Supercritical Fluid Extraction of Amazonian Oils and Fats: Promising Species, Equipment, Yields, Composition, and Potential Uses
Abstract
:1. Introduction
2. Procedure of Search and Selection of Scientific Articles
3. Amazonian Oleaginous Plants
3.1. Palms
3.2. Trees
3.3. Other Plants
4. Conventional Extraction of Amazonian Oils/Fats
Raw-Material | Extraction Methods | Yield | |
---|---|---|---|
Moringa oleifera Lamarck | Mechanical pressing | 11% | [52] |
Caryocar brasiliense Camb | Hydraulic pressing Pressure: 0.5 ton/cm2 Temperature: 30 °C | 32% | [62] |
Hydraulic pressing + enzymatic treatment Pressure: 0.5 ton/cm2 Temperature: 30 °C | 39% | ||
Euterpe edulis Mart. | Cold pressing Temperature: 25 °C Raw-material moisture: 10% | 10% | [41] |
Hot pressing Temperature: 50 °C Raw-material moisture: 10% | 20% | ||
Persea americana Mill. | Cold pressing Pressing force: 9 tons Raw-material moisture: 5–6% | 42% | [53] |
Passiflora edulis | Mechanical pressing | 19.5% | [67] |
Jatropha curcas | Bielenberg press | 26% | [69] |
Jatropha curcas | Screw pressing Temperature: 80 °C Raw-material moisture: 4.5% | 16.2% | [70] |
Parinari pachyphylla Rusby | Hydraulic pressing | - | [54] |
Euterpe precatoria | Expeller press Temperature: 25–30 °C Particle size: 1 mm | 10% | [31] |
Mauritia flexuosa | 22% | ||
Oenocarpus bataua | 28% |
Raw-Material | Extraction Conditions | Yield | |
---|---|---|---|
Jatropha curcas L. | Soxhlet Solvent: hexane Temperature: 70–80 °C Time: 8–10 h | 13.7–54.4% | [51] |
Moringa oleifera Lamarck | Soxhlet Solvent: hexane Time: 4 h | 36% | [52] |
Swietenia macrophylla king | Maceration Solvent: petroleum ether Temperature: 60–80 °C | 8.6% | [48] |
Maceration Solvent: Chloroform Temperature: 60–80 °C | 6.2% | ||
Maceration Solvent: Methanol Temperature: 60–80 °C | 5.4% | ||
Psophocarpus tetragonolobus | Soxhlet Solvent: petroleum ether Time: 6 h Particle size: 1 mm | 20% | [49] |
Hevea brasiliensis | 37.6% | ||
Terminalia catappa | 52.1% | ||
Gustavia macarenensis Philipson | Soxhlet Solvent: hexane Time: 4 h Particle size: 1 mm | 53.6% | [50] |
Euterpe precatoria | Soxhlet Solvent: Petroleum benzene Temperature: 40–60 °C Particle size: 1 mm | 18% | [31] |
Oenocarpus bataua | 62% | ||
Mauritia flexuosa | 33% | ||
Euterpe oleracea | Soxhlet Solvent: hexane Particle size: 0.84–0.42 mm | 35.4% | [39] |
Annona hypoglauca | 15% | ||
Oenocarpus bacaba | 43.9% | ||
Mauritia flexuosa | 23.2% | ||
Mauritia aculeata | 26% | ||
Byrsonima crassifolia | 46.5% | ||
Byrsonima coccolobifolia | 38% | ||
Bactris gasipaes var. yellow. | 17.1% | ||
Bactris gasipaes var. red | 27.3% | ||
Barcella odora | 12% | ||
Astrocaryum acaule | 33.1% | ||
Acrocomia aculeata | Soxhlet Solvent: hexane Temperature: 69 °C Time: 8 h Raw-material moisture: 3.6% Particle size: 0.5 mm | 25.6% | [47] |
Soxhlet Solvent: Dichloromethane Temperature: 40 °C Time: 8 h Raw-material moisture: 3.6% Particle size: 0.5 mm | 26.8% | ||
Acrocomia aculeata | Soxhlet Solvent: hexane Temperature: 68 °C Time: 8 h Raw-material moisture: 3.3% Particle size: 0.841 mm | 43.6% | [17] |
Plukenetia volubilis L. | Soxhlet Solvent: hexane Temperature: 60 °C Time: 20 h Raw-material moisture: 2.36% Particle size: 1.51–2.01 mm | 40.6% | [65] |
Passiflora edulis | Soxhlet Solvent: hexane Time: 4 h | 23.6% | [67] |
Maceration Solvent: hexane Time: 24 h | 30% | ||
Maceration Solvent: ethanol Time: 24 h | 19.9% | ||
Virola surinamensis (Rol. ex Rottb.) Warb. | Soxhlet Solvent: Petroleum ether Time: 4 h Raw-material moisture: 2.5% Particle size: 0.24 mm | 61.4% | [23] |
Cyphomandra betacea (Cav.) Sendtn. | Soxhlet Solvent: hexane Time: 6 h Raw-material moisture: 4.97% Particle size: 0.68 mm | 24.1% | [71] |
5. SFE-CO2
5.1. Processes Parameters
Raw-Material | Extraction Conditions | Yield | |
---|---|---|---|
Passiflora edulis seeds | Temperature: 60 °C Pressure: 35 MPa Time: 2.5 h Raw-material moisture: 10% | 15.7% | [74] |
Temperature: 60 °C Pressure: 20 MPa Time: 1.34 h | 21.6% | [67] | |
Temperature: 60 °C Pressure: 35 MPa Time: 2.5 h Raw-material moisture: 7.8% Flow rate: 30 g/min | 15.7% | [33] | |
Oenocarpus distichus Mart. pulp | Temperature: 50 °C Pressure: 35 MPa Time: 3 h | 45.2% | [12] |
Temperature: 60 °C Pressure: 27 MPa Time: 3 h | 46% | ||
Cyphomandra betacea (Cav.) Sendtn. seeds | Temperature: 51 °C Pressure: 38 MPa Time: 2.5 h S/F: 22.5 Raw-material moisture: 4.5% Particle size: 0.69 mm | 17.4% | [71] |
Oenocarpus bacaba pulp | Temperature: 60 °C Pressure: 42 MPa Time: 3 h Raw-material moisture: 4.2% | 60.4% | [77] |
Plukenetia volubilis L. seeds | Temperature: 60 °C Pressure: 50 MPa Time: 3 h Raw-material moisture: 2.4% Particle size: 1.5–2 mm | 23.5% | [65] |
Temperature: 60 °C Pressure: 45 MPa Time: 4.5 h Raw-material moisture: 3.3% Particle size: 1.64 mm | 26.8% ** | ||
Lycopersicon esculentum L. seeds | Temperature: 60 °C Pressure: 35 MPa Time: 2 h Particle size: 1 mm | 7.8% | [78] |
Virola surinamensis seeds | Temperature: 80 °C Pressure: 35 MPa Time: 3 h Raw-material moisture: 2.5% Particle size: 0.24 mm | 64.4% | [23] |
Acrocomia aculeata kernel | Temperature: 40 °C Pressure: 22 MPa Time: 3.3 h Raw-material moisture: 3.3% Particle size: 0.481 mm | 41.6% | [17] |
Pterodon spp. fruits | Temperature: 50 °C Pressure: 20 MPa Time: 4.5 h Raw-material moisture: 2.3% Solvent flow rate: 12 g CO2/min Particle size: 0.57 mm | 31.1% | [55] |
Pentaclethra macroloba seeds | Temperature: 40 °C Pressure: 30 MPa Solvent flow rate: 0.7 kg CO2/h Particle size: 1.19 mm | 42.05% | [56] |
Temperature: 40 °C Pressure: 30 MPa Time: 120 min Solvent flow rate: 4 mL/min Particle size: 1.19 mm | 23.3% | [79] | |
Solanum lycopersicum seeds | Temperature: 60.2 °C Pressure: 40 MPa Solvent flow rate: 64.6 g/min Particle size: 1.00 mm | 16.9% | [80] |
