Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China
Abstract
:1. Introduction
2. Geological Background
3. Experiments and Theories
3.1. Samples and Experimental Procedures
3.2. Nuclear Magnetic Resonance Theory
3.3. Probability Density Function
3.4. Gaussian Distribution
3.5. Innovative Technologies
3.5.1. Data Preprocessing
3.5.2. Gaussian Multi-Peak Fitting
4. Results and Discussion
4.1. Physical Characteristics of Rocks
4.2. Pore Systems
4.3. NMR T2 Spectrum Distribution Characteristics
4.4. Decomposition of NMR T2 Spectra
4.4.1. Rationality of Gaussian Multi-Peak Fitting
4.4.2. Gaussian Multi-Peak Fitting Results
4.4.3. Physical Meaning of Peak Parameters
4.4.4. Pore Structure Classification Based on Multi-Peak Fitting Parameters
5. Conclusions
- (1)
- Petrographic analysis revealed that the pore systems in Es3z sandstone are composed mainly of residual intergranular pores, dissolution pores, intercrystalline pores, and sheet-like, bending-flake-like, and tube-like pore throats.
- (2)
- Gaussian multi-peak fitting revealed that mesopores, associated with movable water, are the primary contributors to permeability, while micropores, associated with immovable water, have minimal impact.
- (3)
- This study effectively combined NMR and Gaussian multi-peak fitting to characterize the pore structure of low-permeability gravity-flow sandstone reservoirs. The results confirm that mesopores control permeability, and the pore classification system (Type A, B, C) provides a valuable tool for reservoir evaluation. The methodology offers a more accurate and reliable approach for understanding low-permeability reservoirs.
- (4)
- While this study establishes a bimodal pore structure model for low-permeability gravity-flow reservoirs, its applicability is currently limited to sandstones in the Daluhu area. Future research should validate and adapt this model to reservoirs with contrasting lithologies (e.g., clay-rich shales, carbonate-cemented sandstones) to assess its broader geological relevance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Fang, Z. Permeability Damage Micro-Mechanisms and Stimulation of Low-Permeability Sandstone Reservoirs: A Case Study from Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2020, 47, 374–382. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Xiao, J.; Liu, K.; Song, M. Factors Controlling Reservoir Properties and Hydrocarbon Accumulation of the Eocene Lacustrine Beach-Bar Sandstones in the Dongying Depression, Bohai Bay Basin, China. Mar. Pet. Geol. 2019, 99, 1–16. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Liu, K.; Liu, J.; Kashif, M. Identification of Sedimentary-Diagenetic Facies and Reservoir Porosity and Permeability Prediction: An Example from the Eocene Beach-Bar Sandstone in the Dongying Depression, China. Mar. Pet. Geol. 2017, 82, 69–84. [Google Scholar] [CrossRef]
- Weger, R.J.; Eberli, G.P.; Baechle, G.T.; Massaferro, J.L.; Sun, Y.-F. Quantification of Pore Structure and Its Effect on Sonic Velocity and Permeability in Carbonates. AAPG Bull. 2009, 93, 1297–1317. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data. J. Pet. Sci. Eng. 2012, 88–89, 92–99. [Google Scholar] [CrossRef]
- Rui, Z.; Lu, J.; Zhang, Z.; Guo, R.; Ling, K.; Zhang, R.; Patil, S. A Quantitative Oil and Gas Reservoir Evaluation System for Development. J. Nat. Gas Sci. Eng. 2017, 42, 31–39. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Mineral. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef]
- Wu, Y.; Tahmasebi, P.; Lin, C.; Zahid, M.A.; Dong, C.; Golab, A.N.; Ren, L. A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-Ray CT Experiments. Mar. Pet. Geol. 2019, 103, 12–28. [Google Scholar] [CrossRef]
