Cd Is a Heavily Enriched Heavy Metal Controlled by Organic Fertilizer Use in Facility Farmland Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area and Method
2.2. Sample Measurement Method
2.3. Ecological Risk Assessment
2.4. Variable Importance Determination
2.5. Data Analysis
3. Results
3.1. Characteristics and Risks of Heavy Metal Content in Surface Soil (0 to 20 cm)
3.2. Effects of Fertilizer Type and Planting Year on Soil Heavy Metal Content
3.3. Correlation Analysis Between Heavy Metal Concentrations and Soil Nutrients
3.4. Key Factors Influencing Heavy Metal Concentrations in Farmland Soil
4. Discussion
Index | Organic Fertilizer | Commercial Organic Fertilizer | ||||
---|---|---|---|---|---|---|
Sheep Manure (n = 63) | Cow Manure (n = 245) | Chicken Manure (n = 285) | Sheep Manure (n = 40) | Sheep/Cow Manure (n = 2) | ||
Cd | range | 0–1.7 | 0–2.3 | 0–2.3 | 0.005–0.070 | 0.022–0.045 |
Average | 0.4 ± 0.3 | 0.3 ± 0.4 | 0.3 ± 0.5 | 0.042 | 0.034 | |
Cr | range | 0–59 | 0.6–106.9 | 0–2896 | 1.76–28.40 | 7.29–17.20 |
Average | 20.4 ± 10.7 | 20.7 ± 16.3 | 66.3 ± 308.5 | 12.40 | 12.20 | |
Pb | range | 2.7–46.1 | 0.3–40.9 | 0–51.7 | 0.93–38.8 | 9.33–14.70 |
Average | 11.3 ± 8 | 8.7 ± 7.1 | 9.2 ± 8.9 | 11.80 | 12.02 | |
As | range | 0.5–12.5 | 0.1–32.6 | 0.1–55.8 | 0.30–11.4 | 2.30–6.50 |
Average | 5.5 ± 2.8 | 4.3 ± 3.4 | 6.0 ± 6.2 | 3.44 | 4.39 | |
Cu | range | 0–75.4 | 11.6–36.3 | 13.4–41.2 | 4.00–123.1 | 12.2–30.3 |
Average | 18.86 | 19.7 | 21.55 | 16.4 | 21.23 | |
Zn | range | 0–272.6 | 38.6–319.8 | 46.0–242.0 | 14.0–154 | 55.4–82.6 |
Average | 95.16 | 90.51 | 114.24 | 68.8 | 68.9 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Shao, Y.B.; Zhou, Y.B.; Pan, Y.C.; Dai, H.Y.; Gao, B.B.; Yan, Y.G. Multi scale analysis of spatial variability of heavy metals in farmland soils: Case study of soil Cd in Shunyi District of Beijing, China. J. Agro-Environ. Sci. 2019, 38, 87–94. [Google Scholar]
- Chen, R.; Cai, X.Y.; Ding, G.Y.; Ren, F.M.; Wang, Q.; Cheng, N.; Liu, J.X.; Li, L.X.; Shi, R.G. Ecological risk assessment of heavy metals in farmland soils in Beijing by three improved risk assessment methods. Environ. Sci. Pollut. Res. 2021, 28, 57970–57982. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Gao, Y.; Ning, X.L.; Li, Z.H. Research progress and hotspots on microbial remediation of heavy metal-contaminated soil: A systematic review and future perspectives. Environ. Sci. Pollut. Res. 2023, 30, 118192–118212. [Google Scholar]
- Xu, J.; Xiao, P. Influence factor analysis of soil heavy metal based on categorical regression. Int. J. Environ. Sci. Technol. 2021, 19, 7373–7386. [Google Scholar]
- Wang, X.B.; Liu, W.X.; Li, Z.G.; Teng, Y.; Christie, P.; Luo, Y.M. Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation. Pedosphere 2020, 30, 555–562. [Google Scholar]
- Fan, T.; Ye, W.L.; Chen, H.Y.; Lu, H.J.; Zhang, Y.H.; Li, D.X.; Tang, Z.Y.; Ma, Y.H. Review on contamination and remediation technology of heavy metal in agricultural soil. Ecol. Environ. Sci. 2013, 22, 1727–1736. [Google Scholar]
- Lu, A.X.; Sun, J.; Wang, J.H.; Dong, W.G.; Han, P.; Zhang, G.G.; Wang, K.Y.; Pan, L.G. Annual variability and characteristics analysis of heavy metals in agricultural soil of Beijing. Sci. Agric. Sin. 2011, 44, 3778–3789. [Google Scholar]
- Zhang, J.; Xue, Q.; Chen, Q.F.; Zhao, C.S.; Liu, W.; Li, Q. Heavy metal pollution characteristics and assessment of environmental quality and safety of facility agriculture soil in Shouguang. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Jiang, R.; Lu, Y.Z.; Shen, S.Y. Assessment of heavy metal content and pollution in organic and conventional farming soils in North China. Chin. J. Eco-Agric. 2015, 23, 877–885. [Google Scholar]
