Sustainable Valorization of Plant Residues Through Enzymatic Hydrolysis for the Extraction of Bioactive Compounds: Applications as Functional Ingredients in Cosmetics
Abstract
:1. Introduction
2. Fundamental Principles of Enzymatic Hydrolysis
3. Valorization of Plant By-Products Through Enzymatic Hydrolysis
4. Cosmetic Applications and Benefits of Bioactive Compounds Derived from Plant By-Products
5. Economic and Environmental Benefits of By-Products Recovery
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.; Esposito, F.; Cirillo, T. Valorization of Agro-Food by-Products: Advancing Sustainability and Sustainable Development Goals 2030 through Functional Compounds Recovery. Food Biosci. 2024, 62, 105194. [Google Scholar] [CrossRef]
- Torabi, P.; Hamdami, N.; Soltanizadeh, N.; Farhadian, O.; Le-Bail, A. Restaurant Food Waste Valorization by Microwave-Assisted Hydrolysis: Optimization, Typological and Biochemical Analysis. Clean. Mater. 2024, 13, 100269. [Google Scholar] [CrossRef]
- An, L.; Zhang, X.; Lu, J.; Wan, J.; Liu, Y. Valorization of Food Waste to Biofertilizer and Carbon Source for Denitrification with Assistance of Plant Ash and Biochar toward Zero Solid Discharge. Bioresour. Technol. 2025, 420, 132119. [Google Scholar] [CrossRef] [PubMed]
- Flores-Maltos, D.A.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Teixeira, J.A.; Aguilar, C.N. Biotechnological Production and Application of Fructooligosaccharides. Crit. Rev. Biotechnol. 2016, 36, 259–267. [Google Scholar] [CrossRef]
- Ahmad, A.; Othman, I.; Tardy, B.L.; Hasan, S.W.; Banat, F. Enhanced Lactic Acid Production with Indigenous Microbiota from Date Pulp Waste and Keratin Protein Hydrolysate from Chicken Feather Waste. Bioresour. Technol. Rep. 2022, 18, 101089. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols Be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef]
- Benvenuti, J.; Fisch, A.; Dos Santos, J.H.Z.; Gutterres, M. Silica-Based Adsorbent Material with Grape Bagasse Encapsulated by the Sol-Gel Method for the Adsorption of Basic Blue 41 Dye. J. Environ. Chem. Eng. 2019, 7, 103342. [Google Scholar] [CrossRef]
- Karim, A.; Osse, E.F.; Khalloufi, S. Innovative Strategies for Valorization of Byproducts from Soybean Industry: A Review on Status, Challenges, and Sustainable Approaches towards Zero-Waste Processing Systems. Heliyon 2025, 11, e42118. [Google Scholar] [CrossRef]
- Dessie, W.; Luo, X.; Wang, M.; Liao, Y.; Li, Z.; Khan, M.R.; Qin, Z. Enhancing the Valorization Efficiency of Camellia Oil Extraction Wastes through Sequential Green Acid Pretreatment and Solid-State Fermentation-Based Enzymatic Hydrolysis. Ind. Crops Prod. 2024, 217, 118893. [Google Scholar] [CrossRef]
- Morales-Gutiérrez, G.; Marulanda-Cardona, V. Process Model and Comparative Life Cycle Assessment (LCA) of a Biorefinery Concept Based on Fractionated Subcritical Water Hydrolysis for Sugar Cane Trash Valorization. Biomass Bioenergy 2025, 196, 107740. [Google Scholar] [CrossRef]
- Jaganmohanrao, L. Valorization of Onion Wastes and By-Products Using Deep Eutectic Solvents as Alternate Green Technology Solvents for Isolation of Bioactive Phytochemicals. Food Res. Int. 2025, 206, 115980. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.M.; Joye, I.J. Improving Agricultural Sustainability—A Review of Strategies to Valorize Tomato Plant Residues (TPR). Waste Manag. 2024, 190, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A Step Forward on Sustainability in the Cosmetics Industry: A Review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Bezerra, K.G.O.; Silva, I.G.S.; Almeida, F.C.G.; Rufino, R.D.; Sarubbo, L.A. Plant-Derived Biosurfactants: Extraction, Characteristics and Properties for Application in Cosmetics. Biocatal. Agric. Biotechnol. 2021, 34, 102036. [Google Scholar] [CrossRef]
- Ketemepi, H.K.; Awang, M.A.B.; Seelan, J.S.S.; Mohd Noor, N.Q.I. Extraction Process and Applications of Mushroom-Derived Protein Hydrolysate: A Comprehensive Review. Future Foods 2024, 9, 100359. [Google Scholar] [CrossRef]