- Henares, S.; Caracciolo, L.; Cultrone, G.; Fernández, J.; Viseras, C. The Role of Diagenesis and Depositional Facies on Pore System Evolution in a Triassic Outcrop Analogue (SE Spain). Mar. Pet. Geol. 2014, 51, 136–151. [Google Scholar] [CrossRef]
- Hollis, C.; Vahrenkamp, V.; Tull, S.; Mookerjee, A.; Taberner, C.; Huang, Y. Pore System Characterisation in Heterogeneous Carbonates: An Alternative Approach to Widely-Used Rock-Typing Methodologies. Mar. Pet. Geol. 2010, 27, 772–793. [Google Scholar] [CrossRef]
- Huang, Z.-Q.; Winterfeld, P.H.; Xiong, Y.; Wu, Y.-S.; Yao, J. Parallel Simulation of Fully-Coupled Thermal-Hydro-Mechanical Processes in CO2 Leakage through Fluid-Driven Fracture Zones. Int. J. Greenh. Gas Control 2015, 34, 39–51. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, C.; Ren, L.; Yan, W.; An, S.; Chen, B.; Wang, Y.; Zhang, X.; You, C.; Zhang, Y. Reconstruction of 3D Porous Media Using Multiple-Point Statistics Based on a 3D Training Image. J. Nat. Gas Sci. Eng. 2018, 51, 129–140. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Okolo, G.N.; Everson, R.C.; Neomagus, H.W.J.P.; Roberts, M.J.; Sakurovs, R. Comparing the Porosity and Surface Areas of Coal as Measured by Gas Adsorption, Mercury Intrusion and SAXS Techniques. Fuel 2015, 141, 293–304. [Google Scholar] [CrossRef]
- Rezaee, R. Synthesizing Nuclear Magnetic Resonance (NMR) Outputs for Clastic Rocks Using Machine Learning Methods, Examples from North West Shelf and Perth Basin, Western Australia. Energies 2022, 15, 518. [Google Scholar] [CrossRef]
- Fan, X.; Wang, G.; Li, Y.; Dai, Q.; Song, L.; Duan, C.; Zhang, C.; Zhang, F. Pore Structure Evaluation of Tight Reservoirs in the Mixed Siliciclastic-Carbonate Sediments Using Fractal Analysis of NMR Experiments and Logs. Mar. Pet. Geol. 2019, 109, 484–493. [Google Scholar] [CrossRef]
- Sun, W.; Zuo, Y.; Wu, Z.; Liu, H.; Xi, S.; Shui, Y.; Wang, J.; Liu, R.; Lin, J. Fractal Analysis of Pores and the Pore Structure of the Lower Cambrian Niutitang Shale in Northern Guizhou Province: Investigations Using NMR, SEM and Image Analyses. Mar. Pet. Geol. 2019, 99, 416–428. [Google Scholar] [CrossRef]
- Zhang, Z.; Weller, A. Fractal Dimension of Pore-Space Geometry of an Eocene Sandstone Formation. Geophysics 2014. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, J.; Hu, Q.; Wang, J.; Tian, T.; Chao, J.; Wang, M. Integrated NMR and FE-SEM Methods for Pore Structure Characterization of Shahejie Shale from the Dongying Depression, Bohai Bay Basin. Mar. Pet. Geol. 2019, 100, 85–94. [Google Scholar] [CrossRef]
- Yan, J.; He, X.; Zhang, S.; Feng, C.; Wang, J.; Hu, Q.; Cai, J.; Wang, M. Sensitive Parameters of NMR T2 Spectrum and Their Application to Pore Structure Characterization and Evaluation in Logging Profile: A Case Study from Chang 7 in the Yanchang Formation, Heshui Area, Ordos Basin, NW China. Mar. Pet. Geol. 2020, 111, 230–239. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, H.; Zhang, S.; Su, X.; Jiang, Z. Sedimentary Characteristics of Large-Scale Lacustrine Beach-Bars and Their Formation in the Eocene Boxing Sag of Bohai Bay Basin, East China. Sedimentology 2011, 58, 1087–1112. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, K.; Xu, S.; Wang, Y.; Zhang, Q. Identifying Flow Units by FA-Assisted SSOM—An Example from the Eocene Basin-Floor-Fan Turbidite Reservoirs in the Daluhu Oilfield, Dongying Depression, Bohai Bay Basin, China. J. Pet. Sci. Eng. 2020, 186, 106695. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H. Sedimentary Characteristics and Depositional Model of Lacustrine Gravity Flows: A Case Study of Paleogene Shahejie Formation in the Gubei Sag, Eastern China. Lithosphere 2023, 2023, lithosphere_2023_187. [Google Scholar] [CrossRef]
- GB23561.1-2024; Methods for Determination of Physical and Mechanical Properties of Coal and Rock Part 1: General Provisions for Sampling. Standards Press of China: Beijing, China, 2024.