- Tian, T.; Tian, Y.Q.; Gao, L.H. Research Progress on Soil Quality in Protected Vegetable Fields. J. Chin. Veg. 2021, 10, 35–44. [Google Scholar]
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar]
- Jiang, N.; Ping, L.W.; Ji, X.H.; Li, X.X.; Song, P.P.; Zhu, L.S.; Wang, J. Content analysis and pollution risk assessment of heavy metal in common fertilizers in typical north vegetable fields. J. Agro-Environ. Sci. 2020, 39, 521–529. [Google Scholar]
- Zhao, Q.L.; Li, Q.C.; Ma, L.; Jia, C.; Chen, J. Characteristics, health risks, and source analysis of heavy metals pollution in surface soil in Shan County. Environ. Sci. Pollut. Res. 2024, 46, 442–452. [Google Scholar]
- Díaz Rizo, O.; Fonticiella Morell, D.; Arado López, J.; Borrell Muñoz, J.; D‘Alessandro Rodríguez, K.; López Pino, N. Spatial distribution and contamination assessment of heavy metals in urban topsoils from Las Tunas City, Cuba. Bull. Environ. Contam. Toxicol. 2013, 91, 29–35. [Google Scholar]
- Adimalla, N. Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environ. Geochem. Health 2019, 42, 173–190. [Google Scholar]
- Al-Hamad, A.A.; Al-Taani, A.A.; Ghrefat, H.; Khawajah, M.; Zoubi, A. Assessment of Heavy Metals in Greenhouse Cultivated Soils, Northern Jordan. Pol. J. Environ. Stud. 2023, 33, 61–75. [Google Scholar]
- Zhang, X.; Song, X.Y.; Zhang, H.Y.; Li, Y.S.; Hou, Y.X.; Zhao, X.X. Source apportionment and risk assessment of heavy metals in typical greenhouse vegetable soils in Shenyang, China. Environ. Monit. Assess. 2023, 196, 72. [Google Scholar] [PubMed]
- Bai, L.Y.; Zeng, X.B.; Su, S.M.; Duan, R.; Wang, Y.N.; Gao, X. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China. Environ. Sci. Pollut. Res. 2015, 22, 5359–5369. [Google Scholar]
- Sungur, A.; Soylak, M.; Yilmaz, E.; Yilmaz, S.; Ozcan, H. Characterization of Heavy Metal Fractions in Agricultural Soils by Sequential Extraction Procedure: The Relationship Between Soil Properties and Heavy Metal Fractions. Soil Sediment Contam. Int. J. 2014, 24, 1–15. [Google Scholar]
- Naeem, K.; Yawar, W.; Akhter, P.; Rehana, I. Atomic absorption spectrometric determination of cadmium and lead in soil after total digestion. Asia-Pac. J. Chem. Eng. 2010, 7, 295–301. [Google Scholar]
- Meng, M.; Yang, L.S.; Wei, B.G.; Li, H.R.; Yu, J.P. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China. J. Ecol. Rural Environ. 2018, 34, 1019–1026. [Google Scholar]
- Shang, T.T.; Zhang, Y.Q.; Zhou, J.; Cao, S.Z. Pollution characteristics and source apportionment of heavy metals in farmland soil, Baiyin suburb. Environ. Ecol. 2023, 5, 19–26. [Google Scholar]
- Pan, L.B.; Ma, J.; Hu, Y.; Su, B.Y.; Fang, G.L.; Wang, Y.; Wang, Z.S.; Wang, L.; Xiang, B. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environ. Sci. Pollut. Res. 2016, 23, 19330–19340. [Google Scholar]
- Liu, P.; Zhao, H.J.; Wang, L.L.; Liu, Z.H.; Wei, J.L.; Wang, Y.Q.; Jiang, L.H.; Dong, L.; Zhang, Y.F. Analysis of heavy metal sources for vegetable soils from Shandong Province, China. Agric. Sci. China 2011, 10, 109–119. [Google Scholar]
- Pérez-Vázquez, F.J.; Flores-Ramírez, R.; Ochoa-Martínez, A.C.; Carrizales-Yáñez, L.; Ilizaliturri-Hernández, C.A.; Moctezuma-González, J.; Pruneda-Álvarez, L.G.; Ruiz-Vera, T.; Orta-García, S.T.; González-Palomo, A.K.; et al. Human health risks associated with heavy metals in soil in different areas of San Luis Potosí, México. Hum. Ecol. Risk Assess. Int. J. 2015, 22, 323–336. [Google Scholar]
