Editorial for the Special Issue “Wastewater and Waste Treatment: Overview, Challenges and Current Trends (Volume II)”
1. Introduction
2. Overview of Contributions
3. Challenges and Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Rashid, S.; Sultan, H.; Rashid, W.; Talpur, B.D.; Supe Tulcan, R.X.; Khan, M.T.; Bohnett, E.; Korai, M.S.; Zhang, L. A critical review of opportunities and challenges of solid waste management in an emerging economy- evidence from Pakistan. Environ. Dev. 2025, 55, 101182. [Google Scholar] [CrossRef]
- Bano, S.; Singh, K.; Chaudhary, A.; Chandra, R. Innovative methods for the valorisation of solid wastes from sugar mill and refineries for sustainable development: A review. Clean. Waste Syst. 2025, 10, 100230. [Google Scholar] [CrossRef]
- Dhenkula, S.P.; Shende, A.D.; Deshpande, L.; Pophali, G.R. An overview of heavy metals treatment & management for laboratory waste liquid (LWL). J. Environ. Chem. Eng. 2024, 12, 113165. [Google Scholar] [CrossRef]
- Kumareswaran, K.; Ranasinghe, S.; Jayasinghe, G.Y.; Dassanayake, K.B. Systematic review on liquid organic waste (LOW) characteristics, processing technologies, and their potential applications: Towards circular economy and resource efficiency. J. Clean. Prod. 2024, 447, 141286. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Chin, J.Y.; Mohd Harun, M.H.Z.; Low, S.C. Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. J. Water Process. Eng. 2022, 46, 102553. [Google Scholar] [CrossRef]
- Salem, K.S.; Clayson, K.; Salas, M.; Haque, N.; Rao, R.; Agate, S.; Singh, A.; Levis, J.W.; Mittal, A.; Yarbrough, J.M.; et al. A critical review of existing and emerging technologies and systems to optimize solid waste management for feedstocks and energy conversion. Matter 2023, 6, 3348–3377. [Google Scholar] [CrossRef]
- Shamshad, J.; Ur Rehman, R. Innovative approaches to sustainable wastewater treatment: A comprehensive exploration of conventional and emerging technologies. Environ. Sci. Adv. 2024, 4, 189–222. [Google Scholar] [CrossRef]
- Mishra, V.; Mukherjee, P.; Bhattacharya, S.; Sharma, R.S. Innovative sustainable solutions for detoxifying textile industry effluents using advanced oxidation and biological methods. J. Environ. Manag. 2025, 380, 124804. [Google Scholar] [CrossRef]
- Tahmasbi, F.; Khdair, A.I.; Aburumman, G.A.; Tahmasebi, M.; Thi, N.H.; Afrand, M. Energy-efficient building façades: A comprehensive review of innovative technologies and sustainable strategies. J. Build. Eng. 2025, 99, 111643. [Google Scholar] [CrossRef]
- Getahun, M.J.; Kassie, B.B.; Alemu, T.S. Recent advances in biopolymer synthesis, properties, & commercial applications: A review. Process. Biochem. 2024, 145, 261–287. [Google Scholar] [CrossRef]
- Stančin, H.; Mikulčić, H.; Wang, X.; Duić, N. A review on alternative fuels in future energy system. Renew. Sustain. Energy Rev. 2020, 128, 109927. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, J.; Chen, L.; Chao, Y.; Zhu, W.; Liu, Z. A review of adsorption materials and their application of 3D printing technology in the separation process. Chem. Eng. J. 2023, 475, 146247. [Google Scholar] [CrossRef]
- Begum, Y.A.; Kumari, S.; Jain, S.K.; Garg, M.C. A review on waste biomass-to-energy: Integrated thermochemical and biochemical conversion for resource recovery. Environ. Sci. Adv. 2024, 3, 1197–1216. [Google Scholar] [CrossRef]
- Shahzad, H.M.A.; Almomani, F.; Shahzad, A.; Mahmoud, K.A.; Rasool, K. Challenges and opportunities in biogas conversion to microbial protein: A pathway for sustainable resource recovery from organic waste. Process. Saf. Environ. Prot. 2024, 185, 644–659. [Google Scholar] [CrossRef]