- Dillinger, A.; Esteban, L. Experimental Evaluation of Reservoir Quality in Mesozoic Formations of the Perth Basin (Western Australia) by Using a Laboratory Low Field Nuclear Magnetic Resonance. Mar. Pet. Geol. 2014, 57, 455–469. [Google Scholar] [CrossRef]
- Chi, L.; Cheng, K.; Heidari, Z. Improved Assessment of Interconnected Porosity in Multiple-Porosity Rocks by Use of Nanoparticle Contrast Agents and Nuclear-Magnetic-Resonance Relaxation Measurements. SPE Reserv. Eval. Eng. 2015, 19, 095–107. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Z.; Sun, Z.; Cai, J.; Wang, L. Investigation on the Pore Structure and Multifractal Characteristics of Tight Oil Reservoirs Using NMR Measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Mar. Pet. Geol. 2017, 86, 1067–1081. [Google Scholar] [CrossRef]
- Müller-Huber, E.; Schön, J.; Börner, F. Pore Space Characterization in Carbonate Rocks—Approach to Combine Nuclear Magnetic Resonance and Elastic Wave Velocity Measurements. J. Appl. Geophys. 2016, 127, 68–81. [Google Scholar] [CrossRef]
- Hossain, J.; Sharma, S.; Kishore, V.V.N. Multi-Peak Gaussian Fit Applicability to Wind Speed Distribution. Renew. Sustain. Energy Rev. 2014, 34, 483–490. [Google Scholar] [CrossRef]
- Janković, B.; Manić, N.; Stojiljković, D.; Jovanović, V. TSA-MS Characterization and Kinetic Study of the Pyrolysis Process of Various Types of Biomass Based on the Gaussian Multi-Peak Fitting and Peak-to-Peak Approaches. Fuel 2018, 234, 447–463. [Google Scholar] [CrossRef]
- Ge, X.; Xue, Z.; Zhou, J.; Hu, F.; Li, J.; Zhang, H.; Wang, S.; Niu, S.; Zhao, J. An Unsupervised Clustering Method for Nuclear Magnetic Resonance Transverse Relaxation Spectrums Based on the Gaussian Mixture Model and Its Application. Pet. Explor. Dev. 2022, 49, 339–348. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, K.; Wang, Y. Applying NMR T2 Spectral Parameters in Pore Structure Evaluation—An Example from an Eocene Low-Permeability Sandstone Reservoir. Appl. Sci. 2021, 11, 8027. [Google Scholar] [CrossRef]
- Adams, A.J. Relationships between Observed Pore and Pore-Throat Geometries, Measured Porosity and Permeability, and Indirect Measures of Pore Volume by Nuclear Magnetic Resonance. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2007. [Google Scholar]
- Anselmetti, F.S.; Luthi, S.; Eberli, G.P. Quantitative Characterization of Carbonate Pore Systems by Digital Image Analysis1. AAPG Bull. 1998, 82, 1815–1836. [Google Scholar]
- Parra, J.O.; Hackert, C.L.; Wilson, L.L. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization; Southwest Research Institute (US): San Antonio, TX, USA, 2002. [Google Scholar]
