Design of a Novel Transition-Based Deadlock Recovery Policy for Flexible Manufacturing Systems
Abstract
:1. Introduction
2. Preliminaries
2.1. The Basics of Petri Net
- is the set of idle places, where each of them is exclusive in the circuit it belongs to. For each , ;
- is the set of operation places and each element is marked as zero initially;
- is the set of resource places, where , , ;
- The sets , and are not empty sets with ;
- is the set of transitions.
2.2. Reachability Graph Analysis
2.3. Control Transition
3. Controller Synthesis
3.1. RFG-Based CT Synthesis
- The set is defined as , ;
- The set contains all nodes as each two terminals of , where ;
- is regarded as the partial marking of , which is usually the initial marking of the places in when considering the resource allocating condition at the beginning, i.e., ;
- An RFG contains at least one cycle structure , such that ; . Let , there must exist a path from to . is also an elementary cycle where all nodes are touched once at most.
3.2. Flow Mirroring Pair-Based CT Synthesis
- Build the incidence matrix via the input S3PR net;
- Separate it into two submatrices that represent operation and resource places;
- Do a comparison by each transition and pick all of the valid arc pairs up;
- Convert the arc pairs into the edges of the RFG;
- Output the RFG.
- R1-type is the arc pair with receiving the resource in and sending it to the operation for activating, such that . Note that the order of is thus opposite from .
- R2-type is the arc pair finishing the operation in and requesting the resource in for entering the next process, such that .
Listing 1. The DOT script for the RFG visualization of Example 1. | |
1 | digraph RFG_FMS01{ |
2 | node [shape=box, style=rounded] p2 p3 p4 p5 p6 p7 |
3 | node [shape=pentagon, style=““] p9 p10 p11 |
4 | |
5 | p9 -> p2 [label=“t1”,color=blue,fontcolor=blue] |
6 | p2 -> p10 [label=“t2”,color=blue,fontcolor=blue] |
7 | p10 -> p6 [label=“t6”,color=blue,fontcolor=blue] |
8 | p6 -> p9 [label=“t7”,color=blue,fontcolor=blue] |
9 | p10 -> p3 [label=“t2”,color=red,fontcolor=red] |
10 | p3 -> p11 [label=“t3”,color=red,fontcolor=red] |
11 | p11 -> p5 [label=“t5”,color=red,fontcolor=red] |
12 | p5 -> p10 [label=“t6”,color=red,fontcolor=red] |
13 | p9 -> p7 [label=“t7”,style=dashed,color=gray,fontcolor=gray] |
14 | p11 -> p4 [label=“t3”,style=dashed,color=gray,fontcolor= gray] |
15 | } |
4. Algorithm
Algorithm 1: The FMP-based RFG generating method and the valid CT set |
Algorithm 2: Generating Graphviz script for RFG visualization. | |||
5. Experimental Results
Listing 2. The DOT script for the RFG visualization of Example 2. | |
1 | digraph RFG_FMS02{ |
2 | node [shape=pentagon] p14 p15 p16 p17 p18 p19 |
3 | node [shape=box] p2 p3 p4 p5 p6 p7 p9 p10 p11 p12 p13 |
4 | edge [arrowhead=onormal] |
5 | |
6 | p2 -> p14 [label=“t3”,color=red,fontcolor=red] |
7 | p14 -> p4 [label=“t3”,color=red,fontcolor=red] |
8 | p4 -> p18 [label=“t4”,color=red,fontcolor=red] |
9 | p18 -> p2 [label=“t1”,color=red,fontcolor=red] |
10 | p2 -> p15 [label=“t2”,color=green,fontcolor=green] |
11 | p15 -> p3 [label=“t2”,color=green,fontcolor=green] |
12 | p3 -> p18 [label=“t5”,color=green,fontcolor=green] |
13 | p18 -> p2 [label=“t1”,color=green,fontcolor=green] |
14 | p2 -> p15 [label=“t2”,color=cyan,fontcolor=cyan] |
15 | p15 -> p12 [label=“t12”,color=cyan,fontcolor=cyan] |