- Sungur, A.; Soylak, M.; Özcan, H. Chemical fractionation, mobility and environmental impacts of heavy metals in greenhouse soils from Çanakkale, Turkey. Environ. Earth Sci. 2016, 75, 334. [Google Scholar]
- Rodríguez Martín, J.A.; Ramos-Miras, J.J.; Boluda, R.; Gil, C. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 2013, 200–201, 180–188. [Google Scholar]
- Li, T.L.; Xu, Y.; Zhang, J.X. Development and strategy of facility agriculture in China. Chin. Agric. Sci. Bull. 2019, 11, 6–9. [Google Scholar]
- Wang, Z.H.; Liang, H.Y.; Zhang, D.H.; Li, L.C.; Wei, L.L.; Wen, Y.N.; Chen, Q. Accumulation Characteristics and Control Technologies of Heavy Metal Contamination in Facility Soil of China: A review. Trans. Chin. Soc. Agric. Eng. 2024, 40, 1–14. [Google Scholar]
- Beijing Statistical Yearbook 2023. Available online: https://www.stats.gov.cn/sj/ndsj/2023/indexeh.htm (accessed on 15 February 2025).
- Kong, C.C.; Liu, H.L.; Nie, C.J.; Ge, C.; Hu, Q.Q.; Yang, X.L.; Zhang, S.W. Spatial Distribution and Influencing Factors of Cr in Soils of Beijing Plain, China. J. Agric. Resour. Environ. 2018, 35, 229–236. [Google Scholar]
- Deng, W.P.; Yu, X.X.; Jia, G.D.; Li, Y.J.; Liu, Y.J. An analysis of characteristics of hydrogen and oxygen stable isotopes in Jiufeng Mountain areas of Beijing. Adv. Water Sci. 2013, 24, 642–650. [Google Scholar]
- Han, P. The Distribution of Heavy Metals and Assessment of Soil Quality in Capital Steel Factory in Beijing, China. Master’s Thesis, China University of Geosciences, Beijing, China, 2012. [Google Scholar]
- GB/T17141-1997; Soil Quality-Determination of Lead, Cadmium-Graphite Furnace Atomic Absorption Spectrophotometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 1997.
- HJ491-2019; Soil and Sediment—Determination of Copper, Zinc, Lead, Nickel and Chromium—Flame Atomic Absorption Spectrophotometry. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2019.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2015; pp. 539–579. [Google Scholar]
- Bremner, J.M. Determination of Nitrogen in Soil by the Kjeldahl Method. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Agronomy Monographs; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000; pp. 355–356. [Google Scholar]
- Rayment, G.; Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Method; Inkata Press Pty Ltd.: Melbourne, Australia, 1992. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 4, 975–1001. [Google Scholar] [CrossRef]
- Ren, Q.; Sun, R.L.; Zhang, K.X.; Liu, Y.D.; Ruan, X.L.; Wang, Y.Y. Soil properties, heavy metal accumulation, and ecological risk in vegetable greenhouses of different planting years. Environ. Sci. 2022, 43, 995–1003. [Google Scholar]
- Chen, J.; Zhang, P.; Yan, P.L. Evaluation of heavy metal pollution characteristics and the potentialecological risks of soil in the Zhongluotan Town. J. Gansu Sci. 2024, 36, 1–10. [Google Scholar]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G.; Zhang, C.J. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- Chen, T.B.; Zheng, Y.M.; Chen, H.; Zheng, G.D. Background concentrations of soil heavy metals in Beijing. Environ. Sci. 2004, 25, 117–122. [Google Scholar]
- Stojić, A.; Stanišić Stojić, S.; Reljin, I.; Čabarkapa, M.; Šoštarić, A.; Perišić, M.; Mijić, Z. Comprehensive analysis of PM10 in Belgrade urban area on the basis of long-term measurements. Environ. Sci. Pollut. Res. 2016, 23, 10722–10732. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil Environmental Quality Soil Pollution Risk Control Standards for Agricultural Land. Standardization Administration of China: Beijing, China, 2018.