- Nasri, R.; Younes, I.; Jridi, M.; Trigui, M.; Bougatef, A.; Nedjar-Arroume, N.; Dhulster, P.; Nasri, M.; Karra-Châabouni, M. ACE Inhibitory and Antioxidative Activities of Goby (Zosterissessor Ophiocephalus) Fish Protein Hydrolysates: Effect on Meat Lipid Oxidation. Food Res. Int. 2013, 54, 552–561. [Google Scholar] [CrossRef]
- Melgosa, R.; Trigueros, E.; Sanz, M.T.; Cardeira, M.; Rodrigues, L.; Fernández, N.; Matias, A.A.; Bronze, M.R.; Marques, M.; Paiva, A.; et al. Supercritical CO2 and Subcritical Water Technologies for the Production of Bioactive Extracts from Sardine (Sardina Pilchardus) Waste. J. Supercrit. Fluids 2020, 164, 104943. [Google Scholar] [CrossRef]
- Elmalimadi, M.B.; Jovanović, J.R.; Stefanović, A.B.; Tanasković, S.J.; Djurović, S.B.; Bugarski, B.M.; Knežević-Jugović, Z.D. Controlled Enzymatic Hydrolysis for Improved Exploitation of the Antioxidant Potential of Wheat Gluten. Ind. Crops Prod. 2017, 109, 548–557. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef]
- Lin, D.; Sun, L.C.; Chen, Y.L.; Liu, G.M.; Miao, S.; Cao, M.J. Peptide/Protein Hydrolysate and Their Derivatives: Their Role as Emulsifying Agents for Enhancement of Physical and Oxidative Stability of Emulsions. Trends Food Sci. Technol. 2022, 129, 11–24. [Google Scholar] [CrossRef]
- Karkouch, I.; Tabbene, O.; Gharbi, D.; Ben Mlouka, M.A.; Elkahoui, S.; Rihouey, C.; Coquet, L.; Cosette, P.; Jouenne, T.; Limam, F. Antioxidant, Antityrosinase and Antibiofilm Activities of Synthesized Peptides Derived from Vicia Faba Protein Hydrolysate: A Powerful Agents in Cosmetic Application. Ind. Crops Prod. 2017, 109, 310–319. [Google Scholar] [CrossRef]
- Vargas-Escobar, P.; Flórez-Acosta, O.; Corrales-García, L.L. Renewing the Potential of Rice Crop Residues as Value-Added Products in the Cosmetics Industry. Heliyon 2024, 10, e28402. [Google Scholar] [CrossRef]
- Mas-Capdevila, A.; Iglesias-Carres, L.; Arola-Arnal, A.; Suarez, M.; Muguerza, B.; Bravo, F.I. Long-Term Administration of Protein Hydrolysate from Chicken Feet Induces Antihypertensive Effect and Confers Vasoprotective Pattern in Diet-Induced Hypertensive Rats. J. Funct. Foods 2019, 55, 28–35. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and Utilization of Dairy Industrial Waste: A Review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Leduc, A.; Hervy, M.; Rangama, J.; Delépée, R.; Fournier, V.; Henry, J. Shrimp By-Product Hydrolysate Induces Intestinal Myotropic Activity in European Seabass (Dicentrarchus Labrax). Aquaculture 2018, 497, 380–388. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Hayes, M.; Reig, M.; Toldrá, F. Effect of Cooking and in Vitro Digestion on the Antioxidant Activity of Dry-Cured Ham by-Products. Food Res. Int. 2017, 97, 296–306. [Google Scholar] [CrossRef]
- Kaderides, K.; Mourtzinos, I.; Goula, A.M. Stability of Pomegranate Peel Polyphenols Encapsulated in Orange Juice Industry By-Product and Their Incorporation in Cookies. Food Chem. 2020, 310, 125849. [Google Scholar] [CrossRef]
- Yagi, S.; Zengin, G.; Uba, A.I.; Maciejewska-Turska, M.; Sieniawska, E.; Świątek, Ł.; Rajtar, B.; Bahşi, M.; Guler, O.; Dall’Acqua, S.; et al. Exploring Chemical Composition, Antioxidant, Enzyme Inhibitory and Cytotoxic Properties of Glaucium Acutidentatum Hausskn. & Bornm. from Turkey Flora: A Novel Source of Bioactive Agents to Design Functional Applications. Antioxidants 2024, 13, 643. [Google Scholar] [CrossRef]
- Maia, P.D.D.S.; dos Santos Baião, D.; da Silva, V.P.F.; de Araújo Calado, V.M.; Queiroz, C.; Pedrosa, C.; Valente-Mesquita, V.L.; Pierucci, A.P.T.R. Highly Stable Microparticles of Cashew Apple (Anacardium Occidentale L.) Juice with Maltodextrin and Chemically Modified Starch. Food Bioprocess Technol. 2019, 12, 2107–2119. [Google Scholar] [CrossRef]
