Aqueous-Phase Uptake of Amlodipine Besylate by Activated Carbon Derived from Dwarf Elder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents/Chemicals
2.2. Synthesis of Activated Carbon
2.3. Analytical Methods
2.4. Batch Sorption Experiments
2.5. Data Analysis and Theoretical Background
3. Results and Discussion
3.1. Material Characterization
3.1.1. FTIR Analysis
3.1.2. BET Analysis
3.1.3. FE-SEM and EDX Analysis
3.2. Uptake Efficiency
3.2.1. Effect of pH
3.2.2. Effect of Sorbent Dosage
3.2.3. Effect of Stirring Speed
3.2.4. Kinetic and Equilibrium Studies
3.2.5. Reusability Study
3.2.6. Comparison of DEAC with the Literature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fares, H.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. Amlodipine in hypertension: A first-line agent with efficacy for improving blood pressure and patient outcomes. Open Heart 2016, 3, e000473. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Remberger, M.; Kaj, L.; Schlabach, M.; Jorundsdottir, H.O.; Vester, J.; Arnorsson, M.; Mortensen, I.; Schwartson, R.; Dam, M. A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands, Iceland and Greenland. Sci. Total Environ. 2016, 562, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Meador, J.P.; Yeh, A.; Young, G.; Gallagher, E.P. Contaminants of emerging concern in a large temperate estuary. Environ. Pollut. 2016, 213, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, H.; Shao, S.; Lu, K.; Wang, H.; Yang, Y.; Gong, Z.; Zuo, Y.; Gao, S. Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes. Chemosphere 2022, 286, 131641. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, E.; Baseri, H. Catalytic degradation of Amlodipine Besylate using ZnO, Cu doped ZnO, and Fe doped ZnO nanoparticles from an aqueous solution: Investigating the effect of different parameters on degradation efficiency. Solid State Sci. 2018, 78, 86–94. [Google Scholar] [CrossRef]
- Rabhi, S.; Belkacemi, H.; Bououdina, M.; Kerrami, A.; Ait Brahem, L.; Sakher, E. Effect of Ag doping of TiO2 nanoparticles on anatase-rutile phase transformation and excellent photodegradation of amlodipine besylate. Mater. Lett. 2019, 236, 640–643. [Google Scholar] [CrossRef]
- Peng, J.; Chang, Y.; Wang, Z.; Liu, J.; Wang, S.; Zhang, Y.; Shao, S.; Liu, D.; Zhang, Y.; Shi, J.; et al. Amlodipine removal via peroxymonosulfate activated by carbon nanotubes/cobalt oxide (CNTs/Co3O4) in water. Environ. Sci. Pollut. Res. 2022, 29, 11091–11100. [Google Scholar] [CrossRef]
- Shao, S.; Qian, L.; Zhan, X.; Wang, M.; Lu, K.; Peng, J.; Miao, D.; Gao, S. Transformation and toxicity evolution of amlodipine mediated by cobalt ferrite activated peroxymonosulfate: Effect of oxidant concentration. Chem. Eng. J. 2020, 382, 123005. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Lata, S.; Balasubramanian, P. Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf. Interfaces 2018, 10, 197–215. [Google Scholar] [CrossRef]
- Viotti, P.V.; Moreira, W.M.; dos Santos, O.A.A.; Bergamasco, R.; Vieira, A.M.S.; Vieira, M.F. Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. J. Clean. Prod. 2019, 219, 809–817. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Arulkumar, M.; Ashokkumar, V.; Mohd Yusoff, A.R.; Murugesan, K.; Palvannan, T.; Salam, Z.; Ani, F.N.; Hadibarata, T. Modified phyto-waste Terminalia catappa fruit shells: A reusable adsorbent for the removal of micropollutant diclofenac. RSC Adv. 2015, 5, 30950–30962. [Google Scholar] [CrossRef]
