Utilization of an Amide-Based Collector in Fluorite Flotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Micro-Flotation Experiment
2.3. ZP Tests
2.4. X-Ray Photoelectron Spectroscopic (XPS) Tests
2.5. First-Principles Calculations
3. Results and Discussion
3.1. Micro-Flotation Experimental Results
3.2. ZP Measurements
3.3. X-Ray Photoelectron Spectroscopic (XPS) Tests Results
3.4. First-Principles Calculations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, W.; Zhu, Y.; Ge, W.; Liu, J.; Li, Y.; Li, W. Flotation separation of fluorite from calcite by a new depressant curdlan and its mechanism. J. Cent. South Univ. 2023, 30, 800–810. [Google Scholar] [CrossRef]
- Chen, Y.G.; Sun, Y.S.; Han, Y.X. Efficient flotation separation of lead–zinc oxide ores using mineral sulfidation reconstruction technology: A review. Green Smart Min. Eng. 2024, 1, 175–189. [Google Scholar] [CrossRef]
- Gong, X.; Yao, J.; Yin, W.; Yin, X.; Ban, X.; Wang, Y. Effect of acid corrosion on the surface roughness and floatability of magnesite and dolomite. Green Smart Min. Eng. 2024, 1, 118–125. [Google Scholar] [CrossRef]
- Shuai, S.Y.; Huang, Z.Q.; Burov, V.E.; Poilov, V.Z.; Li, F.X.; Wang, H.L.; Liu, R.K.; Zhang, S.Y.; Cheng, C.; Li, W.Y.; et al. Flotation separation of wolframite from calcite using a new trisiloxane surfactant as collector. Int. J. Min. Sci. Technol. 2023, 33, 379–387. [Google Scholar] [CrossRef]
- Asadi, M.; Mohammadi, M.R.T.; Moosakazemi, F.; Esmaeili, M.J.; Zakeri, M. Development of an environmentally friendly flowsheet to produce acid grade fluorite concentrate. J. Clean. Prod. 2018, 186, 782–798. [Google Scholar] [CrossRef]
- Zhu, X.-N.; Lyu, X.-J.; Wang, Q.; Qiu, J.; Wang, S.-S.; Liu, X.-Y.; Li, L. Clean utilization of waste oil: Soap collectors prepared by alkaline hydrolysis for fluorite flotation. J. Clean. Prod. 2019, 240, 118179. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Ma, Z.; Liao, Y. Impact of calcium and gypsum on separation of scheelite from fluorite using sodium silicate as depressant. Sep. Purif. Technol. 2019, 215, 249–258. [Google Scholar] [CrossRef]
- Xu, S.; Huang, H.; Wang, B.; Ren, S. The mechanism of sodium silicate depressing fluorite in scheelite heating flotation. J. Mol. Struct. 2024, 1306, 137861. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhang, J.; Zhao, W. Utilization of Citric Acid to Improve the Depressive Efficiency of Sodium Silicate on the Flotation of Calcite and Fluorite. Min. Metall. Explor. 2022, 39, 855–862. [Google Scholar] [CrossRef]
- Foucaud, Y.; Filippova, I.V.; Filippov, L.O. Investigation of the depressants involved in the selective flotation of scheelite from apatite, fluorite, and calcium silicates: Focus on the sodium silicate/sodium carbonate system. Powder Technol. 2019, 352, 501–512. [Google Scholar] [CrossRef]
- Jin, S.; Ou, L.; Ma, X.; Zhou, H.; Zhang, Z. Activation mechanisms of sodium silicate-inhibited fluorite in flotation under neutral and slightly alkaline conditions. Miner. Eng. 2021, 161, 106738. [Google Scholar] [CrossRef]