16 | p12 -> p18 [label=“t13”,color=cyan,fontcolor=cyan] |
17 | p18 -> p2 [label=“t1”,color=cyan,fontcolor=cyan] |
18 | p11 -> p15 [label=“t12”,color=gold,fontcolor=gold] |
19 | p15 -> p3 [label=“t2”,color=gold,fontcolor=gold] |
20 | p3 -> p18 [label=“t5”,color=gold,fontcolor=gold] |
21 | p18 -> p11 [label=“t11”,color=gold,fontcolor=gold] |
22 | p11 -> p15 [label=“t12”,color=fuchsia,fontcolor=fuchsia] |
23 | p15 -> p12 [label=“t12”,color=fuchsia,fontcolor=fuchsia] |
24 | p12 -> p18 [label=“t13”,color=fuchsia,fontcolor=fuchsia] |
25 | p18 -> p11 [label=“t11”,color=fuchsia,fontcolor=fuchsia] |
26 | p18 -> p5 [label=“t5”,color=blue,fontcolor=blue] |
27 | p5 -> p16 [label=“t6”,color=blue,fontcolor=blue] |
28 | p16 -> p6 [label=“t6”,color=blue,fontcolor=blue] |
29 | p6 -> p19 [label=“t7”,color=blue,fontcolor=blue] |
30 | p19 -> p9 [label=“t9”,color=blue,fontcolor=blue] |
31 | p9 -> p17 [label=“t10”,color=blue,fontcolor=blue] |
32 | p17 -> p10 [label=“t10”,color=blue,fontcolor=blue] |
33 | p10 -> p18 [label=“t11”,color=blue,fontcolor=blue] |
34 | p18 -> p13 [label=“t13”, color=gray,fontcolor=gray] |
35 | p19 -> p7 [label=“t7”, color=gray,fontcolor=gray] |
36 | } |
Listing 3. The DOT script for the RFG visualization of Example 3. | |
1 | digraph RFG_FMS03{ |
2 | node [shape=box,style=“rounded”] p2 p3 p4 p6 p7 p8 p9 p10 p11 p12 p13 p15 p16 p17 p18 p19 |
3 | node [shape=pentagon,style=““] p20 p21 p22 p23 p24 p25 p26 |
4 | edge [arrowhead=onormal] |
5 | |
6 | p22 -> p19 [label=“t15”,color=red,fontcolor=red] |
7 | p19 -> p26 [label=“t16”,color=red,fontcolor=red] |
8 | p26 -> p13 [label=“t9”,color=red,fontcolor=red] |
9 | p13 -> p22 [label=“t10”,color=red,fontcolor=red] |
10 | p12 -> p26 [label=“t9”,color=green,fontcolor=green] |
11 | p26 -> p18 [label=“t16”,color=green,fontcolor=green] |
12 | p18 -> p21 [label=“t17”,color=green,fontcolor=green] |
13 | p21 -> p12 [label=“t8”,color=green,fontcolor=green] |
14 | p3 -> p21 [label=“t13”,color=cyan,fontcolor=cyan] |
15 | p21 -> p8 [label=“t3”,color=cyan,fontcolor=cyan] |
16 | p8 -> p24 [label=“t4”,color=cyan,fontcolor=cyan] |
17 | p24 -> p3 [label=“t12”,color=cyan,fontcolor=cyan] |
18 | p3 -> p21 [label=“t13”,color=peru,fontcolor=peru] |
19 | p21 -> p2 [label=“t11”,color=peru,fontcolor=peru] |
20 | p2 -> p24 [label=“t12”,color=peru,fontcolor=peru] |
21 | p24 -> p3 [label=“t12”,color=peru,fontcolor=peru] |
22 | p11 -> p21 [label=“t8”,color=fuchsia,fontcolor=fuchsia] |
23 | p21 -> p17 [label=“t17”,color=fuchsia,fontcolor=fuchsia] |
24 | p17 -> p25 [label=“t18”,color=fuchsia,fontcolor=fuchsia] |
25 | p25 -> p11 [label=“t7”,color=fuchsia,fontcolor=fuchsia] |
26 | p9 -> p22 [label=“t5”,color=blue,fontcolor=blue] |
27 | p22 -> p19 [label=“t15”,color=blue,fontcolor=blue] |
28 | p19 -> p26 [label=“t16”,color=blue,fontcolor=blue] |
29 | p26 -> p18 [label=“t16”,color=blue,fontcolor=blue] |
30 | p18 -> p21 [label=“t17”,color=blue,fontcolor=blue] |
31 | p21 -> p2 [label=“t11”,color=blue,fontcolor=blue] |
32 | p2 -> p24 [label=“t12”,color=blue,fontcolor=blue] |
33 | p24 -> p9 [label=“t4”,color=blue,fontcolor=blue] |
34 | p9 -> p22 [label=“t5”,color=chartreuse,fontcolor=chartreuse] |
35 | p22 -> p19 [label=“t15”,color=chartreuse,fontcolor=chartreuse] |
36 | p19 -> p26 [label=“t16”,color=chartreuse,fontcolor=chartreuse] |
37 | p26 -> p18 [label=“t16”,color=chartreuse,fontcolor=chartreuse] |