- Bittencourt, L.L.D.A.; Silva, K.A.; de Sousa, V.P.; Fontes-Sant’Ana, G.C.; Rocha-Leão, M.H. Blueberry Residue Encapsulation by Ionotropic Gelation. Plant Foods Hum. Nutr. 2018, 73, 278–286. [Google Scholar] [CrossRef]
- Dag, D.; Kilercioglu, M.; Oztop, M.H. Physical and Chemical Characteristics of Encapsulated Goldenberry (Physalis Peruviana L.) Juice Powder. LWT Food Sci. Technol. 2017, 83, 86–94. [Google Scholar] [CrossRef]
- da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus Ulmifolius Schott Fruits: A Detailed Study of Its Nutritional, Chemical and Bioactive Properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Samel, A.; Wojciechowski, K. Lupine Protein Enzymatic Hydrolysates Obtained in a Simultaneous Extraction-Hydrolysis Process as Foaming Agents. LWT 2024, 208, 116713. [Google Scholar] [CrossRef]
- Mamoudou, H.; Mune Mune, M.A. Investigating Bambara Bean (Vigna Subterranea (Verdc.) L.) Protein and Hydrolysates: A Comprehensive Analysis of Biological and Biochemical Properties. Appl. Food Res. 2024, 4, 100489. [Google Scholar] [CrossRef]
- Dhiman, S.; Thakur, B.; Kaur, S.; Ahuja, M.; Gantayat, S.; Sarkar, S. Closing the Loop: Technological Innovations in Food Waste Valorisation for Global Sustainability; Springer International Publishing: Cham, Switzerland, 2025; ISBN 4362102501073. [Google Scholar]
- Bravi, E.; De Francesco, G.; Sileoni, V.; Perretti, G.; Galgano, F.; Marconi, O. Brewing By-Product Upcycling Potential: Nutritionally Valuable Compounds and Antioxidant Activity Evaluation. Antioxidants 2021, 10, 165. [Google Scholar] [CrossRef]
- Codina-Torrella, I.; Rodero, L.; Almajano, M.P. Brewing By-Products as a Source of Natural Antioxidants for Food Preservation. Antioxidants 2021, 10, 1512. [Google Scholar] [CrossRef]
- Bisht, B.; Gururani, P.; Aman, J.; Vlaskin, M.S.; Anna I, K.; Irina A, A.; Joshi, S.; Kumar, S.; Kumar, V. A Review on Holistic Approaches for Fruits and Vegetables Biowastes Valorization. Mater. Today Proc. 2023, 73, 54–63. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Health Applications of Soy Protein Hydrolysates. Int. J. Pept. Res. Ther. 2020, 26, 2333–2343. [Google Scholar] [CrossRef]
- Habinshuti, I.; Nsengumuremyi, D.; Muhoza, B.; Ebenezer, F.; Yinka Aregbe, A.; Antoine Ndisanze, M. Recent and Novel Processing Technologies Coupled with Enzymatic Hydrolysis to Enhance the Production of Antioxidant Peptides from Food Proteins: A Review. Food Chem. 2023, 423, 136313. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic Hydrolysis and Microbial Fermentation: The Most Favorable Biotechnological Methods for the Release of Bioactive Peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Mora, L.; Toldrá, F. Advanced Enzymatic Hydrolysis of Food Proteins for the Production of Bioactive Peptides. Curr. Opin. Food Sci. 2023, 49, 100973. [Google Scholar] [CrossRef]
- Singh, R.; Jain, R.; Soni, P.; Santos-Villalobos, S.D.L.; Chattaraj, S.; Roy, D.; Mitra, D.; Gaur, A. Graphing the Green Route: Enzymatic Hydrolysis in Sustainable Decomposition. Curr. Res. Microb. Sci. 2024, 7, 100281. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.D.; Patil, S.P.; Kelkar, R.K.; Patil, N.P.; Pise, P.V.; Nadar, S.S. Enzyme-Assisted Supercritical Fluid Extraction: An Integral Approach to Extract Bioactive Compounds. Trends Food Sci. Technol. 2021, 116, 357–369. [Google Scholar] [CrossRef]
- Ghinea, C.; Ungureanu-Comăniță, E.D.; Țâbuleac, R.M.; Oprea, P.S.; Coșbuc, E.D.; Gavrilescu, M. Cost-Benefit Analysis of Enzymatic Hydrolysis Alternatives for Food Waste Management. Foods 2025, 14, 488. [Google Scholar] [CrossRef]
- Gupta, N.; Mahur, B.K.; Izrayeel, A.M.D.; Ahuja, A.; Rastogi, V.K. Biomass Conversion of Agricultural Waste Residues for Different Applications: A Comprehensive Review. Environ. Sci. Pollut. Res. 2022, 29, 73622–73647. [Google Scholar] [CrossRef]
