Synthesis of 2,3-Dihydrobenzofuran Chalcogenides Under Visible Light: A Sustainable Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedure
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cordeiro, P.; Rebelo, A.; Menezes, V.; Reis, J.S.; Nascimento, V. Fontes Naturais e Sintéticas de derivados de 2,3-Dihidrobenzofuranos: Uma Abordagem Recente. Rev. Virtual Quím. 2023, 15, 374–401. [Google Scholar] [CrossRef]
- Chen, Z.; Pitchakuntla, M.; Jia, Y. Synthetic approaches to natural products containing 2,3-dihydrobenzofuran skeleton. Nat. Prod. Rep. 2019, 36, 666–690. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.-W.; Chai, H.-B.; Keller, W.J.; Kinghorn, D.A. Lignans and Other Constituents of the Fruits of Euterpe oleracea (Açai) with Antioxidant and Cytoprotective Activities. J. Agric. Food Chem. 2008, 56, 7759–7764. [Google Scholar] [CrossRef] [PubMed]
- Dapkekar, A.B.; Sreenivasulu, C.; Kishore, D.R.; Satyanarayana, G. Recent Advances Towards the Synthesis of Dihydrobenzofurans and Dihydroisobenzofurans. Asian J. Org. Chem. 2022, 11, e202200012. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.-M.; Zhang, C.-S.; Liu, S.-Z.; Tian, J.-M.; Wang, S.-H.; Zhang, X.-M.; Tu, Y.-Q. Enantioselective synthesis of cis-hydrobenzofurans bearing all-carbon quaternary stereocenters and application to total synthesis of (−)-morphine. Nature 2019, 10, 2507. [Google Scholar] [CrossRef]
- Zarin, M.K.Z.; Dehaen, W.; Salehi, P.; Asl, A.A.B. Synthesis and Modification of Morphine and Codeine, Leading to Diverse Libraries with Improved Pain Relief Properties. Pharmaceutics 2023, 15, 1779. [Google Scholar] [CrossRef]
- Da Fonseca, A.C.C.; De Queiroz, L.N.; Felisberto, J.S.; Ramos, Y.J.; Marques, A.M.; Wermelinger, G.F.; Pontes, B.; Moreira, D.L.; Robbs, B.K. Cytotoxic effect of pure compounds from Piper rivinoides Kunth against oral squamous cell carcinoma. Nat. Prod. Res. 2021, 35, 6163–6167. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, Q.; Li, C. Total Synthesis of (+)-Decursivine. Org. Lett. 2011, 13, 5302–5305. [Google Scholar] [CrossRef]
- Ashraf, R.; Zahoor, A.F.; Ali, K.G.; Nazeer, U.; Saif, M.J.; Mansha, A.; Chaudhry, A.R.; Irfan, A. Development of novel transition metal-catalyzed synthetic approaches for the synthesis of a dihydrobenzofuran nucleus: A review. RSC Adv. 2024, 14, 14539–14581. [Google Scholar] [CrossRef]
- Chen, W.; Yang, X.-D.; Li, Y.; Yang, L.-J.; Wang, X.-Q.; Zhang, G.-L.; Zhang, H.-B. Design, synthesis and cytotoxic activities of novel hybrid compounds between dihydrobenzofuran and imidazole. Org. Biomol. Chem. 2011, 9, 4250–4255. [Google Scholar] [CrossRef]
- Wang, D.-H.; Yu, J.-Q. Highly Convergent Total Synthesis of (+)-Lithospermic Acid via a Late-Stage Intermolecular C−H Olefination. J. Am. Chem. Soc. 2011, 133, 5767–5769. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-A.; Yue, L.; Zhu, J.; Ren, H.; Zhang, H.; Hu, D.-Y.; Han, G.; Feng, J.; Nan, Z.-D. Total synthesis of Tasimelteon. Tetrahedron Lett. 2019, 60, 1986–1988. [Google Scholar] [CrossRef]