- Zhou, W.; Moreno, J.; Torres, R.; Valle, H.; Song, S. Flotation of fluorite from ores by using acidized water glass as depressant. Miner. Eng. 2013, 45, 142–145. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Chen, J.; Chen, P.; Song, S. Flotation separation of homogenized fluorite and calcite using sodium silicate and AlCl3 as a combined depressant. Miner. Eng. 2025, 222, 109146. [Google Scholar] [CrossRef]
- Sun, R.; Liu, D.; Liu, Y.; Wang, D.; Wen, S. Pb-water glass as a depressant in the flotation separation of fluorite from calcite. Colloids Surf. A 2021, 629, 127447. [Google Scholar] [CrossRef]
- He, J.; Chen, H.; Zhang, M.; Chen, L.; Yao, Q.; Dai, Y.; Zhu, L.; Liu, C. Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz. Colloids Surf. A 2022, 643, 128702. [Google Scholar] [CrossRef]
- Jin, D.; Sun, R.; Wang, G.; Deng, J.; Zhang, X. Flotation separation of fluorite and calcite using anhydrous glucose and aluminum sulfate as a combined depressant. Appl. Surf. Sci. 2023, 624, 157089. [Google Scholar] [CrossRef]
- Liu, C.; Wang, T.; Han, L.; Bao, S.; Chi, R.; Yang, S. The exploration of tannin extract as a green depressant in the flotation separation of fluorite from calcite. J. Mol. Liq. 2023, 388, 122756. [Google Scholar] [CrossRef]
- Shen, C.; Yang, X.; Li, Z.; Wu, D.; Cao, Y.; Zhang, Y.; Chai, W. Efficient flotation separation mechanism of scheelite from calcite and fluorite using carboxymethyl sulfonated lignin as environmentally friendly depressant. Colloids Surf. A 2025, 711, 136311. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Wang, B.; Teng, X.; Jiang, H. Selective flotation separation of fluorite from calcite using mixed anionic/cationic collectors. Miner. Eng. 2022, 178, 107423. [Google Scholar] [CrossRef]
- Zhang, D.; Kang, J.; Zhu, W. Selective flotation separation of fluorite and calcite by utilising a novel anionic/nonionic collector. Colloids Surf. A 2022, 642, 128687. [Google Scholar] [CrossRef]
- Jong, K.; Paek, I.; Kim, Y.; Li, I.; Jang, D. Flotation mechanism of a novel synthesized collector from Evodiaefructus onto fluorite surfaces. Miner. Eng. 2020, 146, 106017. [Google Scholar] [CrossRef]
- Zhu, W.; Kang, J.; Zhang, D.; Zhu, Y.; Ding, J.; Liang, Y.; Han, H.; Sun, W.; Gao, Z. Utilisation of sodium oleate/alkylamide collectors for the selective separation of fluorite and calcite. J. Mol. Liq. 2024, 413, 125925. [Google Scholar] [CrossRef]
- Gao, J.; Sun, W.; Hu, Y.; Wang, L.; Liu, R.; Gao, Z.; Chen, P.; Tang, H.; Jiang, W.; Lyu, F. Propyl gallate: A novel collector for flotation separation of fluorite from calcite. Chem. Eng. Sci. 2019, 193, 255–263. [Google Scholar] [CrossRef]
- Duan, H.; Liu, W.; Liu, W.; Shen, Y.; Gu, X.; Qiu, J.; Zhou, S. Selective adsorption of a novel X-shaped surfactant dioctyl di-hydroxamic acid on fluorite surface leading the effective flotation separation of fluorite from calcite and barite. J. Mol. Liq. 2021, 344, 117941. [Google Scholar] [CrossRef]
- Duan, H.; Liu, W.; Zhao, L.; Wang, X. Flotation performance and selective adsorption mechanism of novel hydroxamic acid on the separation of fluorite from barite. Miner. Eng. 2021, 171, 107101. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, P.; Zhang, W.; Tian, M.; Gao, Z.; Sun, W. An integrated experimental and computational investigation of N,9,10-trihydroxyoctadecanamide as a potential collector for the flotation separation of fluorite and calcite. Miner. Eng. 2023, 204, 108442. [Google Scholar] [CrossRef]
