Developing a New Type of Annular Flow Field Based on Murray’s Law in Proton Exchange Membrane Water Electrolyzers
Abstract
1. Introduction
2. Model Description
2.1. Physical Model
2.2. Model Assumptions
- Steady-state conditions and laminar flow are considered.
- The catalyst layer and porous media in the model are assumed to be isotropic and homogeneous.
- Only hydrogen ions are allowed to pass through the PEM, while cross-diffusion of hydrogen and oxygen is neglected.
- Contact resistance is not considered.
- The influence of gravity is ignored.
2.3. Numerical Model
2.3.1. Electrochemical Model
2.3.2. Heat Transfer Model
2.3.3. Mass Transfer Model
2.3.4. Boundary Conditions
2.4. Numerical Process and Model Validation
2.4.1. Numerical Implementation
2.4.2. Model Validation
3. Results and Discussion
3.1. Pressure Distribution
3.2. Velocity Distribution
3.3. Temperature Distribution
3.4. Hydrogen Distribution
3.5. Comparison of Polarization Curves
3.6. Potential Problems in the Design of Annular Flow Fields
4. Conclusions
- The novel annular flow field, through the application of Murray’s branching law, exhibits excellent pressure drop characteristics. At a current density of 2 A/cm2, the pressure drop is reduced by 53.63% and 46.09% compared to the parallel and serpentine flow fields, respectively, which is significantly lower than the other two flow field types.
- In addition, the annular flow field demonstrates superior flow characteristics, forming a uniform water distribution that effectively avoids uneven catalyst utilization.
- The uniform water distribution in the annular flow field also improves the thermal management of the electrolyzer. After applying the annular flow field, the temperature at the CL–PEM interface is significantly reduced; the average temperature of the MEA is lowered by approximately 6.08 K and 6.84 K compared to the parallel and serpentine flow fields, respectively.
- The excellent flow and heat transfer characteristics of the annular flow field provide favorable conditions for electrochemical reactions, leading to better electrolysis performance and higher hydrogen production rates. At 2.6 V, the current density of the annular flow field is increased by 29.99% and 13.84% compared to the parallel and serpentine flow fields, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hannan, M.A.; Lipu, M.S.H.; Ker, P.J.; Begum, R.A.; Agelidis, V.G.; Blaabjerg, F. Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations. Appl. Energy 2019, 251, 113404. [Google Scholar] [CrossRef]
- Esquivel-Patiño, G.G.; Serna-González, M.; Nápoles-Rivera, F. Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles. Energy Convers. Manag. 2017, 151, 334–342. [Google Scholar] [CrossRef]
- Akyuz, E.S.; Telli, E.; Farsak, M. Hydrogen generation electrolyzers: Paving the way for sustainable energy. Int. J. Hydrogen Energy 2024, 81, 1338–1362. [Google Scholar] [CrossRef]
- Ni, A.; Upadhyay, M.; Kumar, S.S.; Uwitonze, H.; Lim, H. Anode analysis and modelling hydrodynamic behaviour of the multiphase flow field in circular PEM water electrolyzer. Int. J. Hydrogen Energy 2023, 48, 16176–16183. [Google Scholar] [CrossRef]
- Haszeldine, R.S.; Flude, S.; Johnson, G.; Scott, V. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philos. Trans. R. Soc. A 2018, 376, 23. [Google Scholar] [CrossRef]
- Midilli, A.; Dincer, I. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. Int. J. Hydrogen Energy 2008, 33, 4209–4222. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Kalinnikov, A.A. Mathematical modeling and experimental study of the performance of PEM water electrolysis cell with different loadings of platinum metals in electrocatalytic layers. Int. J. Hydrogen Energy 2017, 42, 1590–1597. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, C.; Wu, Q.; Li, H.; Xi, S.; Seow, J.Z.Y.; Luo, S.; Meng, F.; Bo, Y.; Xia, Y.; et al. Support-free iridium hydroxide for high-efficiency proton-exchange membrane water electrolysis. Nat. Commun. 2025, 16, 2730. [Google Scholar] [CrossRef]