- Stanek-Wandzel, N.; Krzyszowska, A.; Zarębska, M.; Gębura, K.; Wasilewski, T.; Hordyjewicz-Baran, Z.; Tomaka, M. Evaluation of Cellulase, Pectinase, and Hemicellulase Effectiveness in Extraction of Phenolic Compounds from Grape Pomace. Int. J. Mol. Sci. 2024, 25, 13538. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, X.; Sun-Waterhouse, D.; Ivan Neil Waterhouse, G.; Zhao, M.; Zhang, J.; Wang, F.; Su, G. Two-Stage Selective Enzymatic Hydrolysis Generates Protein Hydrolysates Rich in Asn-Pro and Ala-His for Enhancing Taste Attributes of Soy Sauce. Food Chem. 2021, 345, 128803. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Castañeda-Valbuena, D.; Berenguer-Murcia, Á.; Kamli, M.R.; Tavano, O.; Fernandez-Lafuente, R. Immobilization of Papain: A Review. Int. J. Biol. Macromol. 2021, 188, 94–113. [Google Scholar] [CrossRef]
- Hikisz, P.; Bernasinska-Slomczewska, J. Beneficial Properties of Bromelain. Nutrients 2021, 13, 4313. [Google Scholar] [CrossRef]
- Vogelsang-O’dwyer, M.; Sahin, A.W.; Arendt, E.K.; Zannini, E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022, 11, 1307. [Google Scholar] [CrossRef]
- Islam, M.; Huang, Y.; Islam, S.; Fan, B.; Tong, L.; Wang, F. Influence of the Degree of Hydrolysis on Functional Properties and Antioxidant Activity of Enzymatic Soybean Protein Hydrolysates. Molecules 2022, 27, 6110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Angelov, A.; Übelacker, M.; Baudrexl, M.; Ludwig, C.; Rühmann, B.; Sieber, V.; Liebl, W. Proteomic Analysis of Viscozyme L and Its Major Enzyme Components for Pectic Substrate Degradation. Int. J. Biol. Macromol. 2024, 266, 131309. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.N.; Heisel, I.; Satzger, A.; Vizsolyi, E.C.; Oster, S.D.J.; Agarwal, S.; Laforsch, C.; Löder, M.G.J. Tackling the Challenge of Extracting Microplastics from Soils: A Protocol to Purify Soil Samples for Spectroscopic Analysis. Environ. Toxicol. Chem. 2022, 41, 844–857. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Chang, J.S.; Lee, D.J. Enzymes and Enzymatic Mechanisms in Enzymatic Degradation of Lignocellulosic Biomass: A Mini-Review. Bioresour. Technol. 2023, 367, 128252. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Jiang, Y.; Zheng, W.; Wang, S.; Sang, S.; Li, H. Comprehensively Understanding Enzymatic Hydrolysis of Lignocellulose and Cellulase–Lignocellulose Adsorption by Analyzing Substrates’ Physicochemical Properties. Bioenergy Res. 2020, 13, 1108–1120. [Google Scholar] [CrossRef]
- Barcelos, M.C.S.; Ramos, C.L.; Kuddus, M.; Rodriguez-Couto, S.; Srivastava, N.; Ramteke, P.W.; Mishra, P.K.; Molina, G. Enzymatic Potential for the Valorization of Agro-Industrial by-Products. Biotechnol. Lett. 2020, 42, 1799–1827. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Tarchi, I.; Loudiyi, M.; Boukria, O.; Cahyana, Y.; Ozogul, F.; Khwaldia, K. Transforming Plant-Based Waste and by-Products into Valuable Products Using Various “Food Industry 4.0” Enabling Technologies: A Literature Review. Sci. Total Environ. 2024, 955, 176872. [Google Scholar] [CrossRef]
- Gasparre, N.; Rosell, C.M.; Boukid, F. Enzymatic Hydrolysis of Plant Proteins: Tailoring Characteristics, Enhancing Functionality, and Expanding Applications in the Food Industry. Food Bioprocess Technol. 2024, 18, 3272–3287. [Google Scholar] [CrossRef]
- Mora, L.; Reig, M.; Toldrá, F. Bioactive Peptides Generated from Meat Industry By-Products. Food Res. Int. 2014, 65, 344–349. [Google Scholar] [CrossRef]
- dos Santos, K.I.P.; Benjamim, J.K.F.; da Costa, K.A.D.; dos Reis, A.S.; de Souza Pinheiro, W.B.; Santos, A.S. Metabolomics Techniques Applied in the Investigation of Phenolic Acids from the Agro-Industrial by-Product of Carapa Guianensis Aubl. Arab. J. Chem. 2021, 14, 103421. [Google Scholar] [CrossRef]
- Liu, T.W.; Hsiao, S.W.; Lin, C.T.; Hsiao, G.; Lee, C.K. Anti-Aging Constituents from Pinus Morrisonicola Leaves. Molecules 2023, 28, 5063. [Google Scholar] [CrossRef] [PubMed]