- Liu, C.; Xu, L.; Deng, J.; Han, Z.; Tian, J.; Xue, K.; Wang, D. Enhanced flotation separation of fluorite and calcite using novel collector: Experimental and theoretical Insights. J. Mol. Liq. 2024, 408, 125304. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Lu, Z.; Xue, K.; Miao, Y.; Zhao, W.; Zhu, J.; Wang, Y.; Wang, L.; Li, W. Froth flotation separation of fluorite ore using(E)-N-(2-hydroxyethyl)octadec-9-enamide as the flotation collector. Miner. Eng. 2024, 218, 108979. [Google Scholar] [CrossRef]
- Guo, Z.; Khoso, S.A.; Tian, M.; Sun, W. Utilizing N-hydroxy-9-octadecenamide as a collector in flotation separation of bastnaesite and fluorite. J. Rare Earths 2023, 42, 1620–1628. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Z.; Lyu, F.; Sun, W.; Gao, Z.; Tian, M. Enhanced flotation separation of spodumene and albite via selective adsorption of N-hydroxy-9-octadecenamide on the mineral surfaces. Miner. Eng. 2023, 199, 108117. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Xu, L.; Xue, K.; Zhang, X.; Shi, X.; Liu, C.; Meng, J. Synthesis and utilization of a novel oleate hydroxamic acid collector for the flotation separation of bastnaesite from barite. Miner. Eng. 2023, 204, 108405. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Cao, Y.; Hao, H.; Peng, W.; Teng, D.; Fan, G. Synthesis of sodium oleate hydroxamate and its application as a novel flotation collector on the ilmenite-forsterite separation. Sep. Purif. Technol. 2022, 284, 120283. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, M.; Gao, Z.; Sun, W. A novel surfactant N-hydroxy-9,10-epoxy group-octadecanamide. Part I. Application in the flotation separation of fluorite/calcite and adsorption selectivity on the mineral surfaces. J. Mol. Liq. 2023, 387, 122563. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, M.; Sun, W. A novel surfactant N-hydroxy-9,10-epoxy group-octadecanamide: Part II. Its synthesis and application in flotation separation of spodumene and albite. Trans. Nonferrous Met. Soc. China 2024, 34, 3002–3015. [Google Scholar] [CrossRef]
- Lv, L.; Duan, H.; Liu, W.; Yue, T. Flotation separation of fluorite from calcite using bis hydroxamic acid collector. Miner. Eng. 2022, 187, 107803. [Google Scholar] [CrossRef]
- Yao, X.; Yu, X.; Wang, L.; Zeng, Y.; Mao, L.; Liu, S.; Xie, H.; He, G.; Huang, Z.; Liu, Z. Preparation of cinnamic hydroxamic acid collector and study on flotation characteristics and mechanism of scheelite. Int. J. Min. Sci. Technol. 2023, 33, 773–781. [Google Scholar] [CrossRef]
- Wang, Z.H.; Han, G.; Feng, Q.C. Selective flotation of galena and sphalerite using N-(phosphonomethyl) iminodiacetic acid as an eco-friendly depressant. Green Smart Min. Eng. 2024, 1, 96–103. [Google Scholar] [CrossRef]
- Xiao, J.-J.; Wu, J.-Z.; Liu, S.-S.; Tu, J.; Liu, R.-K.; Li, C.-Z.; Zhao, G. Preparation of a novel surfactant dibutyl (2-(hydroxyamino)-2-oxoethyl) phosphonate and its adsorption mechanism in cassiterite flotation. J. Cent. South Univ. 2023, 30, 1569–1580. [Google Scholar] [CrossRef]