- Olesen, A.C.; Romer, C.; Kaer, S.K. A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. Int. J. Hydrogen Energy 2016, 41, 52–68. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Tian, Y.; Jia, J.; Ma, W.; Yan, X.; Liang, J. Recent advances in key components of proton exchange membrane water electrolysers. Mater. Chem. Front. 2024, 8, 2493–2510. [Google Scholar] [CrossRef]
- Toghyani, S.; Afshari, E.; Baniasadi, E.; Atyabi, S.A. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochim. Acta 2018, 267, 234–245. [Google Scholar] [CrossRef]
- Nie, J.; Chen, Y.; Boehm, R.F. Numerical modeling of two-phase flow in a bipolar plate of a pem electrolyzer cell. In IMECE 2008: Heat Transfer, Fluid Flows, and Thermal Systems, PTS A–C, Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008; ASME: New York, NY, USA, 2009; Volume 10, pp. 783–788. [Google Scholar]
- de Haro Ruiz, D.; Sasmito, A.P.; Shamim, T. Numerical Investigation of the High Temperature PEM Electrolyzer: Effect of Flow Channel Configurations. ECS Trans. 2013, 58, 99–112. [Google Scholar] [CrossRef]
- An, Z.; Yao, M.; Du, X.; Li, Q.; Jian, B.; Zhang, D. Influence of external operating parameters on the hydrothermal transport and performance in proton exchange membrane water electrolyzer. Ionics 2025, 30, 6253–6266. [Google Scholar] [CrossRef]
- Lin, R.; Lu, Y.; Xu, J.; Huo, J.; Cai, X. Investigation on performance of proton exchange membrane electrolyzer with different flow field structures. Appl. Energy 2022, 326, 11. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, Z.M.; Feng, Y.C.; Xu, C.; Chen, Z.C.; Liao, Z.R.; Ju, X. Three-dimensional multiphase modeling of a proton exchange membrane electrolysis cell with a new interdigitated-jet hole flow field. Sci. China Technol. Sci. 2022, 65, 1179–1192. [Google Scholar] [CrossRef]
- Li, H.; Nakajima, H.; Inada, A.; Ito, K. Effect of flow-field pattern and flow configuration on the performance of a polymer-electrolyte-membrane water electrolyzer at high temperature. Int. J. Hydrogen Energy 2018, 43, 8600–8610. [Google Scholar] [CrossRef]
- Toghyani, S.; Afshari, E.; Baniasadi, E. Three-dimensional computational fluid dynamics modeling of proton exchange membrane electrolyzer with new flow field pattern. J. Therm. Anal. Calorim. 2019, 135, 1911–1919. [Google Scholar] [CrossRef]
- Hassan, A.H.; Liao, Z.; Wang, K.; Xiao, F.; Xu, C.; Abdelsamie, M.M. Characteristics of different flow patterns for proton exchange membrane water electrolysis with circular geometry. Int. J. Hydrogen Energy 2024, 49, 1060–1078. [Google Scholar] [CrossRef]
- Jo, M.; Cho, H.S.; Na, Y. Comparative Analysis of Circular and Square End Plates for a Highly Pressurized Proton Exchange Membrane Water Electrolysis Stack. Appl. Sci. 2020, 10, 6315. [Google Scholar] [CrossRef]
- Murray, C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 1926, 9, 835–841. [Google Scholar] [CrossRef]
- Chen, Z.; Yin, L.; Wang, Z.; Wang, K.; Ye, F.; Xu, C. Numerical simulation of parameter change in a proton exchange membrane electrolysis cell based on a dynamic model. Int. J. Energy Res. 2022, 46, 24074–24090. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Liu, C.; Gu, L.; Yin, L.; Xu, C.; Liao, Z.; Wang, Z. Numerical investigation of PEM electrolysis cell with the new interdigitated-jet hole flow field. Int. J. Hydrogen Energy 2022, 47, 33177–33194. [Google Scholar] [CrossRef]
- Han, B.; Mo, J.; Kang, Z.; Yang, G.; Barnhill, W.; Zhang, F. Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy. Int. J. Hydrogen Energy 2017, 42, 4478–4489. [Google Scholar] [CrossRef]
- Zhang, Z.; Xing, X. Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell. Int. J. Hydrogen Energy 2020, 45, 20184–20193. [Google Scholar] [CrossRef]