- Liu, Y.M.; Wang, Z.W.; Wang, Z.L.; Liu, W.Q. Impact of long-term planting on heavy metal distribution in greenhouse soil and ecological risk assessment. J. Tianjin Norm. Univ. Nat. Sci. Ed. 2020, 40, 54–61+80. [Google Scholar]
- Alam, M.N.E.; Hosen, M.M.; Ullah, A.K.M.A.; Maksud, M.A.; Khan, S.R.; Lutfa, L.N.; Choudhury, T.R.; Quraishi, S.B. Pollution Characteristics, Source Identification, and Health Risk of Heavy Metals in the Soil-Vegetable System in Two Districts of Bangladesh. Biol. Trace Elem. Res. 2023, 201, 4985–4999. [Google Scholar] [CrossRef]
- Chi, H.J.; Liu, X.; Yang, X.F.; Zhang, R.; Xia, T.; Sun, Y.P.; Hu, K.; Hao, F.F.; Liu, Y.; Yang, S.C.; et al. Risk assessment and source identification of soil heavy metals: A case study of farmland soil along a river in the southeast of a mining area in Southwest China. Environ. Geochem. Health 2024, 46, 39. [Google Scholar] [PubMed]
- Liu, Y.; Yue, L.L.; Li, J.C. Evaluation of heavy metal contamination and its potential ecological risk to the soil in Taiyuan, China. Acta Sci. Circumstantiae 2011, 31, 1285–1293. [Google Scholar]
- Zhao, G.L.; Ma, Y.; Liu, Y.Z.; Cheng, J.M.; Wang, X.F. Source analysis and ecological risk assessment of heavy metals in farmland soils around heavy metal industry in Anxin County. Sci. Rep. 2022, 12, 10562. [Google Scholar]
- Liu, J.; Pan, Y.P.; Shi, H.D. Atmospheric deposition as a dominant source of cadmium in agricultural soils of north China. J. Agro-Environ. Sci. 2022, 41, 1698–1708. [Google Scholar]
- Xu, Z.; Shi, M.Y.; Yu, X.M.; Liu, M.D. Heavy Metal Pollution and Health Risk Assessment of Vegetable–Soil Systems of Facilities Irrigated with Wastewater in Northern China. Int. J. Environ. Res. Public Health 2022, 19, 9835. [Google Scholar] [CrossRef]
- Bai, L.Y.; Zeng, X.B.; Li, L.F.; Pen, C.; Li, S.H. Effects of Land Use on Heavy Metal Accumulation in Soils and Sources Analysis. Agric. Sci. China 2010, 9, 1650–1658. [Google Scholar]
- Li, L.F.; Zeng, X.B.; Bai, L.Y.; Mei, X.R.; Yang, J.B.; Hu, L.J. Cadmium accumulation in vegetable plantation land soils under protected cultivation: A case study. Commun. Soil Sci. Plant Anal. 2009, 40, 2169–2184. [Google Scholar]
- Liao, Z.B.; Chen, Y.L.; Ma, J.; Islam, M.S.; Weng, L.P.; Li, Y.T. Cd, Cu, and Zn accumulations caused by long-term fertilization in greenhouse soils and their potential risk assessment. Int. J. Environ. Res. Public Health 2019, 16, 2805. [Google Scholar] [CrossRef]
- Ogunlade, M.O.; Agbeniyi, S.O. Impact of pesticides use on heavy metals pollution in cocoa soils of Cross-River State, Nigeria. Afr. J. Agric. Res. 2011, 6, 3725–3728. [Google Scholar]
- Jia, L.; Qiao, Y.H.; Chen, Q.; Li, H.F.; Shao, X.M.; Ma, H.P. Characteristics and affecting factors of heavy metals content in greenhouse vegetable soils in China. J. Agro-Environ. Sci. 2020, 39, 263–274. [Google Scholar]