- Selmi, T.; Sanchez-Sanchez, A.; Gadonneix, P.; Jagiello, J.; Seffen, M.; Sammouda, H.; Celzard, A.; Fierro, V. Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin. Ind. Crops Prod. 2018, 115, 146–157. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Cazetta, A.L.; de Souza, P.S.C.; Spessato, L.; Silva, T.L.; Almeida, V.C. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf. 2018, 147, 64–71. [Google Scholar] [CrossRef]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Santos Júnior, O.O.; Visentainer, J.V.; Almeida, V.C. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M.; Pagano, L.; Pigoni, V.; Fellet, G.; Fresno, T.; Vamerali, T.; Bandiera, M.; Marmiroli, N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ. 2013, 454–455, 598–603. [Google Scholar] [CrossRef]
- Modenes, A.N.; de Oliveira, A.P.; Espinoza-Quiñones, F.R.; Trigueros, D.E.G.; Kroumov, A.D.; Borba, C.E.; Hinterholz, C.L.; Bergamasco, R. Potential of Salvinia auriculata biomass as biosorbent of the Cr(III): Directed chemical treatment, modeling and sorption mechanism study. Environ. Technol. 2017, 38, 1474–1488. [Google Scholar] [CrossRef]
- Pieri, V.; Schwaiger, S.; Ellmerer, E.P.; Stuppner, H. Iridoid glycosides from the leaves of Sambucus ebulus. J. Nat. Prod. 2009, 72, 1798–1803. [Google Scholar] [CrossRef]
- Zahmanov, G.; Alipieva, K.; Denev, P.; Todorov, D.; Hinkov, A.; Shishkov, S.; Simova, S.; Georgiev, M.I. Flavonoid glycosides profiling in dwarf elder fruits (Sambucus ebulus L.) and evaluation of their antioxidant and anti-herpes simplex activities. Ind. Crops Prod. 2015, 63, 58–64. [Google Scholar] [CrossRef]
- Jabbari, M.; Hashempur, M.H.; Emami Razavi, S.Z.; Raeisi Shahraki, H.; Kamalinejad, M.; Emtiazy, M. Efficacy and short-term safety of topical Dwarf Elder (Sambucus ebulus L.) versus diclofenac for knee osteoarthritis: A randomized, double-blind, active-controlled trial. J. Ethnopharmacol. 2016, 188, 80–86. [Google Scholar] [CrossRef]
- Jabbari, M.; Daneshfard, B.; Emtiazy, M.; Khiveh, A.; Hashempur, M.H. Biological Effects and Clinical Applications of Dwarf Elder (Sambucus ebulus L.): A Review. J. Evid. -Based Complement. Altern. Med. 2017, 22, 996–1001. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Lippens, B.C.; Linsen, B.G.; de Boer, J.H. Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation. J. Catal. 1964, 3, 32–37. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Momčilović, M.Z.; Vučić, M.R.; Meseldžija, S.; Velinov, N.; Suručić, L.; Bojić, A.L. Batch sorption dynamics and equilibrium for the capture of Ni(II) onto activated carbon developed from yellow dock (Rumex crispus). In Biomass Conversion and Biorefinery Online First; Springer Nature: Berlin, Germany, 2024. [Google Scholar] [CrossRef]
- van Zwieten, P.A. Amlodipine: An overview of its pharmacodynamic and pharmacokinetic properties. Clin. Cardiol. 1994, 17, III3–III6. [Google Scholar] [PubMed]
- Aboli, L.E.; Jafari, D.; Esmaeili, H. Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Lett. 2020, 30, 683–698. [Google Scholar] [CrossRef]
- Sarici-Ozdemir, C. Adsorption and desorption kinetics behaviour of methylene blue onto activated carbon, Physicochem. Probl. Miner. Process. 2012, 48, 441–454. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. Prot. 1998, 76, 183–191. [Google Scholar] [CrossRef]
