyryanov, V.Y. Polymer dispersed nematic liquid crystal films with conical boundary conditions for electrically controllable polarizers. Opt. Mater. 2019, 89, 1–4. [Google Scholar] [CrossRef]
- Jermann, F.; Otten, J. Light-induced charge transport in LiNbO3:Fe at high light intensities. J. Opt. Soc. Am. B Opt. Phys. 1993, 10, 2085–2092. [Google Scholar] [CrossRef]
- Jia, H.R.; Zhu, Y.X.; Liu, Y.; Guo, Y.; Sayed, S.M.; Zhu, X.Y.; Cheng, X.; Wu, F.G. Direct chemical editing of Gram-positive bacterial cell walls via an enzyme-catalyzed oxidative coupling reaction. Exploration 2022, 2, 20220010. [Google Scholar] [CrossRef]
- Guo, J.; Gan, J.; Ruan, H.; Yuan, X.; Kong, C.; Liu, Y.; Su, M.; Liu, Y.; Liu, W.; Zhang, B.; et al. Active-ion-gated room temperature acetone gas sensing of ZnO nanowires array. Exploration 2022, 2, 20220065. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yan, W.; Shi, L. Light-Triggered Core Coalescence of Double-Emulsion Droplets for High-Throughput Microreaction on a LiNbO3 Platform. Processes 2025, 13, 1640. https://doi.org/10.3390/pr13061640
Wang M, Yan W, Shi L. Light-Triggered Core Coalescence of Double-Emulsion Droplets for High-Throughput Microreaction on a LiNbO3 Platform. Processes. 2025; 13(6):1640. https://doi.org/10.3390/pr13061640
Chicago/Turabian StyleWang, Mengtong, Wenbo Yan, and Lihong Shi. 2025. "Light-Triggered Core Coalescence of Double-Emulsion Droplets for High-Throughput Microreaction on a LiNbO3 Platform" Processes 13, no. 6: 1640. https://doi.org/10.3390/pr13061640
APA StyleWang, M., Yan, W., & Shi, L. (2025). Light-Triggered Core Coalescence of Double-Emulsion Droplets for High-Throughput Microreaction on a LiNbO3 Platform. Processes, 13(6), 1640. https://doi.org/10.3390/pr13061640