- Abdin, Z.; Webb, C.J.; Gray, E.M. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int. J. Hydrogen Energy 2015, 40, 13243–13257. [Google Scholar] [CrossRef]
- Wang, Z.M.; Xu, C.; Wang, X.Y.; Liao, Z.R.; Du, X.Z. Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell. Sci. China Technol. Sci. 2021, 64, 1555–1566. [Google Scholar] [CrossRef]
- Garcia-Valverde, R.; Espinosa, N.; Urbina, A. Simple PEM water electrolyser model and experimental validation. Int. J. Hydrogen Energy 2012, 37, 1927–1938. [Google Scholar] [CrossRef]
- Freire, L.S.; Antolini, E.; Linardi, M.; Santiago, E.I.; Passos, R.R. Influence of operational parameters on the performance of PEMFCs with serpentine flow field channels having different (rectangular and trapezoidal) cross-section shape. Int. J. Hydrogen Energy 2014, 39, 12052–12060. [Google Scholar] [CrossRef]
- Aubras, F.; Deseure, J.; Kadjo, J.J.A.; Dedigama, I.; Majasan, J.; Grondin-Perez, B.; Chabriat, J.-P.; Brett, D. Two-dimensional model of low-pressure PEM electrolyser: Two-phase flow regime, electrochemical modelling and experimental validation. Int. J. Hydrogen Energy 2017, 42, 26203–26216. [Google Scholar] [CrossRef]
- Chen, Y.; Mojica, F.; Li, G.; Chuang, P.A. Experimental study and analytical modeling of an alkaline water electrolysis cell. Int. J. Energy Res. 2017, 41, 2365–2373. [Google Scholar] [CrossRef]
- Toghyani, S.; Afshari, E.; Baniasadi, E. Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells. Electrochim. Acta 2018, 290, 506–519. [Google Scholar] [CrossRef]
- Nie, J.; Chen, Y. Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell. Int. J. Hydrogen Energy 2010, 35, 3183–3197. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Channel height, mm | 1 |
Channel width, mm | 1 |
Channel rib, mm | 1 |
MEA area, cm2 | π |
MEA diameter, mm | 20 |
Thickness of PEM, mm | 0.2 |
Thickness of AGDL, mm | 0.6 |
Thickness of ACL, mm | 0.05 |
Thickness of CGDL, mm | 0.5 |
Parameters | Symbol | Value |
---|---|---|
Reference pressure | P | 1 atm |
The initial temperature | T | 353.15 K |
Anode reference exchange current density | 10−4 A m−2 | |
Cathode reference exchange current density | 10−3 A m−2 | |
Anode transfer coefficient | 0.5 | |
Cathode transfer coefficient | 0.5 | |
Porosity of diffusion layer | 0.4 | |
Porosity of catalyst layer | 0.3 | |
Active specific surface area | 107 m−1 | |
Titanium conductivity | 5000 S m−1 | |
Density of titanium material | 4500 kg m−3 | |
Thermal conductivity of titanium | 15.2 W m−1 K−1 | |
Thermal conductivity of H2 | 0.0296 W m−1 K−1 | |
Thermal conductivity of O2 | 0.204 W m−1 K−1 | |
Thermal conductivity of PEM | 0.67 W m−1 K−1 | |
Thermal conductivity of PEM, CL, GDL, BP | / | 0.25, 0.4, 0.6, 20 W m−1 K−1 |
Specific heat capacity of PEM, CL, GDL, BP | / | 1.25, 1.2, 0.7, 0.52 J g−1 K−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, R.; Cao, X.; Zhang, Y.; He, Y.; Wang, Z. Developing a New Type of Annular Flow Field Based on Murray’s Law in Proton Exchange Membrane Water Electrolyzers. Processes 2025, 13, 1553. https://doi.org/10.3390/pr13051553
Mu R, Cao X, Zhang Y, He Y, Wang Z. Developing a New Type of Annular Flow Field Based on Murray’s Law in Proton Exchange Membrane Water Electrolyzers. Processes. 2025; 13(5):1553. https://doi.org/10.3390/pr13051553
Chicago/Turabian StyleMu, Rui, Xiaoyu Cao, Yi Zhang, Yong He, and Zhihua Wang. 2025. "Developing a New Type of Annular Flow Field Based on Murray’s Law in Proton Exchange Membrane Water Electrolyzers" Processes 13, no. 5: 1553. https://doi.org/10.3390/pr13051553
APA StyleMu, R., Cao, X., Zhang, Y., He, Y., & Wang, Z. (2025). Developing a New Type of Annular Flow Field Based on Murray’s Law in Proton Exchange Membrane Water Electrolyzers. Processes, 13(5), 1553. https://doi.org/10.3390/pr13051553