38 | p18 -> p21 [label=“t17”,color=chartreuse,fontcolor=chartreuse] |
39 | p21 -> p8 [label=“t3”,color=chartreuse,fontcolor=chartreuse] |
40 | p8 -> p24 [label=“t4”,color=chartreuse,fontcolor=chartreuse] |
41 | p24 -> p9 [label=“t4”,color=chartreuse,fontcolor=chartreuse] |
42 | p7 -> p21 [label=“t3”,color=orangered,fontcolor=orangered] |
43 | p21 -> p17 [label=“t17”,color=orangered,fontcolor=orangered] |
44 | p17 -> p25 [label=“t18”,color=orangered,fontcolor=orangered] |
45 | p25 -> p16 [label=“t18”,color=orangered,fontcolor=orangered] |
46 | p16 -> p20 [label=“t19”,color=orangered,fontcolor=orangered] |
47 | p20 -> p6 [label=“t1”,color=orangered,fontcolor=orangered] |
48 | p6 -> p23 [label=“t2”,color=orangered,fontcolor=orangered] |
49 | p23 -> p7 [label=“t2”,color=orangered,fontcolor=orangered] |
50 | p20 -> p15 [label=“t19”,style=dashed,color=gray,fontcolor=gray] |
51 | p22 -> p10 [label=“t10”,style=dashed,color=gray,fontcolor=gray] |
52 | p21 -> p4 [label=“t13”,style=dashed,color=gray,fontcolor=gray] |
53 | } |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enabling Flexible Manufacturing System (FMS) through the Applications of Industry 4.0 Technologies. Internet Things Cyber-Phys. Phys. Syst. 2022, 2, 49–62. [Google Scholar] [CrossRef]
- Manu, G.; Vijay Kumar, M.; Nagesh, H.; Jagadeesh, D.; Gowtham, M.B. Flexible Manufacturing Systems (FMS), A Review. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 323–336. [Google Scholar] [CrossRef]
- Ezpeleta, J.; Colom, J.M.; Martinez, J. A Petri Net Based Deadlock Prevention Policy for Flexible Manufacturing Systems. IEEE Trans. Robot. Automat. 1995, 11, 173–184. [Google Scholar] [CrossRef]
- Banaszak, Z.A.; Krogh, B.H. Deadlock Avoidance in Flexible Manufacturing Systems with Concurrently Competing Process Flows. IEEE Trans. Robot. Automat. 1990, 6, 724–734. [Google Scholar] [CrossRef]
- Liu, G. Complexity of the Deadlock Problem for Petri Nets Modeling Resource Allocation Systems. Inf. Sci. 2016, 363, 190–197. [Google Scholar] [CrossRef]
- Murata, T. Petri Nets: Properties, Analysis and Applications. Proc. IEEE 1989, 77, 541–580. [Google Scholar] [CrossRef]
- Reisig, W. Petri Nets; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 978-3-642-69970-2. [Google Scholar]
- Zhou, M.; Venkatesh, K. Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net Approach; World Scientific: Singapore, 1999; ISBN 978-981-02-3029-6. [Google Scholar]
- Liu, G. Petri Nets: Theoretical Models and Analysis Methods for Concurrent Systems; Springer Nature: Singapore, 2022; ISBN 978-981-19-6308-7. [Google Scholar]
- Kaid, H.; Al-Ahmari, A.; Alqahtani, K.N.; Dabwan, A.; Nasr, M.M.; Alhaag, M.H. An Internet-of-Things Based on ILPP, Petri Nets, and Artificial Neural Networks for Controlling Tool Failures in Flexible Manufacturing Systems Under Complex Operational Conditions. IEEE Access 2025, 13, 37035–37050. [Google Scholar] [CrossRef]
- Reisig, W. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-33277-7. [Google Scholar]
- Barylska, K.; Best, E.; Schlachter, U.; Spreckels, V. Properties of Plain, Pure, and Safe Petri Nets. In Transactions on Petri Nets and Other Models of Concurrency XII; Koutny, M., Kleijn, J., Penczek, W., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10470, pp. 1–18. ISBN 978-3-662-55861-4. [Google Scholar]