Psidium guava seeds | Temperature: 50 °C Pressure: 45 MPa Time: 60 min Raw-material moisture: 8% Co-solvent: ethanol at 3 mL/min | 10.45% | [81] |
Temperature: 52 °C Pressure: 35.7 MPa Time: 150 min Solvent flow rate: 30 g CO2/min Raw-material moisture: 8.05% Average particle diameter: 0.490 mm | 8.6% | [82] | |
Maximiliana maripa pulp | Pure CO2 Temperature: 60 °C Pressure: 20 MPa Time: 170 min Solvent flow rate: 2 cm3/min Raw-material moisture: 11.7% Mean particle diameter: 1.6 × 10−3 m | 3.6% | [42] |
CO2 + Ethanol Temperature: 60 °C Pressure: 20 MPa Time: 60 min Raw-material moisture: 11.7% Average particle diameter: 1.6 × 10−3 m | 20.4% | ||
Pterocaulon lorentzii leaves and inflorescences | Temperature: 40 °C Gradual pressure increments: 9 to 30 MPa Time: 100 (leaves) and 110 min (inflorescences) Solvent flow rate: 1 kg/h Raw-material moisture: 5.27 (inflorescences) and 2.08% (leaves) Average thickness of fibers: 0.061 (inflorescences) and 0.148 mm (leaves) | 109.05 (leaves) and 610.03 mg coumarins/g of extract (inflorescences) | [83] |
Lippia graveolens HBK leaves. | Temperature: 45 °C Pressure: 35 MPa Time: 300 min Solvent flow rate: 30 g CO2/min | 4.1% | [84] |
Capsicum annuum L. fruits | Temperature: 65 °C Pressure: 35.78 MPa Time: 90 min Particle size: 0.78 mm Raw-material moisture: 4–6% Solvent flow rate: 3 L/min | 4.91% | [75] |
Genipa americana L. fruits | Temperature: 60 °C Pressure: 30 MPa Mean particle diameter: 0.23 mm Raw-material moisture: 5.1% Solvent flow rate: 2.5 g CO2/min | 4.6% | [85] |
Bactris gasipaes epicarp | Temperature: 40 °C Pressure: 40 MPa Time: 210 min Raw-material moisture: 7.1% | 12.12% | [40] |
Geoffroea decorticans almond | Temperature: 60 °C Pressure: 40 MPa Time: 120 min Raw-material moisture: 4.93% Solvent flow rate: 3.62 g CO2/min | 47% | [57] |
Dipteryx alata Vogel seeds | CO2 + water Temperature: 60 °C Pressure: 20 MPa Time: 240 min Raw-material moisture: 2.30 g/100 g Mean particle diameter: <0.85 mm Solvent flow rate: 3 mL/min | 21.67 g/100 g | [21] |
CO2 + Alcohol Temperature: 50 °C Pressure: 30 MPa Time: 240 min Raw-material moisture: 2.30 g/100 g Mean particle diameter: <0.85 mm Solvent flow rate: 3 mL/min | 31.06 g/100 g | ||
CO2 + Alcohol:water Temperature: 60 °C Pressure: 20 MPa Time: 240 min Raw-material moisture: 2.30 g/100 g Mean particle diameter: <0.85 mm Solvent flow rate: 3 mL/min | 21.67 g/100 g | ||
CO2 Temperature: 45 °C Pressure: 35 MPa Time: 185 min Average particle diameter: 1.8 mm | 22 g/100 g | [25] | |
Capsicum annuum industrial waste | CO2 Temperature: 60 °C Pressure: 20 MPa Mean particle diameter: 0.48 mm Solvent flow rate: 3 g CO2/min | 9.60% | [86] |
CO2 + Ethanol Temperature: 40 °C Pressure: 25 MPa Mean particle diameter: 0.48 mm Solvent flow rate: 3 g CO2/min Ratio ethanol/sample: 0.5 mL/g | 10.08% | ||
Mauritiella armata Mart. pulp | Temperature: 40 °C Pressure: 30 MPa Time: 61 min Mean particle diameter: 2.107 mm Solvent flow rate: 17 g/min | 41.57 g/100 g | [43] |
Cyperus esculentus L. nut | Temperature: 40 °C Pressure: 28 MPa Time: 90 min | 28.56 g/100 g | [87] |
Rubus glaucus seeds | Temperature: 60 °C Pressure: 35 MPa Time: 150 min Raw-material moisture: 7.60% Solvent flow rate: 30 g/min | 14.5% | [33] |
Annona squamosa seeds | Temperature: 45 °C Pressure: 25 MPa Time: 60 min Solvent flow rate: 2.5 mL/min Raw-material moisture: 6.21% Average particle size: 427 nm | 0.29 g/g | [88] |
Annona muricata L. seeds | Temperature: 40 °C Pressure: 30 MPa Time: 210 min Solvent flow rate: 0.7 kg/min Raw-material moisture: 4.98% Mean particle size: 0.53 mm | 16.4% | [89] |
Pachira aquatica Aubl. seeds | Temperature: 60 °C Pressure: 30 MPa Time: 120 min Solvent flow rate: 1.21 kg/h Raw-material moisture: 3.25% Average particle size: 1.19 mm | 51.78% | [90] |
Bertholletia excelsa cake (by-products) | Temperature: 60 °C Pressure: 40 MPa Time: 180 min Solvent flow rate: 40 g/min Raw-material moisture: 0.25% Particle size: <1 mm | 59.2% | [13] |
Renealmia petasites Gagnep. seeds | Temperature: 40 °C Pressure: 35 MPa Time: 40 min Solvent flow rate: 1.06 × 10−4 kg CO2/s | 4.15% | [19] |
Gliricidia sepium seeds | Temperature: 60 °C Pressure: 30 MPa Time: 90 min Solvent flow rate: 2.5 mL/min | 11.79% | [91] |
Oenocarpus mapora H. Karst fruit | Temperature: 60 °C Pressure: 35 MPa | 7.45% | [20] |
Temperature: 43.5 °C Pressure: 27.07 MPa Time: 120 min Solvent flow rate: 39 g/min Raw-material moisture: 6% Particle size: 350–500 μm | 30.4 g/100 g | [22] | |
Mauritia flexuosa L.f. pulp | Temperature: 42 °C Pressure: 20 MPa Time: 60 min Solvent flow rate: 42 g CO2/min | 44.85% | [11] |
Carica papaya seeds | Temperature: 65 °C Pressure: 25 MPa Time: 240 min Solvent flow rate: 15 g CO2/min Particle size: 0.26 mm Co-solvent flow rate: 10% of CO2 flow rate | 36.67% | [92] |
Pterodon emarginatus Vogel seeds | Temperature: 40 °C Pressure: 30 MPa Time: 65 min Solvent flow rate:4.5 g CO2/min Average particle size: 0.87 mm | 40 g/100 g | [59] |
Dipteryx lacunifera Ducke cake | Temperature: 40 °C Pressure: 20 MPa Time: 240 min Solvent flow rate: 1.0 kg/h Raw-material moisture: 4.50 g/100 g | 15.52% | [60] |
Astrocaryum vulgare pulp | Temperature: 60 °C Pressure: 30 MPa Time: 180 min Solvent flow rate: 8.85 × 10−5 kg/s Average particle size: 1 mm Raw-material moisture: 5% | 36.75% | [44] |
Caryocar brasiliense Cambess almonds | Temperature: 45 °C Pressure: 25 MPa Time: 110 min Solvent flow rate: 5.0 g/min Average particle size: 3.5 g/min | 27.6% | [61] |
Hyptis suaveolens (L.) Poit seeds | Temperature: 80 °C Pressure: 45 MPa Time: 193 min Solvent flow rate: 0.88 kg/h Raw-material moisture: 8.94% Particle size: > 75 μm | 62.36% | [93] |
Passiflora ligularis Juss. (seeds) | Temperature: 40 °C Pressure: 40 MPa Time: 60 min Solvent flow rate: 3.62 g/min Raw-material moisture: 1.57% Mean particle diameter: 0.60 mm | 24.97% | [73] |