- Muscalu, O.M.; Nedeff, V.; Chitimus, A.D.; Sandu, I.G.; Partal, E.; Mosnegutu, E.; Sandu, I.; Rusu, D.I. Influence of Fertilization Systems on Physical and Chemical Properties of the Soil. Rev. Chim. 2018, 69, 4006–4011. [Google Scholar]
- Zhao, Y.C.; Yan, Z.B.; Qin, J.H.; Xiao, Z.W. Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China. Environ. Sci. Pollut. Res. 2014, 21, 7586–7595. [Google Scholar]
- Li, Y.X.; Chen, T.B. Concentrations of additive arsenic in Beijing pig feeds and the residues in pig manure. Resour. Conserv. Recycl. 2005, 45, 356–367. [Google Scholar]
- He, M.Y.; Dong, T.X.; Ru, S.H.; Su, D.C. Accumulation and migration characteristics in soil profiles and bioavailability of heavy metals from livestock manure. Environ. Sci. 2017, 38, 1576–1586. [Google Scholar]
- Mu, H.Y.; Jiang, R.F.; Zhuang, Z.; Li, Y.M.; Qiao, Y.H.; Chen, Q.; Xiong, J.; Li, H.F. Heavy metal contents in animal manure in China and the related soil accumulation risks. Environ. Sci. 2020, 41, 986–996. [Google Scholar]
- Fan, S.S.; Liu, J.Y.; Tan, X.D.; Ji, W.; Gao, F.; Li, C.W.; He, W.M. Risk assessment of heavy metal pollution from livestock and poultry manure fertilizer in Beijing. Anhui Agron. Bull. 2021, 27, 80–84. [Google Scholar]
- NY 525-2012; Agricultural Industry Standard of the People’s Republic of China. Standardization Administration of China: Beijing, China, 2012.
- Zhang, F.S.; Li, Y.X.; Yang, M.; Li, W. Content of Heavy Metals in Animal Feeds and Manures from Farms of Different Scales in Northeast China. Int. J. Environ. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef]
- Nie, J.; Di, C.X.; Ren, C.; Yin, X.; Li, X.P.; Li, B.H.; Dong, Q.; Li, Y.F.; Liu, T.T. Dataset of organic fertilizer raw materials and heavy metals in commercial organic fertilizer in inner mongolia in 2020. J. Agric. Big Data 2024, 6, 570–574. [Google Scholar]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Organic and Inorganic Fertilizer Contaminants in Agriculture: Impact on Soil and Water Resources. Bioresour. Technol. 2020, 72, 9–17. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Liu, X.; Zhang, Q.; Qiao, Y.H.; Su, D.C.; Jiang, R.F.; Rui, Y.K.; Li, H.F. Application of ICP-MS and AFS to detecting heavy metals in phosphorus fertilizers. Spectrosc. Spectr. Anal. 2014, 34, 1403–1406. [Google Scholar]
- Abdallah Alnuwaiser, M. An Analytical Survey of Trace Heavy Elements in Insecticides. Int. J. Anal. Chem. 2019, 2019, 8150793. [Google Scholar] [PubMed]
- Bawa, U.; Ahmad, A.; Ahmad, J.N.; Ezra, A.G. Assessment of health risks from consumption of food crops fumigated with metal based pesticides in Gwadam, Gombe State, Nigeria. Bayero J. Pure Appl. Sci. 2021, 14, 100–110. [Google Scholar]
- Nuralykyzy, B.; Wang, P.; Deng, X.Q.; An, S.S.; Huang, Y.M. Heavy Metal Contents and Assessment of Soil Contamination in Different Land-Use Types in the Qaidam Basin. Sustainability 2021, 13, 12020. [Google Scholar] [CrossRef]