- Xu, W.; Mei, G.J.; Tian, Y.; Shi, B.; Guo, C.; Pan, W.X. Reverse cationic flotation of low-grade phosphate ore using quaternary ammonium salt as a collector and its adsorption mechanism. Green Smart Min. Eng. 2024, 1, 322–335. [Google Scholar] [CrossRef]
- Liu, C.; Xu, L.; Deng, J.; Han, Z.; Li, Y.; Wu, J.; Tian, J.; Wang, D.; Xue, K.; Fang, J. Exploring the mechanism of a novel cationic surfactant in bastnaesite flotation via the integration of DFT calculations, in-situ AFM and electrochemistry. Int. J. Min. Sci. Technol. 2024, 34, 1475–1484. [Google Scholar] [CrossRef]
- Guan, Z.-W.; Jiao, F.; Wang, X.; Qin, W.-Q.; Fu, L.-W.; Zhang, Z.-Q.; Li, W. New insights of inorganic phosphate inhibitors for flotation separation of calcium-bearing minerals. J. Cent. South Univ. 2024, 31, 796–812. [Google Scholar] [CrossRef]
- Guo, Z.; Khoso, S.A.; Wang, J.; Zhang, C.; Gao, Z.; Sun, W.; Tian, M.; Liu, Y. Interaction mechanism of 2-hydroxy-3-naphthyl hydroxamic acid and 1-hydroxy-2-naphthyl hydroxamic acid in the flotation separation of bastnaesite/fluorite: Experiments and first-principles calculations. Sep. Purif. Technol. 2022, 285, 120307. [Google Scholar] [CrossRef]
- Owens, C.L.; Nash, G.R.; Hadler, K.; Fitzpatrick, R.S.; Anderson, C.G.; Wall, F. Zeta potentials of the rare earth element fluorcarbonate minerals focusing on bastnäsite and parisite. Adv. Colloid Interface Sci. 2018, 256, 152–162. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, Y.D.; Qu, Q.Q.; Zhang, J.S.; Mu, Y.F. Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant. Miner. Eng. 2019, 134, 134–141. [Google Scholar] [CrossRef]
- Guo, C.L.; Hou, S.C.; Wang, W.W.; Jin, H.L. Surface chemistry of xanthan gum interactions with bastnaesite and fluorite during flotation. Miner. Eng. 2022, 189, 107891. [Google Scholar] [CrossRef]
- Yin, W.Z.; Wang, Y.; Ma, Y.Q.; Chen, K.Q. Effects of ultrasonic treatment on the flotation behavior of magnesite and dolomite in a sodium oleate system. Green Smart Min. Eng. 2024, 1, 76–84. [Google Scholar] [CrossRef]
- Li, M.; Gao, K.; Zhang, D.; Duan, H.; Ma, L.; Huang, L. The influence of temperature on rare earth flotation with naphthyl hydroxamic acid. J. Rare Earths 2018, 36, 99–107. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.-G.; Tan, J.; Hu, F. Flotation separation of pyrite from chalcopyrite by tetrazinan-thione collectors. J. Cent. South Univ. 2023, 30, 2587–2598. [Google Scholar] [CrossRef]
- Xu, L.H.; Liu, C.; Deng, J.S.; Wang, D.H.; Xue, K.; Wang, Y.; Meng, J.P.; Liu, J.T. Flotation and adsorption of novel Gemini decyl-bishydroxamic acid on bastnaesite: Experiments and density functional theory calculations. Int. J. Min. Sci. Technol. 2023, 33, 1193–1202. [Google Scholar] [CrossRef]
- Gong, X.F.; Yao, J.; Yang, B.; Yin, W.Z.; Fu, Y.F.; Wang, Y.L. Flotation separation of dolomite and brucite via selective adsorption of the inhibitor tetrasodium hydroxyethylphosphate. J. Cent. South Univ. 2023, 30, 2574–2586. [Google Scholar] [CrossRef]
- Wang, H.-C.; Yang, C.; Hu, Y.-M.; Li, M.-Y. Selective depression action of gum arabic in flotation separation of specularite and chlorite. J. Cent. South Univ. 2023, 30, 3044–3056. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Y.; Lu, L.; Hu, X.; Li, S. Removal of dolomite and potassium feldspar from apatite using simultaneous flotation with a mixed cationic-anionic collector. Int. J. Min. Sci. Technol. 2023, 33, 783–791. [Google Scholar] [CrossRef]