- Feng, L.; Tian, B.; Zhu, M.; Yang, M. Current progresses in the analysis, treatment and resource utilization of industrial waste salt in China: A comprehensive review. Resour. Conserv. Recycl. 2025, 217, 108224. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, X.; Qu, G.; Lu, P.; Wang, J.; Wu, F.; Ren, Y. Secondary resource utilization of metallurgical solid waste: Current status and future prospects of wet extraction of valuable metals. Sep. Purif. Technol. 2025, 361, 131278. [Google Scholar] [CrossRef]
- Zagklis, D.P.; Bampos, G. Editorial for the Special Issue “Wastewater and Waste Treatment: Overview, Challenges and Current Trends.”. Processes 2024, 12, 853. [Google Scholar] [CrossRef]
- Bisinella, V.; Schmidt, S.; Varling, A.S.; Laner, D.; Christensen, T.H. Waste LCA and the future. Waste Manag. 2024, 174, 53–75. [Google Scholar] [CrossRef]
- Rashid, S.S.; Harun, S.N.; Hanafiah, M.M.; Razman, K.K.; Liu, Y.-Q.; Tholibon, D.A. Life Cycle Assessment and Its Application in Wastewater Treatment: A Brief Overview. Processes 2023, 11, 208. [Google Scholar] [CrossRef]
- Manthos, G.; Zagklis, D.; Georgopoulos, C.; Zafiri, C.; Kornaros, M. Life Cycle Assessment of Waste Glass Geopolymerization for the Production of Sustainable Construction Materials. Processes 2025, 13, 331. [Google Scholar] [CrossRef]
- Takata, M.; Fukushima, K.; Kawai, M.; Nagao, N.; Niwa, C.; Yoshida, T.; Toda, T. The choice of biological waste treatment method for urban areas in Japan—An environmental perspective. Renew. Sustain. Energy Rev. 2013, 23, 557–567. [Google Scholar] [CrossRef]
- Sravan, J.S.; Matsakas, L.; Sarkar, O. Advances in Biological Wastewater Treatment Processes: Focus on Low-Carbon Energy and Resource Recovery in Biorefinery Context. Bioengineering 2024, 11, 281. [Google Scholar] [CrossRef] [PubMed]
- Radice, R.P.; De Fabrizio, V.; Donadoni, A.; Scopa, A.; Martelli, G. Crude Oil Bioremediation: From Bacteria to Microalgae. Processes 2023, 11, 442. [Google Scholar] [CrossRef]
- Micolucci, F.; Roques, J.A.C.; Ziccardi, G.S.; Fujii, N.; Sundell, K.; Kindaichi, T. Candidatus Scalindua, a Biological Solution to Treat Saline Recirculating Aquaculture System Wastewater. Processes 2023, 11, 690. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jeong, S.; Lee, Y.; Lee, J.-C.; Kim, H.-W. The Crucial Impact of Microbial Growth and Bioenergy Conversion on Treating Livestock Manure and Antibiotics Using Chlorella sorokiniana. Processes 2024, 12, 252. [Google Scholar] [CrossRef]
- Islam, N.F.; Gogoi, B.; Saikia, R.; Yousaf, B.; Narayan, M.; Sarma, H. Encouraging circular economy and sustainable environmental practices by addressing waste management and biomass energy production. Reg. Sustain. 2024, 5, 100174. [Google Scholar] [CrossRef]
- Atstaja, D.; Cudecka-Purina, N.; Koval, V.; Kuzmina, J.; Butkevics, J.; Hrinchenko, H. Waste-to-Energy in the Circular Economy Transition and Development of Resource-Efficient Business Models. Energies 2024, 17, 4188. [Google Scholar] [CrossRef]
- Manthos, G.; Zagklis, D.; Ali, S.S.; Zafiri, C.; Kornaros, M. Techno-Economic Evaluation of the Thermochemical Energy Valorization of Construction Waste and Algae Biomass: A Case Study for a Biomass Treatment Plant in Northern Greece. Processes 2023, 11, 1549. [Google Scholar] [CrossRef]
- Sperandio, G.; Junior, I.M.; Bernardo, E.; Moreira, R. Graphene Oxide from Graphite of Spent Batteries as Support of Nanocatalysts for Fuel Hydrogen Production. Processes 2023, 11, 3250. [Google Scholar] [CrossRef]
- Jiménez-García, E.A.; Pérez-Huertas, S.; Pérez, A.; Calero, M.; Blázquez, G. Recycling PVC Waste into CO2 Adsorbents: Optimizing Pyrolysis Valorization with Neuro-Fuzzy Models. Processes 2024, 12, 431. [Google Scholar] [CrossRef]