- Huang, B.; Zhou, M.; Lu, X.S.; Abusorrah, A. Scheduling of Resource Allocation Systems with Timed Petri Nets: A Survey. ACM Comput. Surv. 2023, 55, 1–27. [Google Scholar] [CrossRef]
- Yamalidou, K.; Moody, J.; Lemmon, M.; Antsaklis, P. Feedback Control of Petri Nets Based on Place Invariants. Automatica 1996, 32, 15–28. [Google Scholar] [CrossRef]
- Guo, X.; Wang, S.; You, D.; Li, Z.; Jiang, X. A Siphon-Based Deadlock Prevention Strategy for S3PR. IEEE Access 2019, 7, 86863–86873. [Google Scholar] [CrossRef]
- Abdul-Hussin, M.H. On Structural Conditions of S3PR Based Siphons to Prevent Deadlocks in Manufacturing Systems. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 32.1–32.8. [Google Scholar] [CrossRef]
- Feng, Y.; Xing, K.; Zhou, M.; Chen, H.; Tian, F. Polynomial-Complexity Robust Deadlock Controllers for a Class of Automated Manufacturing Systems with Unreliable Resources Using Petri Nets. Inf. Sci. 2020, 533, 181–199. [Google Scholar] [CrossRef]
- Abdallah, I.B.; ElMaraghy, H.A. Deadlock Prevention and Avoidance in FMS: A Petri Net Based Approach. Int. J. Adv. Manuf. Technol. 1998, 14, 704–715. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, M. On Controllability of Dependent Siphons for Deadlock Prevention in Generalized Petri Nets. IEEE Trans. Syst. Man Cybern. Part A 2008, 38, 369–384. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z. On Structural Minimality of Optimal Supervisors for Flexible Manufacturing Systems. Automatica 2012, 48, 2647–2656. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Barkaoui, K.; Giua, A. On the Enforcement of a Class of Nonlinear Constraints on Petri Nets. Automatica 2015, 55, 116–124. [Google Scholar] [CrossRef]
- Zhuang, Q.; Dai, W.; Wang, S.; Du, J.; Tian, Q. An MIP-Based Deadlock Prevention Policy for Siphon Control. IEEE Access 2019, 7, 153782–153790. [Google Scholar] [CrossRef]
- Du, N.; Hu, H. Robust Deadlock Detection and Control of Automated Manufacturing Systems With Multiple Unreliable Resources Using Petri Nets. IEEE Trans. Automat. Sci. Eng. 2021, 18, 1790–1802. [Google Scholar] [CrossRef]
- Du, Y.; Gu, N.; Zhou, X. Accelerating Reachability Analysis on Petri Net for Mutual Exclusion-Based Deadlock Detection. IEICE Trans. Inf. Syst. 2016, 99, 2978–2985. [Google Scholar] [CrossRef]
- Zhou, M. (Ed.) Deadlock Resolution in Computer-Integrated Systems; Dekker: IJzendoorn, Netherlands; CRC Press: New York, NY, USA, 2005; ISBN 978-0-8247-5368-9. [Google Scholar]
- Tat Leung, Y.; Sheen, G.-J. Resolving Deadlocks in Flexible Manufacturing Cells. J. Manuf. Syst. 1993, 12, 291–304. [Google Scholar] [CrossRef]
- Xing, K.; Zhou, M.C.; Liu, H.; Tian, F. Optimal Petri-Net-Based Polynomial-Complexity Deadlock-Avoidance Policies for Automated Manufacturing Systems. IEEE Trans. Syst. Man Cybern. Part A 2009, 39, 188–199. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M.; Li, Z. Resource-Oriented Petri Net for Deadlock Avoidance in Flexible Assembly Systems. IEEE Trans. Syst. Man Cybern. Part A 2008, 38, 56–69. [Google Scholar] [CrossRef]
- Hsieh, F.-S. Fault-Tolerant Deadlock Avoidance Algorithm for Assembly Processes. IEEE Trans. Syst. Man Cybern. Part A 2004, 34, 65–79. [Google Scholar] [CrossRef]
- Ezpeleta, J.; Recalde, L. A Deadlock Avoidance Approach for Nonsequential Resource Allocation Systems. IEEE Trans. Syst. Man Cybern. Part A 2004, 34, 93–101. [Google Scholar] [CrossRef]