- Yao, J.; Ban, X.Q.; Xie, Y.; Yin, W.Z.; Wang, Y.L.; Xue, F.J. Research advancement of efficient flotation separation technologies for magnesium-containing minerals. Green Smart Min. Eng. 2024, 1, 140–156. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, Z.Y.; Wei, Q.; Qin, W.Q. Key technologies and development trends for efficient flotation recovery of lepidolite. Green Smart Min. Eng. 2024, 1, 273–288. [Google Scholar] [CrossRef]
- Chang, S.; Li, M.; Gao, K.; Zhang, D.; Duan, H.; Ma, L.; Ruan, Z. Mechanism of phthalic acid collector in flotation separation of fluorite and rare earth. J. Rare Earths 2022, 40, 118–126. [Google Scholar] [CrossRef]
- Bai, S.; Li, J.; Bi, Y.; Yuan, J.; Wen, S.; Ding, Z. Adsorption of sodium oleate at the microfine hematite/aqueous solution interface and its consequences for flotation. Int. J. Min. Sci. Technol. 2023, 33, 105–113. [Google Scholar] [CrossRef]
- Wen, S.; Miao, Y.; Tang, Y.; Song, Z.; Feng, Q. Theoretical and experimental study on high-entropy flotation of micro-fine cassiterite. Int. J. Min. Sci. Technol. 2025, 35, 19–39. [Google Scholar] [CrossRef]
- Meng, Q.-Y.; Feng, Q.-M.; Ou, L.-M. Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid. J. Cent. South Univ. 2016, 23, 1339–1344. [Google Scholar] [CrossRef]
- Li, H.-D.; Yang, C.-R.; Tian, Z.-Y.; Wu, C.-F.; Qin, W.-Q. Cassiterite beneficiation in China: A mini-review. J. Cent. South Univ. 2023, 30, 1–19. [Google Scholar] [CrossRef]
- Falconi, I.B.A.; Botelho, A.B.; Baltazar, M.d.P.G.; Espinosa, D.C.R.; Tenório, J.A.S. An overview of treatment techniques to remove ore flotation reagents from mining wastewater. J. Environ. Chem. Eng. 2023, 11, 111270. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Xiang, J.; Xue, J.; Song, X. Study on Treatment of Salicylhydroxamic Acid Wastewater from Tungsten Molybdenum Mineral Processing. J. Chem. 2020, 2020, 7125874. [Google Scholar] [CrossRef]
Sample | Elemental Content/% | ||||
---|---|---|---|---|---|
C 1s | O 1s | Ca 2p | N 1s | F 1s | |
Fluorite | 23.43 | 8.21 | 23.53 | - | 44.82 |
Fluorite, HPOA | 29.14 | 10.35 | 20.79 | 0.77 | 38.95 |
Calcite | 39.37 | 46.67 | 13.96 | - | - |
Calcite, HPOA | 42.63 | 44.33 | 12.65 | 0.39 | - |
Fluorite (111) Surface | Calcite (104) Surface | |
---|---|---|
HPOA Molecule Adsorption Energy | −78.51 | 2.36 |
Ca2+ Ion Density | 7.61 | 4.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Tian, Y.; Zhang, C.; Tian, M.; Sun, W. Utilization of an Amide-Based Collector in Fluorite Flotation. Processes 2025, 13, 1609. https://doi.org/10.3390/pr13051609
Liu P, Tian Y, Zhang C, Tian M, Sun W. Utilization of an Amide-Based Collector in Fluorite Flotation. Processes. 2025; 13(5):1609. https://doi.org/10.3390/pr13051609
Chicago/Turabian StyleLiu, Peng, Yuhui Tian, Chun Zhang, Mengjie Tian, and Wei Sun. 2025. "Utilization of an Amide-Based Collector in Fluorite Flotation" Processes 13, no. 5: 1609. https://doi.org/10.3390/pr13051609
APA StyleLiu, P., Tian, Y., Zhang, C., Tian, M., & Sun, W. (2025). Utilization of an Amide-Based Collector in Fluorite Flotation. Processes, 13(5), 1609. https://doi.org/10.3390/pr13051609