- Zehiroglu, C.; Ozturk Sarikaya, S.B. The Importance of Antioxidants and Place in Today’s Scientific and Technological Studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, F.L.; Ward, E.; Meng, X.; Matharu, A.S. Microwave-Assisted Defibrillation of Microalgae. Molecules 2021, 26, 4972. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P.R. Chokeberry Pomace Valorization into Food Ingredients by Enzyme-Assisted Extraction: Process Optimization and Product Characterization. Food Bioprod. Process. 2017, 105, 36–50. [Google Scholar] [CrossRef]
- El Kantar, S.; Boussetta, N.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. High Voltage Electrical Discharges Combined with Enzymatic Hydrolysis for Extraction of Polyphenols and Fermentable Sugars from Orange Peels. Food Res. Int. 2018, 107, 755–762. [Google Scholar] [CrossRef]
- González-García, E.; Marina, M.L.; García, M.C. Plum (Prunus Domestica L.) by-Product as a New and Cheap Source of Bioactive Peptides: Extraction Method and Peptides Characterization. J. Funct. Foods 2014, 11, 428–437. [Google Scholar] [CrossRef]
- Lolli, V.; Viscusi, P.; Bonzanini, F.; Conte, A.; Fuso, A.; Larocca, S.; Leni, G.; Caligiani, A. Oil and Protein Extraction from Fruit Seed and Kernel By-Products Using a One Pot Enzymatic-Assisted Mild Extraction. Food Chem. X 2023, 19, 100819. [Google Scholar] [CrossRef]
- Meini, M.R.; Cabezudo, I.; Boschetti, C.E.; Romanini, D. Recovery of Phenolic Antioxidants from Syrah Grape Pomace through the Optimization of an Enzymatic Extraction Process. Food Chem. 2019, 283, 257–264. [Google Scholar] [CrossRef]
- Cheng, G.; Zhu, J.; Si, J.; Wu, T.; Chen, J.; Xu, X.; Feng, S.; Chen, T.; Ding, C.; Zhou, L. Optimization of Ultrasound-Assisted Enzymatic Extraction, Chemical Constituents, Biological Activities, and Stability of Camellia Oleifera Fruit Shell Brown Pigments. LWT 2024, 207, 116625. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, M.; Zhang, M.; Hao, L.; Wu, C. Ultrasound-Assisted Enzymatic Extraction, Structural Characterization, and Anticancer Activity of Polysaccharides from Rosa Roxburghii Tratt Fruit. Int. J. Biol. Macromol. 2024, 259, 127926. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yuan, Y.; Xie, T.; Tang, G.; Song, G.; Li, L.; Yuan, T.; Zheng, F.; Gong, J. Ultrasound-Assisted Aqueous Enzymatic Extraction of Gardenia Fruits (Gardenia Jasminoides Ellis) Oil: Optimization and Quality Evaluation. Ind. Crops Prod. 2023, 191, 116021. [Google Scholar] [CrossRef]
- Vasco-Correa, J.; Zapata Zapata, A.D. Enzymatic Extraction of Pectin from Passion Fruit Peel (Passiflora Edulis f. Flavicarpa) at Laboratory and Bench Scale. LWT 2017, 80, 280–285. [Google Scholar] [CrossRef]
- Hou, K.; Yang, X.; Bao, M.; Chen, F.; Tian, H.; Yang, L. Composition, Characteristics and Antioxidant Activities of Fruit Oils from Idesia Polycarpa Using Homogenate-Circulating Ultrasound-Assisted Aqueous Enzymatic Extraction. Ind. Crops Prod. 2018, 117, 205–215. [Google Scholar] [CrossRef]
- Leite, P.; Belo, I.; Salgado, J.M. Enhancing Antioxidants Extraction from Agro-Industrial By-Products by Enzymatic Treatment. Foods 2022, 11, 3715. [Google Scholar] [CrossRef]
- Teixeira, A.J.; Menegat, F.D.; Weschenfelder, L.M.; Oro, C.E.D.; Astolfi, V.; Valduga, E.; Zeni, J.; Backes, G.T.; Cansian, R.L. Enzymatic Hydrolysis of Lignocellulosic Residues and Bromatological Characterization for Animal Feed. Cienc. Rural 2023, 53, e20210720. [Google Scholar] [CrossRef]
- Javier, O.E.; Alejandro, G.-R.M.; Elizabeth, C.-L.; Guadalupe, P.-F.J.; Emmanuel, P.-E.; Carlos, M.-S.J.; Daniel, M.-C. In Vitro Multi-Bioactive Potential of Enzymatic Hydrolysis of a Non-Toxic Jatropha Curcas Cake Protein Isolate. Molecules 2024, 29, 3088. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, S.; Liu, H.; Wu, J.; Zhang, J.; Huang, M.; Sun, B.; Sun, X. From Baijiu By-Product to Bioactive Goldmine: The Health-Promoting Potential of Jiuzao Extracts. LWT 2025, 223, 117706. [Google Scholar] [CrossRef]
- Trinh, L.T.P.; Choi, Y.-S.; Bae, H.-J. Production of Phenolic Compounds and Biosugars from Flower Resources via Several Extraction Processes. Ind. Crops Prod. 2018, 125, 261–268. [Google Scholar] [CrossRef]