- Park, J.; Reveliotis, S.A. Deadlock Avoidance in Sequential Resource Allocation Systems with Multiple Resource Acquisitions and Flexible Routings. IEEE Trans. Automat. Contr. 2001, 46, 1572–1583. [Google Scholar] [CrossRef]
- Xing, K.-Y.; Hu, B.-S.; Chen, H.-X. Deadlock Avoidance Policy for Petri-Net Modeling of Flexible Manufacturing Systems with Shared Resources. IEEE Trans. Automat. Contr. 1996, 41, 289–295. [Google Scholar] [CrossRef]
- Pan, Y.-L.; Tseng, C.-Y.; Chen, J.-C. Enhancement of Computational Efficiency for Deadlock Recovery of Flexible Manufacturing Systems Using Improved Generating and Comparing Aiding Matrix Algorithms. Processes 2023, 11, 3026. [Google Scholar] [CrossRef]
- Elsayed, M.S.; Kefi, K.; Li, Z. An Optimal Transition-Based Recovery Policy for Controlling Deadlock Within Flexible Manufacturing Systems Using Graph Technique. IEEE Access 2023, 11, 51723–51739. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; Li, Z.; Wu, N. An Efficient Method of Deadlock Detection and Recovery for Flexible Manufacturing Systems by Resource Flow Graphs. IEEE Trans. Automat. Sci. Eng. 2022, 19, 1707–1718. [Google Scholar] [CrossRef]
- Row, T.-C.; Pan, Y.-L. An Optimal Deadlock Recovery Algorithm for Special and Complex Flexible Manufacturing Systems-S4PR. IEEE Access 2021, 9, 111083–111094. [Google Scholar] [CrossRef]
- Pan, Y.-L.; Tai, C.-W.; Tseng, C.-Y.; Huang, J.-C. Enhancement of Computational Efficiency in Seeking Liveness-Enforcing Supervisors for Advanced Flexible Manufacturing Systems with Deadlock States. Appl. Sci. 2020, 10, 2620. [Google Scholar] [CrossRef]
- Pan, Y.-L. One Computational Innovation Transition-Based Recovery Policy for Flexible Manufacturing Systems Using Petri Nets. Appl. Sci. 2020, 10, 2332. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, Y.; Li, S.; El-Meligy, M.A.; Sharaf, M. An Efficient Deadlock Recovery Policy for Flexible Manufacturing Systems Modeled With Petri Nets. IEEE Access 2019, 7, 11785–11795. [Google Scholar] [CrossRef]
- Row, T.-C.; Pan, Y.-L. Maximally Permissive Deadlock Prevention Policies for Flexible Manufacturing Systems Using Control Transition. Adv. Mech. Eng. 2018, 10, 168781401878740. [Google Scholar] [CrossRef]
- Bashir, M.; Liu, D.; Uzam, M.; Wu, N.; Al-Ahmari, A.; Li, Z. Optimal Enforcement of Liveness to Flexible Manufacturing Systems Modeled with Petri Nets via Transition-Based Controllers. Adv. Mech. Eng. 2018, 10, 168781401775070. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Al-Ahmari, A.; Wu, N.; Qu, T. Deadlock Recovery for Flexible Manufacturing Systems Modeled with Petri Nets. Inf. Sci. 2017, 381, 290–303. [Google Scholar] [CrossRef]
- Zhang, X.; Uzam, M. Transition-Based Deadlock Control Policy Using Reachability Graph for Flexible Manufacturing Systems. Adv. Mech. Eng. 2016, 8, 168781401663150. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Pan, Y.-L.; Su, P.-J. Transition-Based Deadlock Detection and Recovery Policy for FMSs Using Graph Technique. ACM Trans. Embed. Comput. Syst. 2013, 12, 1–13. [Google Scholar] [CrossRef]
- Tseng, C.-Y.; Chen, J.-C.; Pan, Y.-L. An Improved Deadlock Recovery Policy of Flexible Manufacturing Systems Based on Resource Flow Graphs. IEEE Access 2024, 12, 65202–65212. [Google Scholar] [CrossRef]