- Pandi-Perumal, S.R.; Srinivasan, V.; Poeggeler, B.; Hardeland, R.; Cardinali, D.P. Drug Insight: The use of melatonergic agonists for the treatment of insomnia—Focus on ramelteon. Nat. Clin. Pract. Neurol. 2007, 3, 221–228. [Google Scholar] [CrossRef]
- Scheide, M.R.; Schneider, A.R.; Jardim, G.A.M.; Martins, G.M.; Durigon, D.C.; Saba, S.; Rafique, J.; Braga, A.L. Electrochemical synthesis of selenyl-dihydrofurans via anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Org. Biomol. Chem. 2020, 18, 4916–4921. [Google Scholar] [CrossRef]
- Azevedo, A.R.; Cordeiro, P.S.; Strelow, D.N.; Andrade, K.N.; Neto, M.R.S.; Fiorot, R.G.; Brüning, C.A.; Braga, A.L.; Lião, L.M.; Bortolatto, C.F.; et al. Green Approach for the Synthesis of Chalcogenyl-2,3-dihydrobenzofuran Derivatives Through Allyl-phenols/Naphthols and Their Potential as MAO-B Inhibitors. Chem. Asian J. 2023, 18, e202300586. [Google Scholar] [CrossRef]
- Hellwig, P.S.; Barcellos, A.M.; Furst, C.G.; Alberto, E.E.; Perin, G. Oxyselenocyclization of 2-Allylphenols for the Synthesis of 2,3-Dihydrobenzofuran Selenides. ChemistrySelect 2021, 6, 13884–13889. [Google Scholar] [CrossRef]
- Bartz, R.H.; Souz, P.S.; Iarocz, L.E.B.; Hellwig, P.S.; Jacob, R.G.; Silva, M.S.; Lenardão, E.J.; Perin, G. Greening the Synthesis of 2,3-Dihydrobenzofuran Selenides: I2/TBHP-Promoted Selenocyclization of 2-Allylphenols. Eur. J. Org. Chem. 2025, 28, e202401243. [Google Scholar] [CrossRef]
- Zhou, C.F.; Zhang, Y.-Q.; Ling, Y.; Ming, L.; Xi, X.; Liu, G.-Q.; Zhang, Y. Time-economical synthesis of selenofunctionalized heterocycles via I2O5-mediated selenylative heterocyclization. Org. Biomol. Chem. 2022, 20, 420–426. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Magolda, R.L.; Sipio, W.J.; Barnette, W.E.; Lysenko, Z.; Joullie, M.M. Phenylselenoetherification. A highly efficient cyclization process for the synthesis of oxygen- and sulfur-heterocycles. J. Am. Chem. Soc. 1980, 102, 3784–3793. [Google Scholar] [CrossRef]
- Kostić, M.; Verdía, P.; Fernández-Stefanuto, V.; Puchta, R.; Tojo, E. A mild and efficient procedure for alkenols oxyselenocyclization by using ionic liquids. J. Phys. Org. Chem. 2019, 32, e3928. [Google Scholar] [CrossRef]
- Okuma, K.; Seto, J.-I. Synthesis of Indoles, 3,1-Benzoxazines, and Quinolines from 2-Alkenylanilides and Active Seleniums. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 1014–1020. [Google Scholar] [CrossRef]
- Chen, R.; Zheng, T.; Jaing, X.; Yeung, Y.-Y. Cyclopropenium Sulfide as Lewis Base Catalyst for Chemoselective and Regioselective Electrophilic Selenylation of Phenols. ACS Catal. 2024, 14, 9198–9206. [Google Scholar] [CrossRef]
- Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoli, D.; Balducci, R. Ring-closure reactions initiated by the peroxydisulfate ion oxidation of diphenyl diselenide. J. Org. Chem. 1990, 55, 429–434. [Google Scholar] [CrossRef]
- Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532. [Google Scholar] [CrossRef]
- Vergaelen, M.; Verbraeken, B.; Van Guyse, J.F.R.; Podevyn, A.; Tigrine, A.; De la Rosa, V.R.; Monnery, B.D.; Hoogenboom, R. Ethyl acetate as solvent for the synthesis of poly(2-ethyl-2- oxazoline). Green Chem. 2020, 22, 1747–1753. [Google Scholar] [CrossRef]
- Peglow, T.J.; Nobre, P.C.; Thomaz, J.P.S.S.C.; Vieira, M.M.; Junior, H.C.S.; Dalberto, B.T.; Schneider, P.H.; Rodembusch, F.S.; Nascimento, V. Synthesis and Photophysical Evaluation of Dialkynyl-N-(het)arylpyrroles: Promising Key Compounds in Fluorescence Chemistry. Asian J. Org. Chem. 2024, 13, e202300655. [Google Scholar] [CrossRef]
- Peglow, T.J.; Martins, C.C.; Da Motta, K.P.; Luchese, C.; Wilhelm, E.A.; Stieler, R.; Schneider, P.H. Synthesis and biological evaluation of 5-chalcogenyl-benzo[h]quinolines via photocyclization of arylethynylpyridine derivatives. New J. Chem. 2022, 46, 23030–23038. [Google Scholar] [CrossRef]
- Li, Y.-N.; Chen, F.; Zhang, X.-G.; Tu, H.-Y. Iodine-Mediated Regioselective Radical Cyclization of o-Vinylaryl Isocyanides with Disulfides/Diselenides Leading to 2-Chalcogenated Quinolines. Adv. Synth. Catal. 2023, 365, 3814–3818. [Google Scholar] [CrossRef]
- Meng, Z.; Shi, M.; Wei, Y. Iodine radical mediated cascade [3 + 2] carbocyclization of ene-vinylidenecyclopropanes with thiols and selenols via photoredox catalysis. Org. Chem. Front. 2024, 11, 1395–1403. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, G.; Jiang, L.; Dong, Y.; Zhan, X.; Sun, F.; Du, Y. Construction of C-S and C-Se Bonds Mediated by Hypervalent Iodine Reagents Under Metal-Free Conditions. Curr. Org. Chem. 2022, 26, 1935–1953. [Google Scholar] [CrossRef]
- Tian, S.-Y.; Ai, J.-J.; Han, J.-H.; Rao, W.; Shen, S.-S.; Sheng, D.; Wang, S.-Y. Photoinduced Construction of Thieno [3,4-c]quinolin-4(5H)-ones/Selenopheno [3,4-c]quinolin-4(5H)-ones Using Diphenyl Disulfide or Diphenyl Diselenide as Sulfur or Selenium Sources. J. Org. Chem. 2023, 88, 828–837. [Google Scholar] [CrossRef]
- Jiang, S.; Leng, Y.; Wang, P.; Sui, K.; Ma, N.; Wu, Y. Visible-Light-Induced Regioselective Selenohydroxylation of Enamine Amides with Diaryl Diselenides. Eur. J. Org. Chem. 2024, 27, e202400600. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Wang, Y.; Zhu, H.; Le, Z.; Xie, Z. Photo-induced organoselenium-catalyzed synthesis of 2-substituted quinazoline derivatives. J. Mol. Struct. 2024, 1297, 136940. [Google Scholar] [CrossRef]
- Chillal, A.S.; Bhawale, R.T.; Kshirsagar, U.A. Photoinduced Regioselective Chalcogenation and Thiocyanation of 4H-Pyrido [1,2-a] pyrimidin-4-ones Under Benign Conditions. Eur. J. Org. Chem. 2023, 26, e202300665. [Google Scholar] [CrossRef]
- Dalberto, B.T.; Vieira, M.M.; Padilha, N.B.; Stieler, R.; Schneider, P.H. Visible-Light-Mediated Cyclization of 1,3-Diones and Chalcogenoalkynes: An Eco-Friendly Protocol for the Regioselective Formation of Polysubstituted Chalcogenofurans. ChemCatChem 2024, 16, e202400869. [Google Scholar] [CrossRef]