- Wan, L.; Lv, H.F.; Qasim, W.; Xia, L.L.; Yao, Z.S.; Hu, J.; Zhao, Y.M.; Ding, X.D.; Zheng, X.H.; Li, G.Y.; et al. Heavy metal and nutrient concentrations in top- and sub-soils of greenhouses and arable fields in East China—Effects of cultivation years, management, and shelter. Environ. Pollut. 2022, 307, 119494. [Google Scholar]
- Xu, M.G.; Wu, H.W.; Liu, J. Evolution of heavy metal contents of three soils under long-term fertilizations. J. Agro-Environ. Sci. 2010, 29, 2319–2324. [Google Scholar]
Potential Ecological Risk Index | Potential Ecological Risk Level | ||||
---|---|---|---|---|---|
Slight | Moderate | Strong | Very Strong | Extremely Strong | |
EI | <40 | 40–80 | 80–160 | 160–320 | ≥320 |
RI | <150 | 150–300 | 300–600 | ≥600 | - |
Heavy Metal | Average (mg·kg−1) | Max (mg·kg−1) | Min (mg·kg−1) | Median (mg·kg−1) | Standard Deviation | Coefficient of Variation (%) | Skewness | Kurtosis | Natural Background Value (mg·kg−1) |
---|---|---|---|---|---|---|---|---|---|
Cd | 0.148 | 0.334 | 0.059 | 0.138 | 0.055 | 37 | 0.949 | 1.159 | 0.119 |
Cr | 78.89 | 174.50 | 32.80 | 73.60 | 28.93 | 37 | 0.75 | 0.46 | 29.8 |
Pb | 21.07 | 31.20 | 11.20 | 21.10 | 3.65 | 17 | 0.08 | 0.57 | 24.6 |
As | 10.53 | 17.90 | 6.50 | 10.40 | 2.20 | 21 | 0.71 | 1.52 | 7.09 |
Cu | 29.49 | 49.20 | 14.00 | 29.40 | 6.09 | 21 | 0.36 | 1.13 | 18.7 |
Zn | 98.90 | 150.20 | 60.50 | 95.10 | 20.13 | 20 | 0.36 | −0.50 | 57.5 |
Ni | 18.01 | 41.80 | 0.70 | 18.00 | 9.41 | 52 | 0.07 | −0.69 | 26.8 |
Soil Nutrients | TN (g·kg−1) | TP (%) | AP (mg·kg−1) | AK (mg·kg−1) | SOM (g·kg−1) |
---|---|---|---|---|---|
Average | 0.78 | 0.10 | 264.37 | 508.94 | 42.05 |
Max | 1.81 | 0.33 | 614.20 | 1449.10 | 76.26 |
Min | 0.20 | 0.02 | 34.61 | 56.10 | 13.67 |
Standard deviation | 0.32 | 0.06 | 126.51 | 310.04 | 13.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zou, G.; Yang, Z.; Li, Y.; Sun, N.; Liao, S.; Du, L.; Li, S. Cd Is a Heavily Enriched Heavy Metal Controlled by Organic Fertilizer Use in Facility Farmland Soils. Processes 2025, 13, 1010. https://doi.org/10.3390/pr13041010
Zhang M, Zou G, Yang Z, Li Y, Sun N, Liao S, Du L, Li S. Cd Is a Heavily Enriched Heavy Metal Controlled by Organic Fertilizer Use in Facility Farmland Soils. Processes. 2025; 13(4):1010. https://doi.org/10.3390/pr13041010
Chicago/Turabian StyleZhang, Mengmeng, Guoyuan Zou, Zhiping Yang, Yanmei Li, Na Sun, Shangqiang Liao, Lianfeng Du, and Shunjiang Li. 2025. "Cd Is a Heavily Enriched Heavy Metal Controlled by Organic Fertilizer Use in Facility Farmland Soils" Processes 13, no. 4: 1010. https://doi.org/10.3390/pr13041010
APA StyleZhang, M., Zou, G., Yang, Z., Li, Y., Sun, N., Liao, S., Du, L., & Li, S. (2025). Cd Is a Heavily Enriched Heavy Metal Controlled by Organic Fertilizer Use in Facility Farmland Soils. Processes, 13(4), 1010. https://doi.org/10.3390/pr13041010