- Piroddi, L.; Cordone, R.; Fumagalli, I. Selective Siphon Control for Deadlock Prevention in Petri Nets. IEEE Trans. Syst. Man Cybern. Part A 2008, 38, 1337–1348. [Google Scholar] [CrossRef]
- Liu, D.; Li, Z.; Zhou, M. Hybrid Liveness-Enforcing Policy for Generalized Petri Net Models of Flexible Manufacturing Systems. IEEE Trans. Syst. Man Cybern Syst. 2013, 43, 85–97. [Google Scholar] [CrossRef]
- Lin, R.; Yu, Z.; Shi, X.; Dong, L.; Nasr, E.A. On Multi-Step Look-Ahead Deadlock Prediction for Automated Manufacturing Systems Based on Petri Nets. IEEE Access 2020, 8, 170421–170432. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, M. Elementary Siphons of Petri Nets and Their Application to Deadlock Prevention in Flexible Manufacturing Systems. IEEE Trans. Syst. Man Cybern. Part A 2004, 34, 38–51. [Google Scholar] [CrossRef]
- Wang, S.; Duo, W.; Guo, X.; Jiang, X.; You, D.; Barkaoui, K.; Zhou, M. Computation of an Emptiable Minimal Siphon in a Subclass of Petri Nets Using Mixed-Integer Programming. IEEE/CAA J. Autom. Sinica 2021, 8, 219–226. [Google Scholar] [CrossRef]
- Shaoyong, L.; Chunrun, Z. A Deadlock Control Algorithm Using Control Transitions for Flexible Manufacturing Systems Modelling with Petri Nets. Int. J. Syst. Sci. 2020, 51, 771–785. [Google Scholar] [CrossRef]
- Hu, M.; Yang, S.; Chen, Y. Partial Reachability Graph Analysis of Petri Nets for Flexible Manufacturing Systems. IEEE Access 2020, 8, 227925–227935. [Google Scholar] [CrossRef]
- Zhuang, Q.; Dai, W.; Wang, S.; Ning, F. Deadlock Prevention Policy for S4 PR Nets Based on Siphon. IEEE Access 2018, 6, 50648–50658. [Google Scholar] [CrossRef]
- Gelen, G.; Uzam, M.; Li, Z. A New Method for the Redundancy Analysis of Petri Net-Based Liveness Enforcing Supervisors. Trans. Inst. Meas. Control. 2017, 39, 763–780. [Google Scholar] [CrossRef]
- Chao, D.Y.; Chen, J.-T.; Yu, F. A Novel Liveness Condition for S3PGR2. Trans. Inst. Meas. Control. 2013, 35, 131–137. [Google Scholar] [CrossRef]
- Uzam, M.; Zhou, M. An Iterative Synthesis Approach to Petri Net-Based Deadlock Prevention Policy for Flexible Manufacturing Systems. IEEE Trans. Syst. Man Cybern. Part A 2007, 37, 362–371. [Google Scholar] [CrossRef]
- Uzam, M.; Zhou, M.C. An Improved Iterative Synthesis Method for Liveness Enforcing Supervisors of Flexible Manufacturing Systems. Int. J. Prod. Res. 2006, 44, 1987–2030. [Google Scholar] [CrossRef]
- Ghaffari, A.; Rezg, N.; Xie, X. Design of a Live and Maximally Permissive Petri Net Controller Using the Theory of Regions. IEEE Trans. Robot. Automat. 2003, 19, 137–142. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Zhou, M. Behaviorally Optimal and Structurally Simple Liveness-Enforcing Supervisors of Flexible Manufacturing Systems. IEEE Trans. Syst. Man Cybern. Part A 2012, 42, 615–629. [Google Scholar] [CrossRef]
- Row, T.-C.; Tseng, C.-Y.; Pan, Y.-L. Universal Single Controller for Solving Deadlock Problems of Flexible Manufacturing Systems. IEEE Access 2024, 12, 191907–191920. [Google Scholar] [CrossRef]
- Row, T.-C.; Pan, Y.-L. Incomparable Single Controller for Solving Deadlock Problems of Flexible Manufacturing Systems. IEEE Access 2023, 11, 45270–45278. [Google Scholar] [CrossRef]
- Row, T.-C.; Syu, W.-M.; Pan, Y.-L.; Wang, C.-C. One Novel and Optimal Deadlock Recovery Policy for Flexible Manufacturing Systems Using Iterative Control Transitions Strategy. Math. Probl. Eng. 2019, 2019, 4847072. [Google Scholar] [CrossRef]