Astrocaryum aculeatum almonds | Temperature: 50 °C Pressure: 25 MPa Solvent flow rate: 1.8 × 10−4 kg/s Raw-material moisture: 3.7% Particle size: 1.19 mm | 34.41 g/100 g | [72] |
5.2. SFE Equipment
6. Fatty Acids from AOFs
7. Fat-Soluble Bioactive from AOFs
8. Potential Uses and Perspectives of Amazonian Lipids Obtained by SFE
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dupont, J.L. LIPIDS|Chemistry and Classification. In Encyclopedia of Human Nutrition, 2nd ed.; Academic Press: Cambridge, MA, USA, 2005; pp. 126–132. [Google Scholar] [CrossRef]
- van Duijn, G. Vegetable Oils and Fats. In Encyclopedia of Food Safety, 2nd ed.; Academic Press: Cambridge, MA, USA, 2024; Volume 1–4, pp. 46–59. [Google Scholar] [CrossRef]
- Talbot, G. Specialty Oils and Fats in Food and Nutrition: Properties, Processing and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Barrufol, M.; Schmid, B.; Bruelheide, H.; Chi, X.; Hector, A.; Ma, K.; Michalski, S.; Tang, Z.; Niklaus, P.A. Biodiversity Promotes Tree Growth during Succession in Subtropical Forest. PLoS ONE 2013, 8, e81246. [Google Scholar] [CrossRef]
- Malhi, Y.; Riutta, T.; Wearn, O.R.; Deere, N.J.; Mitchell, S.L.; Bernard, H.; Majalap, N.; Nilus, R.; Davies, Z.G.; Ewers, R.M.; et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 2022, 612, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.V.; Rodrigues, A.M.d.C.; de Oliveira, P.D.; da Silva, D.A.; da Silva, L.H.M. Technological properties of amazonian oils and fats and their applications in the food industry. Food Chem. 2017, 221, 1466–1473. [Google Scholar] [CrossRef]
- Serra, J.L.; da Cruz Rodrigues, A.M.; de Freitas, R.A.; de Almeida Meirelles, A.J.; Darnet, S.H.; da Silva, L.H.M. Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Food Res. Int. 2019, 116, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Quispe, S.C.; Quispe, H.C.; Rios, E.G.; Viteri, J.E.D.; Chañi-Paucar, L.O.; Berrocal, M.H.M. Efecto de dietas balanceadas con harina de semillas de copoazú (Theobroma grandiflorum) en el crecimiento de Paco (Piaractus brachypomus Cuvier). Livest. Res. Rural. Dev. 2018, 30. Available online: http://www.lrrd.org/lrrd30/1/larr30017.html (accessed on 17 January 2025).
- Pereira, A.L.F.; Abreu, V.K.G.; Rodrigues, S. Cupuassu—Theobroma grandiflorum. In Exotic Fruits; Academic Press: Cambridge, MA, USA, 2018; pp. 159–162. [Google Scholar] [CrossRef]
- de Oliveira, T.B.; Genovese, M.I. Chemical composition of cupuassu (Theobroma grandiflorum) and cocoa (Theobroma cacao) liquors and their effects on streptozotocin-induced diabetic rats. Food Res. Int. 2013, 51, 929–935. [Google Scholar] [CrossRef]
- Best, I.; Cartagena-Gonzales, Z.; Arana-Copa, O.; Olivera-Montenegro, L.; Zabot, G. Production of Oil and Phenolic-Rich Extracts from Mauritia flexuosa L.f. Using Sequential Supercritical and Conventional Solvent Extraction: Experimental and Economic Evaluation. Processes 2022, 10, 459. [Google Scholar] [CrossRef]
- Cunha, V.M.B.; da Silva, M.P.; de Sousa, S.H.B.; Bezerra, P.D.N.; Menezes, E.G.O.; da Silva, N.J.N.; Banna, D.A.D.D.S.; Araújo, M.E.; Carvalho Junior, R.N.D. Bacaba-de-leque (Oenocarpus distichus Mart.) oil extraction using supercritical CO2 and bioactive compounds determination in the residual pulp. J. Supercrit. Fluids 2019, 144, 81–90. [Google Scholar] [CrossRef]
- Vasquez, W.V.; Hernández, D.M.; del Hierro, J.N.; Martin, D.; Cano, M.P.; Fornari, T. Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. J. Supercrit. Fluids 2021, 171, 105188. [Google Scholar] [CrossRef]
- Burlando, B.; Cornara, L. Revisiting Amazonian plants for skin care and disease. Cosmetics 2017, 4, 25. [Google Scholar] [CrossRef]
- Alves, B.S.F.; Carvalho, F.I.M.; Cruz, A.S.; Filho, H.A.D.; Dantas, K.G.F. Determination of Ca, Mg, Na, and K in biodiesel of oilseed from northern Brazil. Rev. Virtual Quim. 2018, 10, 542–550. [Google Scholar] [CrossRef]
- Silva, T.C.; Araujo, E.C.G.; da Silva Lins, T.R.; Reis, C.A.; Sanquetta, C.R.; da Rocha, M.P. Non-timber forest products in Brazil: A bibliometric and a state of the art review. Sustainability 2020, 12, 7151. [Google Scholar] [CrossRef]
- Trentini, C.P.; Cuco, R.P.; Cardozo-Filho, L.; da Silva, C. Extraction of macauba kernel oil using supercritical carbon dioxide and compressed propane. Can. J. Chem. Eng. 2019, 97, 785–792. [Google Scholar] [CrossRef]
- Zanqui, A.B.; da Silva, C.M.; Ressutte, J.B.; de Morais, D.R.; Santos, J.M.; Eberlin, M.N.; Cardozo-Filho, L.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Brazil Nut Oil Extraction Using Subcritical n-Propane: Advantages and Chemical Composition. J. Braz. Chem. Soc. 2020, 31, 603–612. [Google Scholar] [CrossRef]
- Santos, L.C.D.; Álvarez-Rivera, G.; Sánchez-Martínez, J.D.; Johner, J.C.F.; Barrales, F.M.; de Oliveira, A.L.; Cifuentes, A.; Ibáñez, E.; Martínez, J. Comparison of different extraction methods of Brazilian “pacová” (Renealmia petasites Gagnep.) oilseeds for the determination of lipid and terpene composition, antioxidant capacity, and inhibitory effect on neurodegenerative enzymes. Food Chem. X 2021, 12, 100140. [Google Scholar] [CrossRef]
- Muñoz, A.M.; Casimiro-Gonzales, S.; Gómez-Coca, R.B.; Moreda, W.; Best, I.; Cajo-Pinche, M.I.; Loja, J.F.; Ibañez, E.; Cifuentes, A.; Ramos-Escudero, F. Comparison of Four Oil Extraction Methods for Sinami Fruit (Oenocarpus mapora H. Karst): Evaluating Quality, Polyphenol Content and Antioxidant Activity. Foods 2022, 11, 1518. [Google Scholar] [CrossRef]
- Peixoto, V.O.D.S.; Silva, L.d.O.; Castelo-Branco, V.N.; Torres, A.G. Baru (Dipteryx alata Vogel) Oil Extraction by Supercritical-CO2: Improved Composition by Using Water as Cosolvent. J. Oleo Sci. 2022, 71, 201–213. [Google Scholar] [CrossRef]
- Barriga-Sánchez, M.; Casimiro-Gonzales, S.; Ramos-Escudero, F.; Muñoz, A.M.; Anticona, M. Supercritical CO2 assisted extraction of freeze-dried sinami fruit pulp (Oenocarpus mapora H. karst) oil: An experimental optimization approach. Lwt 2024, 198, 115956. [Google Scholar] [CrossRef]