- Rodrigues, I.; Barcellos, A.M.; Belladona, A.L.; Roehrs, J.A.; Cargnelutti, R.; Alves, D.; Perin, G.; Schumacher, R.F. Oxone®-mediated direct arylselenylation of imidazo [2,1-b]thiazoles, imidazo [1,2-a]pyridines and 1H-pyrazoles. Tetrahedron 2018, 74, 4242–4246. [Google Scholar] [CrossRef]
- Bian, M.; Hua, J.; Ma, T.; Xu, J.; Cai, C.; Yang, Z.; Liu, C.; He, W.; Fang, Z.; Guo, K. Continuous-flow electrosynthesis of selenium-substituted iminoisobenzofuran via oxidative cyclization of olefinic amides and diselenides. Org. Biomol. Chem. 2021, 19, 3207–3212. [Google Scholar] [CrossRef]
- Beukeaw, D.; Noikham, M.; Yotphan, S. Iodine/persulfate-promoted site-selective direct thiolation of quinolones and uracils. Tetrahedron 2019, 75, 130537. [Google Scholar] [CrossRef]
- Kumar, P.; Bhalla, A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr. Chem. 2024, 382, 12. [Google Scholar] [CrossRef]
- Kosso, A.R.O.; Kabri, Y.; Broggi, J.; Redon, S.; Vanelle, P. Sequential Regioselective Diorganochalcogenations of Imidazo [1,2-a]pyrimidines Using I2/H3PO4 in Dimethylsulfoxide. J. Org. Chem. 2020, 85, 3071–3081. [Google Scholar] [CrossRef]
- Win, K.M.N.; Sonawane, A.D.; Koketsu, M. Synthesis of selenated tetracyclic indoloazulenes via iodine and diorganyl diselenides. Org. Biomol. Chem. 2021, 19, 3199–3206. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.; Angeli, A.; Galdini, R.; Hughineata, A.J.; Pering, G.; Lenardão, E.J.; Marini, F.; Santi, C.; Supuran, C.T.; Bagnoli, L. Iodine/Oxone® oxidative system for the synthesis of selenylindoles bearing a benzenesulfonamide moiety as carbonic anhydrase I, II, IX, and XII inhibitors. Org. Biomol. Chem. 2024, 22, 6532–6542. [Google Scholar] [CrossRef] [PubMed]
- Dhurey, A.; Mandal, S.; Pramanik, A. I2/DMSO-Promoted Synthesis of Diaryl Sulfide- and Selenide-Embedded Arylhydrazones. J. Org. Chem. 2023, 88, 5377–5390. [Google Scholar] [CrossRef] [PubMed]
- Thedy, M.E.C.; Gularte, M.M.; Azeredo, J.B.; Braga, A.L. I2/DMSO Mediated Direct Selenylation of Uracils with Diorganoyl Diselenides—A Simple Protocol to Access 5-Selanyl-Uracils. ChemistrySelect 2024, 9, e202402057. [Google Scholar] [CrossRef]
- Jiang, H.; Schen, H.; Li, C.; Jin, Z.; Shang, Y.; Chen, Y.; Yi, M.; Du, J.; Gui, Q.-W. Synthesis of Seleno Oxindoles via Iodine-Induced Radical Cyclization of N-Arylacrylamides with Diorganyl Diselenides. Synthesis 2022, 54, 2669–2676. [Google Scholar] [CrossRef]
- Yi, R.; Liu, S.; Gao, H.; Liang, Z.; Xu, X.; Li, N. Iodine-promoted direct thiolation (selenylation) of imidazole with disulfides (diselenide): A convenient and metal-free protocol for the synthesis of 2-arylthio(seleno)imidazole. Tetrahedron 2020, 76, 130951. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y.; Yu, L.; Xu, Q.; Jiang, X. Visible light-promoted, iodine-catalyzed selenoalkoxylation of olefins with diselenides and alcohols in the presence of hydrogen peroxide/air oxidant: An efficient access to α-alkoxyl selenides. Sci. China Chem. 2018, 61, 294–299. [Google Scholar] [CrossRef]