- Häkkinen, S.T.; Cankar, K.; Nohynek, L.; Suomalainen, M.; van Arkel, J.; Siika-Aho, M.; Twarogowska, A.; Van Droogenbroeck, B.; Oksman-Caldentey, K.-M. Enzyme-Treated Chicory for Cosmetics: Application Assessment and Techno-Economic Analysis. AMB Express 2022, 12, 152. [Google Scholar] [CrossRef]
- Dyankova, S.; Doneva, M.; Terziyska, M.; Metodieva, P.; Nacheva, I. Optimization of the Process for Obtaining Antioxidant Protein Hydrolysates from Pumpkin Seed Oil Cake Using Response Surface Methodology. Appl. Sci. 2024, 14, 1967. [Google Scholar] [CrossRef]
- Burnett, C.L.; Boyer, I.J.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Plant-Derived Proteins and Peptides as Used in Cosmetics. Int. J. Toxicol. 2022, 41, 5S–20S. [Google Scholar] [CrossRef]
- Burnett, C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Hydrolyzed Wheat Protein and Hydrolyzed Wheat Gluten as Used in Cosmetics. Int. J. Toxicol. 2018, 37, 55S–66S. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Liceaga, A.M. Potential Role of Natural Bioactive Peptides for Development of Cosmeceutical Skin Products. Peptides 2019, 122, 170170. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional Significance of Bioactive Peptides Derived from Soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, X.; Li, Y.; Wang, H.; Wang, Z.; Qi, B.; Sui, X.; Jiang, L. Purification and Characterization of Antioxidant Peptides from Alcalase-Hydrolyzed Soybean (Glycine Max L.) Hydrolysate and Their Cytoprotective Effects in Human Intestinal Caco-2 Cells. J. Agric. Food Chem. 2019, 67, 5772–5781. [Google Scholar] [CrossRef]
- Štambuk, P.; Tomašković, D.; Tomaz, I.; Maslov, L.; Stupić, D.; Karoglan Kontić, J. Application of Pectinases for Recovery of Grape Seeds Phenolics. 3 Biotech 2016, 6, 224. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Tedeschi, T.; Prandi, B.; Michelini, E.; Calabretta, M.M.; Babini, E.; Graen-Heedfeld, J.; Bretz, K.; Raddadi, N.; Gianotti, A.; et al. Looking for Peptides from Rice Starch Processing By-Product: Bioreactor Production, Anti-Tyrosinase and Anti-Inflammatory Activity, and in Silico Putative Taste Assessment. Front. Plant Sci. 2022, 13, 929918. [Google Scholar] [CrossRef]
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Front. Microbiol. 2020, 11, 1831. [Google Scholar] [CrossRef]
- Pasquet, P.L.; Villain-Gambier, M.; Trébouet, D. By-Product Valorization as a Means for the Brewing Industry to Move toward a Circular Bioeconomy. Sustainability 2024, 16, 3472. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s Spent Grain: A Valuable Feedstock for Industrial Applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Przybylska-Balcerek, A.; Stuper-Szablewska, K. Phenolic Acids Used in the Cosmetics Industry as Natural Antioxidants. Eur. J. Med. Technol. 2019, 4, 24–32. [Google Scholar]
- Almendinger, M.; Rohn, S.; Pleissner, D. Malt and Beer-Related by-Products as Potential Antioxidant Skin-Lightening Agents for Cosmetics. Sustain. Chem. Pharm. 2020, 17, 100282. [Google Scholar] [CrossRef]
- Gomez-Molina, M.; Albaladejo-Marico, L.; Yepes-Molina, L.; Nicolas-Espinosa, J.; Navarro-León, E.; Garcia-Ibañez, P.; Carvajal, M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int. J. Mol. Sci. 2024, 25, 5884. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Rafinska, K.; Walczak-Skierska, J.; Buszewski, B. The Influence of Plant Material Enzymatic Hydrolysis and Extraction Conditions on the Polyphenolic Profiles and Antioxidant Activity of Extracts: A Green and Efficient Approach. Molecules 2020, 25, 2074. [Google Scholar] [CrossRef]
- Bocsan, I.C.; Măgureanu, D.C.; Pop, R.M.; Levai, A.M.; Macovei, Ș.O.; Pătrașca, I.M.; Chedea, V.S.; Buzoianu, A.D. Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022, 10, 2337. [Google Scholar] [CrossRef]