- Cordeiro, R.M.; Ana, A.P.; Pinto, R.H.H.; da Costa, W.A.; da Silva, S.H.M.; de Souza Pinheiro, W.B.; Arruda, M.S.P.; Carvalho, R.N., Jr. Supercritical CO2 extraction of ucuúba (Virola surinamensis) seed oil: Global yield, kinetic data, fatty acid profile, and antimicrobial activities. Chem. Eng. Commun. 2019, 206, 86–97. [Google Scholar] [CrossRef]
- Hu, T.; Zhou, L.; Kong, F.; Wang, S.; Hong, K.; Lei, F.; He, D. Effects of Extraction Strategies on Yield, Physicochemical and Antioxidant Properties of Pumpkin Seed Oil. Foods 2023, 12, 3351. [Google Scholar] [CrossRef] [PubMed]
- Chañi-Paucar, L.O.; Osorio-Tobón, J.F.; Johner, J.C.F.; Meireles, M.A.A. A comparative and economic study of the extraction of oil from Baru (Dipteryx alata) seeds by supercritical CO2 with and without mechanical pressing. Heliyon 2021, 7, e05971. [Google Scholar] [CrossRef] [PubMed]
- Chañi-Paucar, L.O.; Johner, J.C.F.; Hatami, T.; Meireles, M.A.A. Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from Baru seed. J. Supercrit. Fluids 2022, 183, 105553. [Google Scholar] [CrossRef]
- Rombaut, N.; Savoire, R.; Thomasset, B.; Bélliard, T.; Castello, J.; Van Hecke, É.; Lanoisellé, J.L. Grape seed oil extraction: Interest of supercritical fluid extraction and gas-assisted mechanical extraction for enhancing polyphenol co-extraction in oil. Comptes Rendus Chim. 2014, 17, 284–292. [Google Scholar] [CrossRef]
- Santos, P.D.; De Aguiar, A.C.; Viganó, J.; Boeing, J.S.; Visentainer, J.V.; Martínez, J. Supercritical CO2 extraction of cumbaru oil (Dipteryx alata Vogel) assisted by ultrasound: Global yield, kinetics and fatty acid composition. J. Supercrit. Fluids 2016, 107, 75–83. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Pardauil, J.J.R.; de Molfetta, F.A.; Braga, M.; de Souza, L.K.C.; Filho, G.N.R.; Zamian, J.R.; da Costa, C.E.F. Characterization, thermal properties and phase transitions of amazonian vegetable oils. J. Therm. Anal. Calorim. 2017, 127, 1221–1229. [Google Scholar] [CrossRef]
- Jaramillo, J.E.C.C.; Bautista, M.P.C.; Solano, O.A.A.; Achenie, L.E.K.; Barrios, A.F.G. Impact of the mode of extraction on the lipidomic profile of oils obtained from selected Amazonian fruits. Biomolecules 2019, 9, 329. [Google Scholar] [CrossRef]
- Popescu, M.; Iancu, P.; Plesu, V.; Bildea, C.S. Carotenoids Recovery Enhancement by Supercritical CO2 Extraction from Tomato Using Seed Oils as Modifiers. Process 2022, 10, 2656. [Google Scholar] [CrossRef]
- Arturo-Perdomo, D.; Mora, J.P.J.; Ibáñez, E.; Cifuentes, A.; Hurtado-Benavides, A.; Montero, L. Extraction and Characterization of the Polar Lipid Fraction of Blackberry and Passion Fruit Seeds Oils Using Supercritical Fluid Extraction. Food Anal. Methods 2021, 14, 2026–2037. [Google Scholar] [CrossRef]
- Altuna, J.L.; Silva, M.; Álvarez, M.; Quinteros, M.F.; Morales, D.; Carrillo, W. Yellow pitaya (Hylocereus megalanthus) fatty acids composition from Ecuadorian Amazonia. Asian J. Pharm. Clin. Res. 2018, 11, 218–221. [Google Scholar] [CrossRef]
- GBIF, GBIF|Global Biodiversity Information Facility, (n.d.). Available online: https://www.gbif.org/es/ (accessed on 1 July 2024).
- Tropicos.org, Missouri Botanical Garden, (n.d.). Available online: https://www.tropicos.org/home (accessed on 1 July 2024).
- Royal Botanic Gardens Kew, Plants of the World Online, (n.d.). Available online: https://powo.science.kew.org/ (accessed on 15 May 2024).
- Irías-Mata, A.; Stuetz, W.; Sus, N.; Hammann, S.; Gralla, K.; Cordero-Solano, A.; Vetter, W.; Frank, J. Tocopherols, Tocomonoenols, and Tocotrienols in Oils of Costa Rican Palm Fruits: A Comparison between Six Varieties and Chemical versus Mechanical Extraction. J. Agric. Food Chem. 2017, 65, 7476–7482. [Google Scholar] [CrossRef]
- Santos, R.C.; Chagas, E.A.; de Melo Filho, A.A.; Takahashi, J.A.; Montero, I.F.; Santos, G.F.D.; Chagas, P.C.; de Melo, C.G.R. Chemical characterization of oils and fats from amazonian fruits by 1H NMR. Chem. Eng. Trans. 2018, 64, 235–240. [Google Scholar] [CrossRef]
- Reyes-Giraldo, A.F.; Gutierrez-Montero, D.J.; Rojano, B.A.; Andrade-Mahecha, M.M.; Martínez-Correa, H.A. SEQUENTIAL EXTRACTION PROCESS OF OIL AND ANTIOXIDANT COMPOUNDS FROM CHONTADURO EPICARP. J. Supercrit. Fluids 2020, 166, 105022. [Google Scholar] [CrossRef]
- Da Cunha, A.L.A.; Freitas, S.P.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Chemical composition and oxidative stability of jussara Euterpe edulis M.) oil extracted by cold and hot mechanical pressing. Grasas y Aceites 2017, 68, e218. [Google Scholar] [CrossRef]
- Barbi, R.C.T.; de Souza, A.R.C.; de Melo, A.M.; Teixeira, G.L.; Corazza, M.L.; Ribani, R.H. Fatty acid profile and lipid quality of Maximiliana maripa oil obtained by supercritical CO2 and pressurized ethanol. J. Supercrit. Fluids 2020, 165, 104979. [Google Scholar] [CrossRef]
- de Souza, F.G.; Náthia-Neves, G.; de Araújo, F.F.; Audibert, F.L.D.; Delafiori, J.; Neri-Numa, I.A.; Catharino, R.R.; de Alencar, S.M.; de Almeida Meireles, M.A.; Pastore, G.M. Evaluation of antioxidant capacity, fatty acid profile, and bioactive compounds from buritirana (Mauritiella armata Mart.) oil: A little-explored native Brazilian fruit. Food Res. Int. 2021, 142, 110260. [Google Scholar] [CrossRef]
- dos Santos, O.V.; Pinaffi-Langley, A.C.d.C.; Ferreira, M.C.R.; de Souza, A.L.G.; Carvalho-Junior, R.N.; Teixeira-Costa, B.E. Effect of extraction type on the fatty acids profile and physicochemical properties of biolipids from Astrocaryum vulgare pulp: Supercritical CO2 versus n-hexane extractions. Int. J. Food Sci. Technol. 2023, 58, 3982–3995. [Google Scholar] [CrossRef]