- Du, H.-A.; Tang, R.-Y.; Deng, C.-L.; Liu, Y.; Li, J.-H.; Zhang, X.-G. Iron-Facilitated Iodine-Mediated Electrophilic Annulation of N,N-Dimethyl-2-alkynylanilines with Disulfides or Diselenides. Adv. Synth. Catal 2011, 353, 2739–2748. [Google Scholar] [CrossRef]
- Tran, V.H.; Nguyen, A.T.; Kim, H.-K. Tin(II) Chloride-Catalyzed Direct Esterification and Amidation of tert-Butyl Esters Using α,α-Dichlorodiphenylmethane Under Mild Conditions. J. Org. Chem. 2023, 88, 13291–13302. [Google Scholar] [CrossRef]
- Masuyama, Y.; Hayashi, M.; Suzuki, N. SnCl2-Catalyzed Propargylic Substitution of Propargylic Alcohols with Carbon and Nitrogen Nucleophiles. Eur. J. Org. Chem. 2013, 2013, 2914–2921. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Agrawal, N.; Mali, S.M.; Jadhav, S.V.; Gopi, H.N. Tin(ii) chloride assisted synthesis of N-protected γ-amino β-keto esters through semipinacol rearrangement. Org. Biomol. Chem. 2010, 8, 4855–4860. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, P.; Perumal, P.T. SnCl2·2H2O—An Alternative to Lewis Acidic Ionic Liquids. Chem. Lett. 2006, 35, 632–633. [Google Scholar] [CrossRef]
- Akiyama, T.; Onuma, Y. Tin(ii) chloride mediated allylation of aldimines generated in situ with allylstannane in water. J. Chem. Soc. 2002, 1, 1157–1158. [Google Scholar] [CrossRef]
- Aichhorn, S.; Himmelsbach, M.; Schöfberger, W. Synthesis of quinoxalines or quinolin-8-amines from N-propargyl aniline derivatives employing tin and indium chlorides. Org. Biomol. Chem. 2015, 13, 9373–9380. [Google Scholar] [CrossRef]
- Marjani, A.P.; Khalafy, J.; Salami, F.; Mohammadlou, M. Tin(II) Chloride Catalyzed Synthesis of New Pyrazolo [5,4-b]quinolines under Solvent-Free Conditions. Synthesis 2015, 47, 1656–1660. [Google Scholar] [CrossRef]
- Menezes, F.D.L.; Guimarães, M.D.O.; Silva, M.J. Highly Selective SnCl2-Catalyzed Solketal Synthesis at Room Temperature. Ind. Eng. Chem. Res. 2013, 52, 16709–16713. [Google Scholar] [CrossRef]
- Schendera, E.; Unkel, L.-N.; Quyen, P.P.H.; Salkewitz, G.; Hoffmann, F.; Villinger, A.; Brasholz, M. Visible-Light-Mediated Aerobic Tandem Dehydrogenative Povarov/Aromatization Reaction: Synthesis of Isocryptolepines. Chem. Eur. J. 2020, 26, 269–274. [Google Scholar] [CrossRef]
- Maejima, S.; Yamaguchi, E.; Itoh, A. Intermolecular Tandem Addition/Esterification Reaction of Alkenes with Malonates Leading to γ-Lactones Mediated by Molecular Iodine under Visible Light Irradiation. Adv. Synth. Catal. 2017, 359, 3883–3887. [Google Scholar] [CrossRef]
- Maejima, S.; Yamaguchi, E.; Itoh, A. trans-Diastereoselective Syntheses of γ-Lactones by Visible Light-Iodine-Mediated Carboesterification of Alkenes. ACS Omega 2019, 4, 4856–4870. [Google Scholar] [CrossRef]
