Corn Straw Fibers, an Agro-Industrial Residue, Used as Reinforcement in Polyurethane Foams in Dye Removal in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacture of Polyurethane Foam with CS
2.3. Mechanical Characterization
2.4. Dye Removal
3. Results and Discussion
3.1. Statistical Analysis of Composite
3.2. Morphology Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USDA | United States Department of Agriculture |
CS | corn straw |
MDI | 4,40-diphenylmethane diisocyanate |
PMHS | polymethylhydrosiloxane |
PEG | polyethylene glycol 1500 |
PUCS | polyurethane foam composites containing natural corn straw fibers |
SEM | scanning electron microscopy |
MB | methylene blue |
CR | Congo red |
PDCT | permanent deformation in compression test |
References
- Dukhnytskyi, B. World Agricultural Production. Ekon. APK 2019, 26, 59–65. [Google Scholar] [CrossRef]
- Distribution of Global Corn Production in 2022/23, by Country. Available online: https://www.statista.com/statistics/254294/distribution-of-global-corn-production-by-country-2012/ (accessed on 23 January 2024).
- Plantio Direto a Palhada Do Bem. Available online: https://www.embrapa.br/contando-ciencia/agricultura/-/asset_publisher/FcDEMJIbvFle/content/plantio-direto-a-plahada-do-bem/1355746?inheritRedirect=false#:~:text=Osistemadeplantiodireto,comisso%2Coaquecimento%20global (accessed on 24 January 2024).
- Ferreira, A.C.d.B.; Borin, A.L.D.C.; Lamas, F.M.; Sofiatti, V. Cover Plants in Second Crop: Nutrients in Straw and Cotton Yield in Succession. Pesqui. Agropecuária Trop. 2023, 53, e75032. [Google Scholar] [CrossRef]
- Lange, A.; Cabezas, W.A.R.L.; Trivelin, P.C.O. Produtividade de Palha e de Milho No Sistema Semeadura Direta, Em Função Da Época Da Aplicação Do Nitrogênio No Milho. Rev. Bras. Milho Sorgo 2009, 8, 57–68. [Google Scholar] [CrossRef]
- Crespo, A.M.; Souza, M.N.; Favarato, L.F.; Guarçoni, R.C.; Araújo, J.B.S.; Rangel, O.J.P.; de Souza, J.L.; da Gonçalves, D.C. The Green Corn Development and Yield on Different Summer Soil Covering Plants in the Organic No-Tillage System. Int. J. Adv. Eng. Res. Sci. 2022, 9, 217–225. [Google Scholar] [CrossRef]
- Ruedell, J. Manejo Do Solo e Da Água Nos Sistemas de Produção Da Atualidade e Do Futuro. Rev. Plantio Direto Tecnol. Agrícola 2017, 155, 36–48. [Google Scholar]
- Resíduo Da Colheita de Cana, Palha Protege o Solo e Tem Alto Potencial Gerador de Bioenergia. Available online: https://cnpem.br/residuo-da-colheita-de-cana-palha-protege-o-solo-e-tem-alto-potencial-gerador-de-bioenergia-2/ (accessed on 2 February 2024).
- No Plantio Direto o Milho é o Melhor. Available online: https://revistacultivar.com.br/artigos/no-plantio-direto-o-milho-e-o-melhor (accessed on 23 January 2024).