- Sorita, G.D.; Favaro, S.P.; Rodrigues, D.d.S.; Junior, W.P.d.S.; Leal, W.G.d.O.; Ambrosi, A.; Di Luccio, M. Aqueous enzymatic extraction of macauba (Acrocomia aculeata) pulp oil: A green and sustainable approach for high-quality oil production. Food Res. Int. 2024, 182, 114160. [Google Scholar] [CrossRef] [PubMed]
- Colombo, C.A.; Berton, L.H.C.; Diaz, B.G.; Ferrari, R.A. Macauba: A promising tropical palm for the production of vegetable oil. OCL–Oilseeds Fats Crop Lipids 2018, 25, D108. [Google Scholar] [CrossRef]
- Trentini, C.P.; Santos, K.A.; da Silva, E.A.; Garcia, V.A.D.S.; Cardozo-Filho, L.; da Silva, C. Oil extraction from macauba pulp using compressed propane. J. Supercrit. Fluids 2017, 126, 72–78. [Google Scholar] [CrossRef]
- Hashim, M.A.; Yam, M.F.; Hor, S.Y.; Lim, C.P.; Asmawi, M.Z.; Sadikun, A. Anti-hyperglycaemic activity of Swietenia macrophylla king (Meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance tests. Chin. Med. 2013, 8, 11. [Google Scholar] [CrossRef]
- Jayanegara, A.; Harahap, R.P.; Rozi, R.F.; Nahrowi. Effects of lipid extraction on nutritive composition of winged bean (Psophocarpus tetragonolobus), rubber seed (Hevea brasiliensis), and tropical almond (Terminalia catappa). Vet. World 2018, 11, 446–451. [Google Scholar] [CrossRef]
- Mera, J.J.R.; Abreu-Naranjo, R.; Alvarez-Suarez, J.M.; Viafara, D. Chemical characterization, fatty acid profile and antioxidant activity of Gustavia macarenensis fruit mesocarp and its oil from the amazonian region of Ecuador as an unconventional source of vegetable oil. Grasas y Aceites 2019, 70, e298. [Google Scholar] [CrossRef]
- Kumar, R.; Das, N. Seed oil of Jatropha curcas L. germplasm: Analysis of oil quality and fatty acid composition. Ind. Crops Prod. 2018, 124, 663–668. [Google Scholar] [CrossRef]
- Gomes, F.S.P.; De Sobral, A.D.; Da Silva, A.M.R.B.; Da Rocha, M.A.G. Moringa oleifera: A promising agricultural crop and of social inclusion for Brazil and semi-Arid regions for the production of energetic biomass (biodiesel and briquettes). OCL–Oilseeds Fats. Crop. Lipids 2018, 25, D106. [Google Scholar] [CrossRef]
- Krumreich, F.D.; Borges, C.D.; Mendonça, C.R.B.; Jansen-Alves, C.; Zambiazi, R.C. Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chem. 2018, 257, 376–381. [Google Scholar] [CrossRef]
- Lafont-Mendoza, J.J.; Espinosa-Fuentes, E.A.; Severiche-Sierra, C.A.; Jaimes-Morales, J.; Marrugo-Ligardo, Y.A. Proximal analysis of the residual cake obtained with extraction by pressing seeds of Perehuetano. ARPN J. Eng. Appl. Sci. 2018, 13, 8069–8072. [Google Scholar]
- Zaniol, F.; Calisto, J.F.F.; Cozzer, G.; Ferro, D.M.; Dias, J.L.; Rodrigues, L.G.G.; Mazzutti, S.; Rezende, R.S.; Simões, D.A.; Ferreira, S.R.S.; et al. Comparative larvicidal effect of Pterodon spp. extracts obtained by different extraction methods. J. Supercrit. Fluids 2020, 166, 104993. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Maciel, L.G.; Mazzutti, S.; Gonçalves, C.B.; Ferreira, S.R.S.; Block, J.M. Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2. Biocatal. Agric. Biotechnol. 2020, 24, 101521. [Google Scholar] [CrossRef]
- Salinas, F.; Vardanega, R.; Espinosa-Álvarez, C.; Jimenéz, D.; Muñoz, W.B.; Ruiz-Domínguez, M.C.; Meireles, M.A.A.; Cerezal-Mezquita, P. Supercritical fluid extraction of chañar (Geoffroea decorticans) almond oil: Global yield, kinetics and oil characterization. J. Supercrit. Fluids 2020, 161, 104824. [Google Scholar] [CrossRef]
- Obaidat, R.; Aleih, H.; Mashaqbeh, H.; Altaani, B.; Alsmadi, M.M.; Alnaief, M. Development and Evaluation of Cocoa Butter Taste Masked Ibuprofen Using Supercritical Carbon Dioxide. AAPS PharmSciTech 2021, 22, 106. [Google Scholar] [CrossRef]
- Chañi-Paucar, L.O.; Johner, J.C.F.; Zabot, G.L.; Meireles, M.A.A. Technical and economic evaluation of supercritical CO2 extraction of oil from sucupira branca seeds. J. Supercrit. Fluids 2022, 181, 105494. [Google Scholar] [CrossRef]
- Polmann, G.; Teixeira, G.L.; Santos, P.H.; Rivera, G.Á.; Ibañez, E.; Cifuentes, A.; Ferreira, S.R.S.; Block, J.M. Chemical characterization of gurguéia nut (Dipteryx lacunifera Ducke) and press cake oil obtained by hydraulic pressing and supercritical extraction. Biomass Convers. Biorefinery. 2023, 14, 19065–19080. [Google Scholar] [CrossRef]
- Mateus, L.S.; Dutra, J.M.; Favareto, R.; da Silva, E.A.; Pinto, L.F.; da Silva, C.; Cardozo-Filho, L. Optimization Studies and Compositional Oil Analysis of Pequi (Caryocar brasiliense Cambess) Almonds by Supercritical CO2 Extraction. Molecules 2023, 28, 1030. [Google Scholar] [CrossRef]
- Malacrida, C.R.; Moraes, I.C.F.; de Rosso, V.V.; Rodrigues, C.E.d.C.; de Souza, A.C. Effect of the application of an enzymatic pretreatment on bioactive compounds of Caryocar brasiliense Camb pulp oil. J. Food Process. Preserv. 2018, 42, e13828. [Google Scholar] [CrossRef]
- Zoccali, M.; Giuffrida, D.; Salafia, F.; Rigano, F.; Dugo, P.; Casale, M.; Mondello, L. Apocarotenoids profiling in different Capsicum species. Food Chem. 2021, 334, 127595. [Google Scholar] [CrossRef]
- Pires, F.B.; Dolwitsch, C.B.; Ugalde, G.A.; Menezes, B.B.; Fontana, M.E.Z.; Rieffeld, R.C.; Sagrillo, M.R.; Essi, L.; Mazutti, M.A.; da Rosa, M.B.; et al. Chemical study, antioxidant activity, and genotoxicity and cytotoxicity evaluation of Ruellia angustiflora. Nat. Prod. Res. 2021, 35, 5317–5322. [Google Scholar] [CrossRef]
- Triana-Maldonado, D.M.; Torijano-Gutiérrez, S.A.; Giraldo-Estrada, C. Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L.) from Antioquia, Colombia. Grasas y Aceites 2017, 68, e172. [Google Scholar] [CrossRef]
- Scaglia, B.; D’Incecco, P.; Squillace, P.; Dell’Orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicchi, C.; Adani, F. Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J. Clean. Prod. 2020, 243, 118650. [Google Scholar] [CrossRef]