- Sodhi, G.K.; Kaur, G.; George, N.; Walia, H.K.; Sillu, D.; Rath, S.K.; Saxena, S.; Rios-Solis, L.; Dwibedi, V. Waste to Wealth: Microbial-Based Valorization of Grape Pomace for Nutraceutical, Cosmetic, and Therapeutic Applications to Promote Circular Economy. Process Saf. Environ. Prot. 2024, 188, 1464–1478. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.G.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Agriculture Waste Valorisation as a Source of Antioxidant Phenolic Compounds within a Circular and Sustainable Bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Tropea, A. Food Waste Valorization. Fermentation 2022, 8, 168. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Artés-Hernández, F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2022, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Kumar, R.; Kumar, A. Environmental Waste Management Strategies and Vermi Transformation for Sustainable Development. Environ. Chall. 2023, 13, 100747. [Google Scholar] [CrossRef]
- Valisakkagari, H.; Chaturvedi, C.; Rupasinghe, H.P.V. Green Extraction of Phytochemicals from Fresh Vegetable Waste and Their Potential Application as Cosmeceuticals for Skin Health. Processes 2024, 12, 742. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Čolović, D.; Rakita, S.; Banjac, V.; Đuragić, O.; Čabarkapa, I. Plant Food By-Products as Feed: Characteristics, Possibilities, Environmental Benefits, and Negative Sides. Food Rev. Int. 2019, 35, 363–389. [Google Scholar] [CrossRef]
- Reguengo, L.M.; Salgaço, M.K.; Sivieri, K.; Maróstica Júnior, M.R. Agro-Industrial by-Products: Valuable Sources of Bioactive Compounds. Food Res. Int. 2022, 152, 110871. [Google Scholar] [CrossRef]
- Sari, T.P.; Sirohi, R.; Krishania, M.; Bhoj, S.; Samtiya, M.; Duggal, M.; Kumar, D.; Badgujar, P.C. Critical Overview of Biorefinery Approaches for Valorization of Protein Rich Tree Nut Oil Industry By-Product. Bioresour. Technol. 2022, 362, 127775. [Google Scholar] [CrossRef]
- Peydayesh, M.; Bagnani, M.; Soon, W.L.; Mezzenga, R. Turning Food Protein Waste into Sustainable Technologies. Chem. Rev. 2023, 123, 2112–2154. [Google Scholar] [CrossRef]
- Di Domenico Ziero, H.; Ampese, L.C.; Sganzerla, W.G.; Torres-Mayanga, P.C.; Timko, M.T.; Mussatto, S.I.; Forster-Carneiro, T. Subcritical Water Hydrolysis of Poultry Feathers for Amino Acids Production. J. Supercrit. Fluids 2022, 181, 105492. [Google Scholar] [CrossRef]
- Barral-martinez, M.; Fraga-corral, M.; Garcia-perez, P.; Simal-gandara, J.; Prieto, M.A. Almond By-Products: Valorization for Sustainability and Competitiveness of the Industry. Foods 2021, 10, 1793. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Ora, A.; Häkkinen, S.T.; Ritala, A.; Räisänen, R.; Kallioinen-Mänttäri, M.; Melin, K. Innovative Extraction Technologies of Bioactive Compounds from Plant By-Products for Textile Colorants and Antimicrobial Agents. Biomass Convers. Biorefin. 2023, 14, 24973–25002. [Google Scholar] [CrossRef]
By-Product | Enzymatic Treatment | Bioactive Compounds Obtained | Result | Reference |
---|---|---|---|---|
Various agro-industrial waste | Commercial enzymes (Cellulase, β-glucosidase, xylanase) | Phenolic compounds | Increase of up to 38.5% in the extraction of phenolic compounds and an increase in antioxidant activity by up to 3.5 times | [76] |
Soybean hulls, straw, and corn cobs | Cellulase and Pectinase | Cellulose, hemicellulose | Increased digestibility and release of nutrients | [77] |
Jatropha curcas cake (non-toxic) | Protease Alcalase | Bioactive peptides with antioxidant activity, antihypertensive, and antidiabetic capacity | Increased free radical reduction capacity and potential for treatment of chronic degenerative diseases | [78] |
Jiuzao by-product of the Baijiu distillation process | Protease | Polyphenols, polypeptides, and alkaloids | Increased antioxidant capacity | [79] |
Camellia (Camellia japonica) and rose (Rosa hybrida), and rosella (Hibiscus sabdariffa) flowers | Cellulase and Pectinase | Phenolic compounds and biosugars | Increased antioxidant capacity | [80] |