- Değermenci, G.D.; Değermenci, N.; Ayvaoğlu, V.; Durmaz, E.; Çakır, D.; Akan, E. Adsorption of Reactive Dyes on Lignocellulosic Waste; Characterization, Equilibrium, Kinetic and Thermodynamic Studies. J. Clean. Prod. 2019, 225, 1220–1229. [Google Scholar] [CrossRef]
- Ma, P.; Yao, S.; Wang, Z.; Qi, F.; Liu, X. Preparation of Nitrogen-Doped Hierarchical Porous Carbon Aerogels from Agricultural Wastes for Efficient Pollution Adsorption. Sep. Purif. Technol. 2023, 311, 123250. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Liu, C.; Xu, A. Pretreatment of Corn Straw Using the Alkaline Solution of Ionic Liquids. Bioresour. Technol. 2018, 260, 417–420. [Google Scholar] [CrossRef]
- El-Fattah, A.A.; EL Demerdash, A.G.M.; Alim Sadik, W.A.; Bedir, A. The Effect of Sugarcane Bagasse Fiber on the Properties of Recycled High Density Polyethylene. J. Compos. Mater. 2015, 49, 3251–3262. [Google Scholar] [CrossRef]
- Prambauer, M.; Paulik, C.; Burgstaller, C. Evaluation of the Interfacial Properties of Polypropylene Composite Laminates, Reinforced with Paper Sheets. Compos. Part A Appl. Sci. Manuf. 2016, 88, 59–66. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural Fiber Polymer Composites: A Review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- dos Santos, A.; Bulla, R.L.; Aguiar, L.W.; Moises, M.P.; Radovanovic, E.; Favaro, S.L. Enhancing Composite Performance: Hydrothermally Treated Wood Reinforcement in Recycled Polypropylene. Glob. J. Res. Eng. 2025, 24, 1–12. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef] [PubMed]
- Otto, G.P.; Moisés, M.P.; Carvalho, G.; Rinaldi, A.W.; Garcia, J.C.; Radovanovic, E.; Fávaro, S.L. Mechanical Properties of a Polyurethane Hybrid Composite with Natural Lignocellulosic Fibers. Compos. Part B Eng. 2017, 110, 459–465. [Google Scholar] [CrossRef]
- Molero, C.; de Lucas, A.; Rodríguez, J.F. Recovery of Polyols from Flexible Polyurethane Foam by “Split-Phase” Glycolysis: Study on the Influence of Reaction Parameters. Polym. Degrad. Stab. 2008, 93, 353–361. [Google Scholar] [CrossRef]
- Mondal, I.H. Cellulose and Cellulose Composites: Modification, Characterization and Applications; Mondal, I.H., Ed.; Nova Science Publishers, Incorporated: Hauppauge, NY, USA, 2015; ISBN 1634835530. [Google Scholar]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Chaichanawong, J.; Thongchuea, C.; Areerat, S. Effect of Moisture on the Mechanical Properties of Glass Fiber Reinforced Polyamide Composites. Adv. Powder Technol. 2016, 27, 898–902. [Google Scholar] [CrossRef]
- Mosbah, A.; Chouchane, H.; Abdelwahed, S.; Redissi, A.; Hamdi, M.; Kouidhi, S.; Neifar, M.; Slaheddine Masmoudi, A.; Cherif, A.; Mnif, W. Peptides Fixing Industrial Textile Dyes: A New Biochemical Method in Wastewater Treatment. J. Chem. 2019, 2019, 5081807. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- dos Santos, A.; Viante, M.F.; dos Anjos, P.P.; Naidek, N.; Moises, M.P.; de Castro, E.G.; Downs, A.J.; Almeida, C.A.P. Removal of Astrazon Blue Dye from Aqueous Media by a Low-Cost Adsorbent from Coal Mining. Desalin. Water Treat. 2016, 57, 27213–27225. [Google Scholar] [CrossRef]
- Do, M.; Alkan, M.; Türkyilmaz, A.; Özdemir, Y. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption onto Perlite. J. Hazard. Mater. 2004, 109, 141–148. [Google Scholar] [CrossRef]
- Arami, M.; Yousefi, N.; Mohammad, N.; Salman, N. Equilibrium and Kinetics Studies for the Adsorption of Direct and Acid Dyes from Aqueous Solution by Soy Meal Hull. J. Hazard. Mater. 2006, 135, 171–179. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.; Sotiles, A.R.; Anaissi, F.J. Application of Corn Straw, an Agro-Waste, to Remove Dyes in an Aqueous Medium, Producing Blue or Red Fibers. Porcesses 2024, 12, 694. [Google Scholar] [CrossRef]
- Jesudoss, N.R.; Kumar, J.S.; Kamyab, H.; Jennifa, J.A.; Al-khashman, O.A.; Kuslu, Y.; Ene, A.; Kumar, B.S. Modern Enabling Techniques and Adsorbents Based Dye Removal with Sustainability Concerns in Textile Industrial Sector—A Comprehensive Review. J. Clean. Prod. 2020, 272, 122636. [Google Scholar] [CrossRef]
- dos Santos, F.D.D.; Batistela, V.R.; dos Santos, A.; Halison de Oliveira, J.; Radovanovic, E.; Granzotto, D.C.T.; Fávaro, S.L. Hybrid Polyurethane/Natural Fibers Composites Optimized by Simplex-Centroid Mixture Design. J. Compos. Mater. 2022, 56, 1039–1052. [Google Scholar] [CrossRef]
- ASTM D3574; Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams. ASTM: West Conshohocken, PA, USA, 2017.