- Delvar, A.; de Caro, P.; Caro, Y.; Sing, A.S.C.; Thomas, R.; Raynaud, C. Semi-Siccative Oils and Bioactive Fractions Isolated from Reunion Island Fruit Co-Product: Two Case Studies. Eur. J. Lipid Sci. Technol. 2019, 121, 1800391. [Google Scholar] [CrossRef]
- Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J.S. Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives. Energies 2023, 16, 5852. [Google Scholar] [CrossRef]
- Aboubakar, X.; Goudoum, A.; Bébé, Y.; Mbofung, C.M.F. Optimization of Jatropha curcas pure vegetable oil production parameters for cooking energy. S. Afr. J. Chem. Eng. 2017, 24, 196–212. [Google Scholar] [CrossRef]
- Romuli, S.; Karaj, S.; Latif, S.; Müller, J. Performance of mechanical co-extraction of Jatropha curcas L. kernels with rapeseed, maize or soybean with regard to oil recovery, press capacity and product quality. Ind. Crops Prod. 2017, 104, 81–90. [Google Scholar] [CrossRef]
- Achicanoy, D.D.; Benavides, A.H.; Martínez-Correa, H.A. Study of supercritical CO2 extraction of tamarillo (Cyphomandra betacea) seed oil containing high added value compounds. Electrophoresis 2018, 39, 1917–1925. [Google Scholar] [CrossRef]
- Carvalho, L.M.S.; Oliveira, A.M.B.; Grimaldi, R.; de Souza, P.T.; Batista, E.A.C.; Martínez, J. Supercritical fluid and pressurized liquid extraction of spent tucumã-do-Amazonas (Astrocaryum aculeatum) almonds. J. Supercrit. Fluids 2024, 209, 106238. [Google Scholar] [CrossRef]
- Vardanega, R.; Fuentes, F.S.; Palma, J.; Bugueño-Muñoz, W.; Cerezal-Mezquita, P.; Ruiz-Domínguez, M.C. Valorization of granadilla waste (Passiflora ligularis, Juss.) by sequential green extraction processes based on pressurized fluids to obtain bioactive compounds. J. Supercrit. Fluids 2023, 194, 105833. [Google Scholar] [CrossRef]
- Pantoja-Chamorro, A.L.; Hurtado-Benavides, A.M.; Martinez-Correa, H.A. Caracterización de aceite de semillas de maracuyá (Passiflora edulis Sims.) procedentes de residuos agroindustriales obtenido con CO2 supercrítico. Acta Agron. 2017, 66, 178–185. [Google Scholar]
- Shah, N.A.; Prasad, R.V.; Patel, B.B. Optimization of Supercritical Fluid Extraction of Paprika (cv. Reshampatti) Oil, Capsaicin and Pigments. Flavour. Fragr. J. 2020, 35, 469–477. [Google Scholar] [CrossRef]
- Menezes, G.E.O.; Barbosa, J.R.; Pires, C.S.F.; Ferreira, M.C.R.; De Souza e Silva, A.P.; Siqueira, L.M.M.; Junior, R.N.D.C. Development of a new scale-up equation to obtain Tucumã-of-Pará (Astrocaryum vulgare Mart.) oil rich in carotenoids using supercritical CO2 as solvent. J. Supercrit. Fluids 2022, 181, 105481. [Google Scholar] [CrossRef]
- Pinto, R.H.H.; Sena, C.; Santos, O.V.; Da Costa, W.A.; Rodrigues, A.M.C.; Carvalho, R.N. Extraction of bacaba (Oenocarpus bacaba) oil with supercritical CO2: Global yield isotherms, fatty acid composition, functional quality, oxidative stability, spectroscopic profile and antioxidant activity. Grasas Y Aceites 2018, 69, 246. [Google Scholar] [CrossRef]
- Durante, M.; Montefusco, A.; Marrese, P.P.; Soccio, M.; Pastore, D.; Piro, G.; Mita, G.; Lenucci, M.S. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J. Food Compos. Anal. 2017, 63, 65–72. [Google Scholar] [CrossRef]
- Mohammadnezhad, P.; Valdés, A.; Barrientos, R.E.; Ibáñez, E.; Block, J.M.; Cifuentes, A. A Comprehensive Study on the Chemical Characterization and Neuroprotective Evaluation of Pracaxi Nuts Extracts Obtained by a Sustainable Approach. Foods 2023, 12, 3879. [Google Scholar] [CrossRef] [PubMed]
- Solaberrieta, I.; Mellinas, A.C.; Espagnol, J.; Hamzaoui, M.; Jiménez, A.; Garrigós, M.C. Valorization of Tomato Seed By-Products as a Source of Fatty Acids and Bioactive Compounds by Using Advanced Extraction Techniques. Foods 2022, 11, 2408. [Google Scholar] [CrossRef]
- Kapoor, S.; Gandhi, N.; Tyagi, S.K.; Kaur, A.; Mahajan, B.V.C. Extraction and characterization of guava seed oil: A novel industrial byproduct. LWT 2020, 132, 109882. [Google Scholar] [CrossRef]
- Narváez-Cuenca, C.E.; Inampues-Charfuelan, M.L.; Hurtado-Benavides, A.M.; Parada-Alfonso, F.; Vincken, J.P. The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guava) seeds obtained by supercritical CO2 extraction. J. Food Compos. Anal. 2020, 89, 103467. [Google Scholar] [CrossRef]
- Medeiros-Neves, B.; Diel, K.A.P.; Eifler-Lima, V.L.; Teixeira, H.F.; Cassel, E.; Vargas, R.M.F.; Von Poser, G.L. Influence of the supercritical CO2 extraction in the stability of the coumarins of Pterocaulon lorentzii (Asteraceae). J. CO2 Util. 2020, 39, 101165. [Google Scholar] [CrossRef]
- Calva-Cruz, O.d.J.; Badillo-Larios, N.S.; De León-Rodríguez, A.; Espitia-Rangel, E.; González-García, R.; Turrubiartes-Martinez, E.A.; Castro-Gallardo, A.; de la Rosa, A.P.B. Lippia graveolens HBK oleoresins, extracted by supercritical fluids, showed bactericidal activity against multidrug resistance Enterococcus faecalis and Staphylococcus aureus strains. Drug Dev. Ind. Pharm. 2021, 47, 1546–1555. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Vardanega, R.; Hatami, T.; Meireles, M.A.A. Process integration for recovering high added-value products from Genipa americana L.: Process optimization and economic evaluation. J. Supercrit. Fluids 2020, 164, 104897. [Google Scholar] [CrossRef]
- Soldan, A.C.F.; Arvelos, S.; Watanabe, É.O.; Hori, C.E. Supercritical fluid extraction of oleoresin from Capsicum annuum industrial waste. J. Clean. Prod. 2021, 297, 126593. [Google Scholar] [CrossRef]
- Guo, T.; Wan, C.; Huang, F.; Wei, C. Evaluation of quality properties and antioxidant activities of tiger nut (Cyperus esculentus L.) oil produced by mechanical expression or/with critical fluid extraction. LWT 2021, 141, 110915. [Google Scholar] [CrossRef]
- Panadare, D.; Dialani, G.; Rathod, V. Extraction of volatile and non-volatile components from custard apple seed powder using supercritical CO2 extraction system and its inventory analysis. Process Biochem. 2021, 100, 224–230. [Google Scholar] [CrossRef]