By-Product | Enzymatic Hydrolysis Conditions | Results and Potential Applications | Reference |
---|---|---|---|
Grape marc seeds | Lallzyme EX-V enzyme, temperature of 48 °C, extraction time of 2 h and 43 min, pH 3.5, and enzyme dosage of 20.00 mg/g | Optimization of the extraction method for the recovery of phenols. The obtained extracts can be used in the cosmetic industry. | [88] |
Rice starch processing by-product | Enzyme/substrate ratios of 0.5, 0.2, and 0.05 U enzyme/g protein; temperatures of 60 and 55 °C; volumes of 1 and 2 L; pH (Alcalase pH 7 and Protamex pH 8); and stirring at 300 rpm. | Putative application of these peptides as natural tyrosinase inhibitors in the cosmetics industry. Tyrosinase inhibition blocks melanin production in the skin, lightening and evening out skin tone. | [89] |
Cichorium intybus bagasse | The samples were suspended in 0.05 M acetate buffer (pH 5.0) to a dry matter content of 5% (w/v) and mixed at 50 °C for 24 h. The enzymes were used alone or in combinations: inulinase, pectinase, cellulase, β-glucosidase, xylanase, and ferulic acid esterase. The enzyme dose was based on the protein content. | The hydrolysate showed antimicrobial activity against human skin pathogens but not beneficial skin microbes such as lactobacilli. | [81] |
Hemp Seed Oil Cake | Protein concentration of 6.25 g/100 mL with 0.1 M phosphate buffer (pH 6.5). Bromelain was added at concentrations of 1%, 2%, or 3% relative to the protein content. Temperature reactions of 20 °C, 30 °C, or 40 °C for 60, 120, or 180 min. | Optimal conditions for obtaining protein hydrolysates with the highest antioxidant activity were achieved using a bromelain concentration of 3.0% at 40 °C for 60 min. The resulting product has potential applications in developing antiaging cosmetics and skin protection creams. | [82] |
Rice husk | Protein concentration of 20 mg/mL, enzyme/substrate ratio of 1:10 (v/v), pH 10, and 50 °C. The reaction was performed in a water bath (80–90 °C), with constant stirring and pH controlled using 1 N NaOH. Reaction times ranged from 2.5 to 75 min. | Residue with low levels of gums, mucilage, and pectin and a high concentration of insoluble polysaccharides. Iβ cellulose presented potential for cosmetic applications. Degree of hydrolysis of 30.41% and a DPPH radical absorption rate of more than 70%. | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saorin Puton, B.M.; Demaman Oro, C.E.; Lisboa Bernardi, J.; Exenberger Finkler, D.; Venquiaruto, L.D.; Dallago, R.M.; Tres, M.V. Sustainable Valorization of Plant Residues Through Enzymatic Hydrolysis for the Extraction of Bioactive Compounds: Applications as Functional Ingredients in Cosmetics. Processes 2025, 13, 1314. https://doi.org/10.3390/pr13051314
Saorin Puton BM, Demaman Oro CE, Lisboa Bernardi J, Exenberger Finkler D, Venquiaruto LD, Dallago RM, Tres MV. Sustainable Valorization of Plant Residues Through Enzymatic Hydrolysis for the Extraction of Bioactive Compounds: Applications as Functional Ingredients in Cosmetics. Processes. 2025; 13(5):1314. https://doi.org/10.3390/pr13051314
Chicago/Turabian StyleSaorin Puton, Bruna M., Carolina E. Demaman Oro, Julia Lisboa Bernardi, Diana Exenberger Finkler, Luciana D. Venquiaruto, Rogério Marcos Dallago, and Marcus V. Tres. 2025. "Sustainable Valorization of Plant Residues Through Enzymatic Hydrolysis for the Extraction of Bioactive Compounds: Applications as Functional Ingredients in Cosmetics" Processes 13, no. 5: 1314. https://doi.org/10.3390/pr13051314
APA StyleSaorin Puton, B. M., Demaman Oro, C. E., Lisboa Bernardi, J., Exenberger Finkler, D., Venquiaruto, L. D., Dallago, R. M., & Tres, M. V. (2025). Sustainable Valorization of Plant Residues Through Enzymatic Hydrolysis for the Extraction of Bioactive Compounds: Applications as Functional Ingredients in Cosmetics. Processes, 13(5), 1314. https://doi.org/10.3390/pr13051314