- ASTM D395; Standard Test Methods for Rubber Property—Compression Set. ASTM: West Conshohocken, PA, USA, 2018.
- Zhou, Y.; Fan, M.; Chen, L. Interface and Bonding Mechanisms of Plant Fibre Composites: An Overview. Compos. Part B Eng. 2016, 101, 31–45. [Google Scholar] [CrossRef]
- Xu, H.; Yang, Y.; Li, L.; Liu, B.; Fu, X.; Yang, X.; Cao, Y. Mechanical Properties Variation in Wood—Plastic Composites with a Mixed Wood Fiber Size. Materials 2023, 16, 5801. [Google Scholar] [CrossRef]
- Mohamed, W.Z.W.; Baharum, A.; Ahmad, I.; Abdullah, I.; Zakaria, N.E. Effects of Fiber Size and Fiber Content on Mechanical and Physical Properties of Mengkuang Reinforced Thermoplastic Natural Rubber Composites. BioResources 2018, 13, 2945–2959. [Google Scholar] [CrossRef]
- Pompe, G.; Pohlers, A.; Pionteck, J. Influence of Processing Conditions on the Multiphase Structure of Segmented Polyurethane. Polymer 1998, 39, 5147–5153. [Google Scholar] [CrossRef]
- Prasad, N.; Agarwal, V.K.; Sinha, S. Physico-Mechanical Properties of Coir Fiber/LDPE Composites: Effect of Chemical Treatment and Compatibilizer. Korean J. Chem. Eng. 2015, 32, 2534–2541. [Google Scholar] [CrossRef]
- Kiss, G.; Rusu, G.; Peter, F.; Tanase, I.; Bandur, G. Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations. Polymers 2020, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- Glenn, G.; Orts, W.; Klamczynski, A.; Shogren, R.; Hart-Cooper, W.; Wood, D.; Lee, C.; Chiou, B.-S. Compression Molded Cellulose Fiber Foams. Cellulose 2023, 30, 3489–3503. [Google Scholar] [CrossRef]
- Ge, H.; Wang, C.; Liu, S.; Huang, Z. Synthesis of Citric Acid Functionalized Magnetic Graphene Oxide Coated Corn Straw for Methylene Blue Adsorption. Bioresour. Technol. 2016, 221, 419–429. [Google Scholar] [CrossRef]
- Chatterjee, S.; Guha, N.; Krishnan, S.; Singh, A.K.; Mathur, P.; Rai, D.K. Selective and Recyclable Congo Red Dye Adsorption by Spherical Fe3O4 Nanoparticles Functionalized with 1,2,4,5-Benzenetetracarboxylic Acid. Sci. Rep. 2020, 10, 111. [Google Scholar] [CrossRef]
- Machado, C.M.; Benelli, P.; Tessaro, I.C. Study of Interactions between Cassava Starch and Peanut Skin on Biodegradable Foams. Int. J. Biol. Macromol. 2020, 147, 1343–1353. [Google Scholar] [CrossRef]
- Chotiprayon, P.; Chaisawad, B.; Yoksan, R. Thermoplastic Cassava Starch/Poly(Lactic Acid) Blend Reinforced with Coir Fibres. Int. J. Biol. Macromol. 2020, 156, 960–968. [Google Scholar] [CrossRef]