- Mesquita, P.C.; Rodrigues, L.G.G.; Mazzutti, S.; da Silva, M.; Vitali, L.; Lanza, M. Intensified green-based extraction process as a circular economy approach to recover bioactive compounds from soursop seeds (Annona muricata L.). Food Chem. X 2021, 12, 100164. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Maciel, L.G.; Mazzutti, S.; Barbi, R.C.T.; Ribani, R.H.; Ferreira, S.R.S.; Block, J.M. Sequential green extractions based on supercritical carbon dioxide and pressurized ethanol for the recovery of lipids and phenolics from Pachira aquatica seeds. J. Clean. Prod. 2021, 306, 127223. [Google Scholar] [CrossRef]
- Macawile, M.C.; Auresenia, J. Comparison of biodiesel yield from seed oils extracted by ultrasound-assisted chemical solvent and supercritical CO2 methods. Int. J. Appl. Sci. Eng. Comp. 2022, 19, 2021279. [Google Scholar] [CrossRef]
- Devi, V.; Khanam, S. Statistical modeling of supercritical extraction of hemp (Cannabis sativa) and papaya (Carica papaya) seed oils through artificial neural network and central composite design. Soft Comput. 2022, 26, 2307–2324. [Google Scholar] [CrossRef]
- Díaz-Cervantes, M.D.; Ramos-Ramírez, E.G.; Gimeno-Seco, M.; Salazar-Montoya, J.A. Supercritical CO2 Extraction of oil from Chan (Hyptis suaveolens (L.) Poit) Seeds and its Physicochemical Characterization, Spectroscopy and Nutritional Analysis. Food Anal. Methods 2023, 16, 918–932. [Google Scholar] [CrossRef]
- De Cássia Rodrigues Batista, C.; De Oliveira, M.S.; Araújo, M.E.; Rodrigues, A.M.C.; Botelho, J.R.S.; Da Silva Souza Filho, A.P.; Machado, N.T.; Carvalho, R.N. Supercritical CO2 extraction of açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp. J. Supercrit. Fluids 2015, 107, 364–369. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Park, J.G.; Lee, J. Supercritical fluid extracts of Moringa oleifera and their unsaturated fatty acid components inhibit biofilm formation by Staphylococcus aureus. Food Control 2017, 80, 74–82. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of Dietary n–3 and n–6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Al-Nasser, A. Role of Poultry Research in Increasing Consumption of PUFA in Humans. In Nutrition in Health and Disease–Our Challenges Now and Forthcoming Time; IntechOpen: London, UK, 2019; p. 13. [Google Scholar] [CrossRef]
- Martin, C.A.; De Almeida, V.V.; Ruiz, M.R.; Visentainer, J.E.L.; Matshushita, M.; De Souza, N.E.; Visentainer, J.V. Ácidos graxos poliinsaturados ômega-3 e ômega-6: Importância e ocorrência em alimentos. Rev. Nutr. 2006, 19, 761–770. [Google Scholar] [CrossRef]
- Patel, A.; Rova, U.; Christakopoulos, P.; Matsakas, L. Introduction to Essential Fatty Acids. In Nutraceutical Fatty Acids from Oleaginous Microalgae: A Human Health Perspective; Wiley: Hoboken, NJ, USA, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Popa, O.; Bəbeanu, N.E.; Popa, I.; Niţə, S.; Dinu-Pârvu, C.E. Methods for obtaining and determination of squalene from natural sources. Biomed. Res. Int. 2015, 2015, 367202. [Google Scholar] [CrossRef] [PubMed]
- Spanova, M.; Daum, G. Squalene–biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol. 2011, 113, 1299–1320. [Google Scholar] [CrossRef]
- Mantovani, L.M.; Pugliese, C. Phytosterol supplementation in the treatment of dyslipidemia in children and adolescents: A systematic review. Rev. Paul. Pediatr. 2020, 39, e2019389. [Google Scholar] [CrossRef]
- Chong, W.T.; Lee, Y.Y.; Tang, T.K.; Phuah, E.T. Minor Components in Edible Oil. In Recent Advances in Edible Fats and Oils Technology; Springer: Singapore, 2022; pp. 141–187. [Google Scholar] [CrossRef]
- Ibiapina, A.; Gualberto, L.D.S.; Dias, B.B.; Freitas, B.C.B.; Martins, G.A.D.S.; Filho, A.A.M. Essential and fixed oils from Amazonian fruits: Proprieties and applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 8842–8854. [Google Scholar] [CrossRef]
- Jaramillo-Vivanco, T.; Balslev, H.; Montúfar, R.; Cámara, R.M.; Giampieri, F.; Battino, M.; Cámara, M.; Alvarez-Suarez, J.M. Three Amazonian palms as underestimated and little-known sources of nutrients, bioactive compounds and edible insects. Food Chem. 2022, 372, 131273. [Google Scholar] [CrossRef]
- da Silva, D.A.; da Cruz Rodrigues, A.M.; Santos, A.O.D.; Salvador-Reyes, R.; da Silva, L.H.M. Physicochemical and technological properties of pracaxi oil, cupuassu fat and palm stearin blends enzymatically interesterified for food applications. LWT 2023, 184, 114961. [Google Scholar] [CrossRef]
- Dhakane-Lad, J.; Kar, A.; Patel, A.S. SC-CO2 extraction of lycopene from red papaya using rice bran oil as a co-solvent lessens its degradation during storage. Sep. Sci. Technol. 2023, 58, 2357–2368. [Google Scholar] [CrossRef]
- Johner, J.C.F.; Hatami, T.; Meireles, M.A.A. Developing a supercritical fluid extraction method assisted by cold pressing for extraction of pequi (Caryocar brasiliense). J. Supercrit. Fluids 2018, 137, 34–39. [Google Scholar] [CrossRef]
- Willems, P.; Kuipers, N.J.M.; de Haan, A.B. Gas assisted mechanical expression of oilseeds: Influence of process parameters on oil yield. J. Supercrit. Fluids 2008, 45, 298–305. [Google Scholar] [CrossRef]
Species | Part of Plant | Oil/Fat | |
---|---|---|---|
Palm | |||
Oenocarpus bacaba | Fruit | Oil | [15] |
Elaeis oleifera | Fruit | Oil | [38] |
Oenocarpus bataua Mart. | Fruit | Oil | [7,14,31] |
Attalea speciosa Mart. (Synonym: Orbignya phalerata) | Seed | Oil | [7,14] |
Euterpe oleracea | Fruit | Oil | [39] |
Mauritia aculeata | Fruit | Oil | [39] |
Barcella odora | Pulp | Oil | [39] |
Astrocaryum acaule | Pulp | Oil | [39] |
Bactris gasipaes | Pulp | Oil | [39,40] |
Astrocaryum murumuru | Seed | Fat | [7] |
Mauritia vinifera | Fruit | Oil | [7] |
Euterpe edulis M. | Pulp | Oil | [41] |
Euterpe precatoria | Fruit | Oil | [31] |