- Maejima, S.; Yamaguchi, E.; Itoh, A. Three-Component Iminolactonization Reaction via Bifunctionalization of Olefins Using Molecular Iodine and Visible Light. J. Org. Chem. 2020, 85, 10709–10718. [Google Scholar] [CrossRef]
Entry | I2 (Equiv.) | Visible Light | Photocatalyst | Additive (Equiv.) | Solvent | Time (h) | Yield (%) b |
---|---|---|---|---|---|---|---|
1 | - | Blue LED | Eosin Y (5 mol%) | - | DCM | 24 | 41 |
2 | - | Blue LED | Eosin Y (5 mol%) | InCl3 (2 equiv.) | DCM | 24 | 56 |
3 | - | Blue LED | Eosin Y (5 mol%) | SnCl2·2H2O (1 equiv.) | DCM | 24 | 58 |
4 | - | Blue LED | Eosin Y (5 mol%) | SnCl2·2H2O (2 equiv.) | DCM | 24 | 63 |
5 | - | Blue LED | Eosin Y (5 mol%) | SnCl2·2H2O (4 equiv.) | DCM | 24 | 50 |
6 | - | Blue LED | Eosin Y (5 mol%) | SnCl4 (2 equiv.) | DCM | 24 | NR |
7 | 1 | Blue LED | Eosin Y (5 mol%) | SnCl2·2H2O (2 equiv.) | DCM | 4 | 72 |
8 | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | DCM | 4 | 83 |
9 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | DCM | 4 | 98 |
10 c | 2 | Blue LED | - | SnCl2·2H2O (2 equiv.) | DCM | 4 | 95 |
11 c | 0.1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | DCM | 4 | traces |
12 c | 1 | Green LED | - | SnCl2·2H2O (2 equiv.) | DCM | 4 | NR |
13 c | 1 | White LED | - | SnCl2·2H2O (2 equiv.) | DCM | 4 | traces |
14 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | MeCN | 4 | 55 |
15 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | acetone | 4 | 45 |
16 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | Toluene | 4 | 40 |
17 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | Hexane | 4 | traces |
18 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | AcOEt | 4 | 95 |
19 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | THF | 4 | 55 |
20 c | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | EtOH | 4 | NR |
21 c,d | 1 | Blue LED | - | SnCl2·2H2O (2 equiv.) | AcOEt | 4 | 56 |
22 c,e | 1 | - | - | SnCl2·2H2O (2 equiv.) | AcOEt | 4 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, L.S.; Silva, M.C.; Nobre, P.C.; Peglow, T.J.; Nascimento, V. Synthesis of 2,3-Dihydrobenzofuran Chalcogenides Under Visible Light: A Sustainable Approach. Processes 2025, 13, 1038. https://doi.org/10.3390/pr13041038
Gomes LS, Silva MC, Nobre PC, Peglow TJ, Nascimento V. Synthesis of 2,3-Dihydrobenzofuran Chalcogenides Under Visible Light: A Sustainable Approach. Processes. 2025; 13(4):1038. https://doi.org/10.3390/pr13041038
Chicago/Turabian StyleGomes, Luana S., Millena C. Silva, Patrick C. Nobre, Thiago J. Peglow, and Vanessa Nascimento. 2025. "Synthesis of 2,3-Dihydrobenzofuran Chalcogenides Under Visible Light: A Sustainable Approach" Processes 13, no. 4: 1038. https://doi.org/10.3390/pr13041038
APA StyleGomes, L. S., Silva, M. C., Nobre, P. C., Peglow, T. J., & Nascimento, V. (2025). Synthesis of 2,3-Dihydrobenzofuran Chalcogenides Under Visible Light: A Sustainable Approach. Processes, 13(4), 1038. https://doi.org/10.3390/pr13041038