- Huiyuan, T.; Yang, L.; Mengyan, X.; Baoyu, C.; Chang, L.; Xiuhong, D.; Zehu, W.; Xianying, D.; Jiehu, C. The enhanced adsorption of layered double hydroxides modification from single to ternary metal for fluoride by tea-assisted hydrothermal method. Arab. J. Chem. 2024, 17, 105645. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Ibrahim, A.O.; Olagunju, A.O.; Agboola, S.O.; Bello, O.S. Adsorption of amlodipine on surface-modified activated carbon derived from Delonix regia seed pod. J. Dispers. Sci. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe (About the theory of so-called adsorption of soluble substances). Kungliga Svenska Vetenskapsakademiens Handl 1898, 24, 1–39. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid Interface Sci. 2011, 162, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1964, 89, 31–60. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Über die adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Ho, Y.S.; Porter, J.F.; McKay, G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut. 2002, 141, 1–33. [Google Scholar] [CrossRef]
Kinetic Model | Initial Concentration (mg/L) | ||||
---|---|---|---|---|---|
50 | 75 | 100 | 125 | 150 | |
Pseudo-first-order | |||||
k1/g/mg min | −8.96 · 107 | −115.7 | −113.8 | −91.2 | −165.4 |
qe,(cal)/mg/g | 96.5 | 157.7 | 243.7 | 290.0 | 337.5 |
qe,(exp)/mg/g | 133.9 | 187.5 | 325.9 | 380.2 | 420.2 |
RD | 27.93 | 15.89 | 25.22 | 23.72 | 19.68 |
MRD | 26.43 | 14.83 | 24.61 | 23.20 | 19.20 |
r2 | 0.411 | 0.854 | 0.585 | 0.620 | 0.685 |
Pseudo-second-order | |||||
k2/g/mg min | 1.22 · 10−3 | 3.38 · 10−5 | 9.29 · 10−4 | 9.21 · 10−4 | 1.05 · 10−3 |
qe,(cal)/mg/g | 135.2 | 171.9 | 305.7 | 128.2 | 404.76 |
qe,(exp)/mg/g | 133.9 | 187.5 | 325.9 | 380.2 | 420.2 |
RD | −0.97 | 9.07 | 6.20 | 66.28 | 3.67 |
MRD | −2.46 | 7.25 | 5.58 | 65.75 | 3.20 |
r2 | 0.947 | 0.953 | 0.901 | 0.957 | 0.946 |
Elovich | |||||
α/mg/g min | 2.09 · 10243 | 6.75 · 104 | 5.18 · 102 | 7.71 · 102 | 1.84 · 103 |
β/g/mg | 4.22 · 10−2 | 7.35 · 10−2 | 2.28 · 102 | 2.01 · 10−2 | 1.97 · 10−2 |
r2 | 0.965 | 0.978 | 0.977 | 0.993 | 0.994 |
Intraparticle diffusion | |||||
ki/g/mg min | 11.33 | 11.34 | 24.73 | 28.03 | 30.51 |
r2 | 0.836 | 0.518 | 0.818 | 0.770 | 0.724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momčilović, M.Z.; Dodevski, V.; Krstić, S.; Petrović, M.; Suručić, L.; Nešić, A.; Bojić, A.L. Aqueous-Phase Uptake of Amlodipine Besylate by Activated Carbon Derived from Dwarf Elder. Processes 2025, 13, 1483. https://doi.org/10.3390/pr13051483
Momčilović MZ, Dodevski V, Krstić S, Petrović M, Suručić L, Nešić A, Bojić AL. Aqueous-Phase Uptake of Amlodipine Besylate by Activated Carbon Derived from Dwarf Elder. Processes. 2025; 13(5):1483. https://doi.org/10.3390/pr13051483
Chicago/Turabian StyleMomčilović, Milan Z., Vladimir Dodevski, Sanja Krstić, Milica Petrović, Ljiljana Suručić, Aleksandra Nešić, and Aleksandar Lj. Bojić. 2025. "Aqueous-Phase Uptake of Amlodipine Besylate by Activated Carbon Derived from Dwarf Elder" Processes 13, no. 5: 1483. https://doi.org/10.3390/pr13051483
APA StyleMomčilović, M. Z., Dodevski, V., Krstić, S., Petrović, M., Suručić, L., Nešić, A., & Bojić, A. L. (2025). Aqueous-Phase Uptake of Amlodipine Besylate by Activated Carbon Derived from Dwarf Elder. Processes, 13(5), 1483. https://doi.org/10.3390/pr13051483