- Sturdee, M. A Step Toward Formalising Visual Data Analysis Practices in Human Computer Interaction. Interact. Comput. 2025, 1–14. [Google Scholar] [CrossRef]
- Bajpai, A.; Yadav, S.; Nagwani, N.K. An Extensive Bibliometric Analysis of Artificial Intelligence Techniques from 2013 to 2023. J. Supercomput. 2025, 81, 540. [Google Scholar] [CrossRef]
- Ellson, J.; Gansner, E.R.; Koutsofios, E.; North, S.C.; Woodhull, G. Graphviz and Dynagraph—Static and Dynamic Graph Drawing Tools. In Graph Drawing Software; Jünger, M., Mutzel, P., Eds.; Mathematics and Visualization; Springer: Berlin/Heidelberg, Germany, 2004; pp. 127–148. ISBN 978-3-642-62214-4. [Google Scholar]
- Ellson, J.; Gansner, E.; Koutsofios, L.; North, S.C.; Woodhull, G. Graphviz—Open Source Graph Drawing Tools. In Graph Drawing; Mutzel, P., Jünger, M., Leipert, S., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2265, pp. 483–484. ISBN 978-3-540-43309-5. [Google Scholar]
- INA Integrated Net Analyzer Version 2.2. Available online: https://www2.informatik.hu-berlin.de/~starke/ina.html (accessed on 24 April 2025).
FMP Type | |
---|---|
R1-type | |
R2-type |
FMP Type | |
---|---|
R1-type | |
R2-type |
FMP Type | |
---|---|
R1-type | |
R2-type |
Methods | RFG Generation | Marking Explosion Issue | Computer Aided | Running Speed | Accuracy | RFG Depicting | Number of Controllers | Applicability |
---|---|---|---|---|---|---|---|---|
Lu et al. [35] | Complete | No | Manually | Low | Uncertain | Manually | High | Low complexity nets |
Elsayed et al. [34] | Complete | No | Manually | Low | Uncertain | Manually | High | Low complexity nets |
Tseng et al. [45] | Complete | No | Manually | Low | Uncertain | Manually | Low | Low complexity nets |
Proposed | Complete | No | Computer Aided | High | Exact | Automatic Generating | Low | Nets in any scale |
Properties | Huang et al. 2013 [44] | Chen et al. 2017 [42] -1 | Chen et al. 2017 [42] -2 | Bashir et al. 2018 [41] | Row et al. 2019 [62] | Dong et al. 2019 [39] | Pan 2020 [38] | Lu et al. 2022 [35] | Pan et al. 2023 [33] | Tseng et al. 2024 [45] | This Paper |
---|---|---|---|---|---|---|---|---|---|---|---|
No. of Controllers | 7 | 3 | 3 | 4 | 5 | 3 | 3 | 6 | 3 | 4 | 4 |
No. of Connecting Arcs of Controllers | 69 | 25 | 27 | 14 | 36 | 25 | 25 | 37 | 25 | 26 | 26 |
No. of All Reachable Markings | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 | 282 |
Deadlock-free? | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, W.-Y.; Tseng, C.-Y.; Tan, K.-H.; Pan, Y.-L. Design of a Novel Transition-Based Deadlock Recovery Policy for Flexible Manufacturing Systems. Processes 2025, 13, 1610. https://doi.org/10.3390/pr13051610
Chuang W-Y, Tseng C-Y, Tan K-H, Pan Y-L. Design of a Novel Transition-Based Deadlock Recovery Policy for Flexible Manufacturing Systems. Processes. 2025; 13(5):1610. https://doi.org/10.3390/pr13051610
Chicago/Turabian StyleChuang, Wen-Yi, Ching-Yun Tseng, Kuang-Hsiung Tan, and Yen-Liang Pan. 2025. "Design of a Novel Transition-Based Deadlock Recovery Policy for Flexible Manufacturing Systems" Processes 13, no. 5: 1610. https://doi.org/10.3390/pr13051610
APA StyleChuang, W.-Y., Tseng, C.-Y., Tan, K.-H., & Pan, Y.-L. (2025). Design of a Novel Transition-Based Deadlock Recovery Policy for Flexible Manufacturing Systems. Processes, 13(5), 1610. https://doi.org/10.3390/pr13051610