Oenocarpus distichus Mart. | Fruit | Oil | [12] |
Maximiliana maripa | Fruit | Oil | [42] |
Mauritiella armata Mart. | Fruit | Oil | [43] |
Oenocarpus mapora H. Karst | Pulp | Oil | [20,22] |
Mauritia flexuosa L.f. | Fruit | Oil | [11,30,31,39] |
Astrocaryum vulgare | Pulp/Kernel | Oil | [30,44] |
Acrocomia aculeata | Pulp | Oil | [45,46,47] |
Tree | |||
Platonia insignis | Fruit | Oil | [15] |
Virola surinamensis | Seed | Fat | [7,30] |
Carapa guianensis Aublet | Seed | Oil | [14] |
Annona hypoglauca | Seed | Oil | [39] |
Byrsonima crassifolia | Seed | Oil | [39] |
Byrsonima coccolobifolia | Seed | Oil | [39] |
Platonia insignis | Seed | Fat | [7] |
Theobroma grandiflorum | Seed | Fat | [7] |
Pentaclethra filamentosa | Seed | Oil | [7] |
Copaifera langsdorffii | Stem | Oil | [7] |
Carapa guianensis | Seed | Oil | [7] |
Theobroma grandiflorum | Seed | Fat | [6] |
Swietenia macrophylla King | Seed | Extract | [48] |
Hevea brasiliensis | Seed | Oil | [30,49] |
Terminalia catappa | Seed | Oil | [30,49] |
Gustavia macarenensis | Fruit | Oil | [50] |
Jatropha curcas L. | Seed | Oil | [51] |
Moringa oleifera Lamarck | Seed | Oil | [52] |
Persea americana Mill. | Pulp | Oil | [53] |
Parinari pachyphylla Rusby | Seed | Oil | [54] |
Pterodon spp. | Fruit | Oil | [55] |
Pentaclethra macroloba | Seed | Oil | [6,56] |
Geoffroea decorticans | Seed | Oil | [57] |
Dipteryx alata Vogel | Seed | Oil | [21,25] |
Theobroma cacao L. | Seed | Fat | [58] |
Bertholletia excelsa | Seed | Oil | [7,13,15,18] |
Pterodon emarginatus Vogel | Seed | Oil | [59] |
Dipteryx lacunifera Ducke | Seed | Oil | [60] |
Caryocar brasiliense Cambess. | Seed | Oil | [61,62] |
Subshrub or shrub | |||
Capsicum baccatum | Fruit | Apocarotenoids | [63] |
Capsicum chinense | Fruit | Apocarotenoids | [63] |
Ruellia angustiflora | Leaves | SFE extract rich in fat-soluble compounds | [64] |
Liana | |||
Passiflora edulis | Fruit | Oil | [30] |
Passiflora spp. | Seed | Oil | [7] |
Cactus | |||
Hylocereus megalanthus | Seed | Oil | [34] |
Climbing shrub | |||
Plukenetia volubilis L. | Seed | Oil | [65] |
Rubus glaucus | Seed | Oil | [33] |
Scrambling subshrub | |||
Solanum lycopersicum | Seed/peel | Oleoresin/Oil | [32,66] |
Perennial or rhizomatous geophyte | |||
Renealmia petasites Gagnep. | Seed | Oil | [19] |
Raw Material | Fatty Acids * | Content (%) | |
---|---|---|---|
P. edulis seeds | Linoleic C18:2 Oleic C18:1n9 Palmitic C16:0 | 70.9 16.6 9.4 | [67] |
E. oleracea pulp | Oleic C18:1n9 Palmitic C16:0 Linoleic C18:2n6 Palmitoleic C16:1 | 52.73 23.47 15.54 5.49 | [94] |
V. surinamensis seeds | Myristic C14:0 Lauric C12:0 Palmitic C16:0 Pentadecanoic C15:0 Decanoic C10:0 | 71.66 23.48 1.86 1.44 1.03 | [23] |
O. distichus pulp | Oleic C18:1n9 Palmitic C16:0 Linoleic C18:2n6 Stearic C18:0 | 66.22 17.62 12.10 2.39 | [12] |
O. bacaba pulp | Oleic C18:1n9 Palmitic C16:0 Linoleic C18:2n-6 Stearic C18:0 | 60.52 22.05 13.37 2.68 | [77] |
M. oleifera leaf | cis-11-Eicosenoic C20:1 Palmitic C16:0 Linoleic C18:2n6 Oleic C18:1n9 Stearic C18:0 cis-5,8,11,14,17- Eicosapentaenoic C20:5n-3 Myristic C14:0 | 54.44 23.65 6.84 5.92 3.93 1.99 1.13 | [95] |
M. oleifera seed | Oleic C18:1n9 Palmitic C16:0 Stearic C18:0 Arachidic C20:0 Linolenic C18:3n3 Palmitoleic C16:1 | 74.50 7.92 7.10 4.28 2.50 1.49 | [95] |
C. betacea seeds | Linoleic C18:2n6 Oleic C18:1n9 Palmitic C16:0 Stearic C18:0 α-Linolenic C18:3 | 66.67 17.94 10.41 2.84 1.92 | [71] |
Raw-Material | Compounds Type | Compounds | Content (mg/100g) | |
---|---|---|---|---|
P. edulis seed | Tocopherol | α-tocopherol γ-tocopherol δ-tocopherol | 2.5 11.3 3.9 | [67] |
Phytosterol | Campesterol Estigmasterol β-sitosterol Δ5 avenasterol Δ7 stigmasterol Δ7 avenasterol Methylene cycloartenol Citrostadienol | 38.7 98.6 157.5 18.5 7.1 9.4 8.9 9.6 | ||
A. aculeata seed | Tocopherol | α-tocopherol γ-tocopherol δ-tocopherol | 1.33 1.81 5.08 | [17] |
P. edulis seed | Terpene Phytosterol | Squalene Campesterol Estigmasterol β-sitosterol Lanosterol | 11.13 ** 0.78 ** 2.43 ** 2.58 ** 0.58 ** | [74] |
A. aculeata seed | Phytosterol | Campesterol β-sitosterol | 1.71 22.99 | [17] |
C. betacea seed | Terpene Tocopherol Phytosterol | Squalene γ-tocopherol Dihydrolanosterol β-sitosterol Cycloartenol | 6.82 ¥ 2.10 ¥ 0.64 ¥ 3.01 ¥ 2.40 ¥ | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chañi-Paucar, L.O.; Maceda Santivañez, J.C.; Paucarchuco Soto, J.; Portal-Cahuana, L.A.; Solis Malaga, C.L.S.; Chagua-Rodríguez, P.; Johner Flores, J.C.; Meireles, M.A.A. Supercritical Fluid Extraction of Amazonian Oils and Fats: Promising Species, Equipment, Yields, Composition, and Potential Uses. Processes 2025, 13, 948. https://doi.org/10.3390/pr13040948
Chañi-Paucar LO, Maceda Santivañez JC, Paucarchuco Soto J, Portal-Cahuana LA, Solis Malaga CLS, Chagua-Rodríguez P, Johner Flores JC, Meireles MAA. Supercritical Fluid Extraction of Amazonian Oils and Fats: Promising Species, Equipment, Yields, Composition, and Potential Uses. Processes. 2025; 13(4):948. https://doi.org/10.3390/pr13040948
Chicago/Turabian StyleChañi-Paucar, Larry Oscar, Julio Cesar Maceda Santivañez, Joselin Paucarchuco Soto, Leif Armando Portal-Cahuana, Carmen Liz Sandra Solis Malaga, Perfecto Chagua-Rodríguez, Julio Cezar Johner Flores, and Maria Angela A. Meireles. 2025. "Supercritical Fluid Extraction of Amazonian Oils and Fats: Promising Species, Equipment, Yields, Composition, and Potential Uses" Processes 13, no. 4: 948. https://doi.org/10.3390/pr13040948
APA StyleChañi-Paucar, L. O., Maceda Santivañez, J. C., Paucarchuco Soto, J., Portal-Cahuana, L. A., Solis Malaga, C. L. S., Chagua-Rodríguez, P., Johner Flores, J. C., & Meireles, M. A. A. (2025). Supercritical Fluid Extraction of Amazonian Oils and Fats: Promising Species, Equipment, Yields, Composition, and Potential Uses. Processes, 13(4), 948. https://doi.org/10.3390/pr13040948