- Pozo-Morales, L.; Rosales Martínez, A.; Baquerizo, E.; del Valle Agulla, G. Simulation Tool for the Techno-Economic Assessment of the Integrated Production of Polyhydroxyalkanoates as Value-Added Byproducts of a Wastewater Treatment Plant. Processes 2025, 13, 295. [Google Scholar] [CrossRef]
- Parra Ramirez, M.A.; Fogel, S.; Reinecke, S.F.; Hampel, U. Techno-Economic Assessment of PEM Electrolysis for O2 Supply in Activated Sludge Systems—A Simulation Study Based on the BSM2 Wastewater Treatment Plant. Processes 2023, 11, 1639. [Google Scholar] [CrossRef]
- Franco, L.A.; Stuart, T.D.; Hossain, M.S.; Ramarao, B.V.; VanLeuven, C.C.; Wriedt, M.; Satchwell, M.; Kumar, D. Apple Pomace-Derived Cationic Cellulose Nanocrystals for PFAS Removal from Contaminated Water. Processes 2024, 12, 297. [Google Scholar] [CrossRef]
- Jellali, S.; Hamdi, W.; Al-Harrasi, M.; Al-Wardy, M.; Al-Sabahi, J.; Al-Nadabi, H.; Al-Raeesi, A.; Jeguirim, M. Investigations on Amoxicillin Removal from Aqueous Solutions by Novel Calcium-Rich Biochars: Adsorption Properties and Mechanisms Exploration. Processes 2024, 12, 1552. [Google Scholar] [CrossRef]
- Boulerial, S.; Salerno, C.; Castrogiovanni, F.; Tumolo, M.; Berardi, G.; Debab, A.; Haddou, B.; Benhamou, A.; Pollice, A. Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater. Processes 2024, 12, 323. [Google Scholar] [CrossRef]
- Hu, L.; Shi, L.; Dawolo, E.H.; Ding, N.; Liu, H. Cobalt-Modified Biochar from Rape Straw as Persulfate Activator for Degradation of Antibiotic Metronidazole. Processes 2024, 12, 1596. [Google Scholar] [CrossRef]
- Jurík, J.; Jankovičová, B.; Zakhar, R.; Šoltýsová, N.; Derco, J. Quaternary Treatment of Urban Wastewater for Its Reuse. Processes 2024, 12, 1905. [Google Scholar] [CrossRef]
- Mansouri, S.S.; Udugama, I.A.; Cignitti, S.; Mitic, A.; Flores-Alsina, X.; Gernaey, K. V Resource recovery from bio-based production processes: A future necessity? Curr. Opin. Chem. Eng. 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Resource Recovery from Waste: Restoring the Balance between Resource Scarcity and Waste Overload. Sustainability 2017, 9, 1603. [Google Scholar] [CrossRef]
- Jia, L.; Juneja, A.; Majumder, E.L.-W.; Ramarao, B.V.; Kumar, D. Efficient Enzymatic Hydrolysis and Polyhydroxybutyrate Production from Non-Recyclable Fiber Rejects from Paper Mills by Recombinant Escherichia coli. Processes 2024, 12, 1576. [Google Scholar] [CrossRef]
- Čolnik, M.; Irgolič, M.; Perva, A.; Škerget, M. The Conversion of Pistachio and Walnut Shell Waste into Valuable Components with Subcritical Water. Processes 2024, 12, 195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagklis, D.P.; Bampos, G. Editorial for the Special Issue “Wastewater and Waste Treatment: Overview, Challenges and Current Trends (Volume II)”. Processes 2025, 13, 1097. https://doi.org/10.3390/pr13041097
Zagklis DP, Bampos G. Editorial for the Special Issue “Wastewater and Waste Treatment: Overview, Challenges and Current Trends (Volume II)”. Processes. 2025; 13(4):1097. https://doi.org/10.3390/pr13041097
Chicago/Turabian StyleZagklis, Dimitris P., and Georgios Bampos. 2025. "Editorial for the Special Issue “Wastewater and Waste Treatment: Overview, Challenges and Current Trends (Volume II)”" Processes 13, no. 4: 1097. https://doi.org/10.3390/pr13041097
APA StyleZagklis, D. P., & Bampos, G. (2025). Editorial for the Special Issue “Wastewater and Waste Treatment: Overview, Challenges and Current Trends (Volume II)”. Processes, 13(4), 1097. https://doi.org/10.3390/pr13041097