Run | Factor A: Granulometric (µm) | Factor B: Amount of Fiber (%) |
---|---|---|
1 | 250 (−1) | 5 (−1) |
2 | 250 (−1) | 5 (−1) |
3 | 600 (+1) | 30 (+1) |
4 | 600 (+1) | 5 (−1) |
5 | 250 (−1) | 30 (+1) |
6 | 600 (+1) | 5 (−1) |
7 | 600 (+1) | 30 (+1) |
8 | 250 (−1) | 30 (+1) |
Factor | Mechanical Response | Dye Removal Response | |||||||
---|---|---|---|---|---|---|---|---|---|
Run | A 1 | B 2 | Resilience (%) | Young’s Modulus (Pa) | PDCT (%) | MB Removal (%) | MB qe (mg g−1) | CR Removal (%) | CR qe (mg g−1) |
1 | 250 | 5 | 31 | 0.67 | 18.89 | 73.39 | 0.61 | 62.53 | 1.21 |
2 | 250 | 5 | 31 | 0.67 | 14.28 | 75.00 | 0.63 | 54.19 | 1.04 |
3 | 600 | 30 | 29 | 0.88 | 47.61 | 99.23 | 0.82 | 73.73 | 1.43 |
4 | 600 | 5 | 33 | 0.23 | 5.59 | 81.74 | 0.68 | 74.05 | 1.48 |
5 | 250 | 30 | 27 | 0.76 | 8.48 | 92.60 | 0.77 | 92.74 | 1.80 |
6 | 600 | 5 | 33 | 0.40 | 5.85 | 77.06 | 0.66 | 74.05 | 1.47 |
7 | 600 | 30 | 30 | 1.01 | 33.80 | 98.67 | 0.81 | 66.86 | 1.31 |
8 | 250 | 30 | 27 | 0.60 | 6.80 | 93.10 | 0.76 | 95.80 | 1.80 |
Control 3 | 0 | 0 | 55 ± 5 | 0.60 ± 0.14 | 20.90 ± 4.04 | 84.47 ± 2.50 | 0.70 ± 0.02 | 88.94 ± 4.61 | 1.78 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, A.; Silva, G.V.A.; Fornazaro, G.; Fávaro, S.L.; Anaissi, F.J. Corn Straw Fibers, an Agro-Industrial Residue, Used as Reinforcement in Polyurethane Foams in Dye Removal in Wastewater. Processes 2025, 13, 939. https://doi.org/10.3390/pr13040939
dos Santos A, Silva GVA, Fornazaro G, Fávaro SL, Anaissi FJ. Corn Straw Fibers, an Agro-Industrial Residue, Used as Reinforcement in Polyurethane Foams in Dye Removal in Wastewater. Processes. 2025; 13(4):939. https://doi.org/10.3390/pr13040939
Chicago/Turabian Styledos Santos, Andressa, Gabriel Vinicius Alvez Silva, Gabriel Fornazaro, Sílvia Luciana Fávaro, and Fauze Jacó Anaissi. 2025. "Corn Straw Fibers, an Agro-Industrial Residue, Used as Reinforcement in Polyurethane Foams in Dye Removal in Wastewater" Processes 13, no. 4: 939. https://doi.org/10.3390/pr13040939
APA Styledos Santos, A., Silva, G. V. A., Fornazaro, G., Fávaro, S. L., & Anaissi, F. J. (2025). Corn Straw Fibers, an Agro-Industrial Residue, Used as Reinforcement in Polyurethane Foams in Dye Removal in Wastewater. Processes, 13(4), 939. https://doi.org/10.3390/pr13040939