- Genty, C.; Jensen, J.L.; Ahr, W.M. Distinguishing Carbonate Reservoir Pore Facies with Nuclear Magnetic Resonance Measurements. Nat. Resour. Res. 2007, 16, 45–54. [Google Scholar] [CrossRef]
- Zhong, J.; Yan, R.; Zhang, H.; Feng, Y.; Li, N.; Liu, X. A Decomposition Method of Nuclear Magnetic Resonance T2 Spectrum for Identifying Fluid Properties. Pet. Explor. Dev. 2020, 47, 740–752. [Google Scholar] [CrossRef]
Sample | Well | Depth (m) | NMR Experimental Parameters | Peak Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
φNMR (%) | K (mD) | BVI (%) | FFI (%) | A1 | c1 | w1 | A2 | c2 | w2 | |||
1 | F154-1 | 2656.5 | 16.7 | 0.30 | 9.25 | 7.42 | 10.01 | 0.32 | 1.14 | 6.73 | 1.14 | 1.33 |
2 | F154-1 | 2662 | 16.4 | 0.39 | 8.79 | 7.59 | 8.80 | 0.30 | 1.19 | 7.59 | 1.25 | 1.24 |
3 | F154-1 | 2675.5 | 19.9 | 0.56 | 9.46 | 10.41 | 10.96 | 0.29 | 1.13 | 8.90 | 0.83 | 1.26 |
4 | F154-1 | 2679 | 14.8 | 0.11 | 11.03 | 3.80 | 11.07 | 0.00 | 0.90 | 3.86 | 0.60 | 0.70 |
5 | F154-7 | 2732 | 13.5 | 0.08 | 11.74 | 1.80 | 11.02 | 0.07 | 1.02 | 2.35 | 0.62 | 0.84 |
6 | F154-7 | 2752.1 | 13.6 | 0.11 | 10.91 | 2.66 | 10.54 | 0.10 | 1.00 | 3.38 | 0.57 | 1.25 |
7 | F154-7 | 2754.7 | 9.7 | 0.01 | 7.61 | 2.04 | 7.52 | 0.12 | 1.00 | 1.93 | 0.71 | 0.88 |
8 | F154-8 | 2721.5 | 15.2 | 0.03 | 12.12 | 3.04 | 11.87 | 0.18 | 1.06 | 2.89 | 0.65 | 1.07 |
9 | F154-8 | 2726.7 | 13.0 | 0.02 | 10.72 | 2.31 | 11.01 | 0.10 | 0.96 | 2.02 | 0.70 | 0.89 |
10 | F154-8 | 2730 | 18.1 | 0.47 | 8.95 | 9.17 | 9.15 | 0.24 | 1.11 | 8.98 | 0.98 | 1.33 |
11 | F154-8 | 2736.35 | 11.3 | 0.01 | 10.23 | 1.03 | 9.20 | 0.13 | 1.05 | 2.09 | 0.92 | 1.00 |
12 | F154-8 | 2727.2 | 18.6 | 2.10 | 12.50 | 6.10 | 12.40 | 0.36 | 1.28 | 6.04 | 0.94 | 1.41 |
13 | F162-X7 | 2734.2 | 21.2 | 6.74 | 12.07 | 9.13 | 11.49 | 0.41 | 1.28 | 9.68 | 1.31 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, S.; Wang, Y.; Ma, S.; Huang, D. Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China. Processes 2025, 13, 1346. https://doi.org/10.3390/pr13051346
Zhang Y, Yang S, Wang Y, Ma S, Huang D. Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China. Processes. 2025; 13(5):1346. https://doi.org/10.3390/pr13051346
Chicago/Turabian StyleZhang, Yifan, Shaochun Yang, Yong Wang, Shilong Ma, and Dongmou Huang. 2025. "Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China" Processes 13, no. 5: 1346. https://doi.org/10.3390/pr13051346
APA StyleZhang, Y., Yang, S., Wang, Y., Ma, S., & Huang, D. (2025). Pore Structure Characterization of Low-Permeability Gravity-Flow Reservoirs: A Case Study of the Middle Es3 Member in Daluhu Area, the Dongying Depression, China. Processes, 13(5), 1346. https://doi.org/10.3390/pr13051346