Theoretical Analysis of the Effective Properties of Polymer-Based Composites Considering Particle-Size Effects and Damage Evolution
Abstract
:1. Introduction
2. An Efficient Micromechanical Model for Three-Phase Composites
2.1. Fundamental Equations and Notation
2.2. The Effective Macroscopic Elastic Properties
2.3. Four Specific Cases
- (1)
- For a particulate composite, the analysis includes void damage but excludes debonding damage, i.e., and , denoted by and for the volume fractions of voids in the matrix and debonded particles, respectively. Given that voids are incapable of supporting any stress, the strain concentration factor of the voids can be determined as follows:
- (2)
- For a particulate composite that accounts for some debonding damage while ignoring void damage, denoted by , but with , the effective bulk modulus and shear modulus are diminished:
- (3)
- For a particle-reinforced composite experiencing both void damage and debonding damage simultaneously, denoted by and , respectively, we can obtain the following:
- (4)
- For the undamaged composite, where all particles are perfectly bonded with the interphases and no void damage has occurred, denoted by and , the effective elastic properties of the composite can be expressed as
3. Cumulative Probability of Damaged Reinforcements
4. Numerical Results and Discussion
4.1. Predictions of Young’s Modulus Equations
4.2. Impact of Particle Size on the Composite’s Overall Stress–Strain Behavior
4.3. Effect of Debonding Damage on the Composite’s Overall Stress–Strain Behavior
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yavuz, I.; Şimsir, E.; Şenol, B. Investigation of mechanical behavior of glass fiber reinforced extruded polystyrene core material composites. RSC Adv. 2024, 14, 13311–13320. [Google Scholar] [CrossRef] [PubMed]
- Şimşir, E.; Ergün, Y.A.; Yavuz, I. Investigation of Damping Properties of Natural Fiber-Reinforced Composites at Various Impact Energy Levels. Polymers 2024, 16, 3553. [Google Scholar] [CrossRef]
- Harada, K.; Chu, P.J.; Xu, K.; Fujimori, A. Polypropylene-based nanocomposite with improved mechanical properties: Effect of cellulose nanofiber and polyrotaxane with partial miscibility. Polym. Compos. 2023, 44, 2977–2987. [Google Scholar] [CrossRef]
- Cho, J.; Joshi, M.S.; Sun, C.T. Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 2006, 66, 1941–1952. [Google Scholar] [CrossRef]
- Basaran, C.; Nie, S. A thermodynamics based damage mechanics model for particulate composites. Int. J. Solids Struct. 2007, 44, 1099–1114. [Google Scholar] [CrossRef]
- Dubnikova, I.L.; Oshmyan, V.G.; Gorenberg, A.Y. Mechanisms of particulate filled polypropylene finite plastic deformation and fracture. J. Mater. Sci. 1997, 32, 1613–1622. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B-Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Gunel, E.; Basaran, C. Influence of filler content and interphase properties on large deformation micromechanics of particle filled acrylics. Mech. Mater. 2013, 57, 134–146. [Google Scholar] [CrossRef]
- Hashin, Z. Analysis of composite-materials—A survey. J. Appl. Mech.-Trans. ASME 1983, 50, 481–505. [Google Scholar] [CrossRef]
- Iwakuma, T.; Koyama, S. An estimate of average elastic moduli of composites and polycrystals. Mech. Mater. 2005, 37, 459–472. [Google Scholar] [CrossRef]
- Ji, X.L.; Jing, J.K.; Jiang, W.; Jiang, B.Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983–993. [Google Scholar] [CrossRef]
- Llorca, J.; Gonzalez, C. Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites. J. Mech. Phys. Solids 1998, 46, 1–28. [Google Scholar] [CrossRef]
- Nie, S.H.; Basaran, C. A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds. Int. J. Solids Struct. 2005, 42, 4179–4191. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, Y.W.; Yu, M.R.; Hu, G.Q.; Gan, Y.; Gao, H.J.; Shi, X.H. Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels. J. Mech. Phys. Solids 2018, 112, 431–457. [Google Scholar] [CrossRef]
- Zimmerman, R.W. Elastic-moduli of a solid containing spherical inclusions. Mech. Mater. 1991, 12, 17–24. [Google Scholar] [CrossRef]
- Jiang, B.; Weng, G.J. A theory of compressive yield strength of nano-grained ceramics. Int. J. Plast. 2004, 20, 2007–2026. [Google Scholar] [CrossRef]
- Dong, X.N.; Zhang, X.H.; Huang, Y.Y.; Guo, X.E. A generalized self-consistent estimate for the effective elastic moduli of fiber-reinforced composite materials with multiple transversely isotropic inclusions. Int. J. Mech. Sci. 2005, 47, 922–940. [Google Scholar] [CrossRef]
- Li, G.Q.; Zhao, Y.; Pang, S.S. Four-phase sphere modeling of effective bulk modulus of concrete. Cem. Concr. Res. 1999, 29, 839–845. [Google Scholar] [CrossRef]
- Tohgo, K.; Itoh, Y.; Shimamura, Y. A constitutive model of particulate-reinforced composites taking account of particle size effects and damage evolution. Compos. Part A-Appl. Sci. Manuf. 2010, 41, 313–321. [Google Scholar] [CrossRef]
- Cheng, Y.; Bian, L.; Wang, Y.; Taheri, F. Influences of reinforcing particle and interface bonding strength on material properties of Mg/nano-particle composites. Int. J. Solids Struct. 2014, 51, 3168–3176. [Google Scholar] [CrossRef]
- Zhang, W.; Li, L.; Wang, T.J. Interphase effect on the strengthening behavior of particle-reinforced metal matrix composites. Comput. Mater. Sci. 2007, 41, 145–155. [Google Scholar] [CrossRef]
- Su, X.F.; Chen, H.R.; Kennedy, D.; Williams, F.W. Effects of interphase strength on the damage modes and mechanical behaviour of metal-matrix composites. Compos. Part A-Appl. Sci. Manuf. 1999, 30, 257–266. [Google Scholar] [CrossRef]
- Boutaleb, S.; Zairi, F.; Mesbah, A.; Nait-Abdelaziz, M.; Gloaguen, J.M.; Boukharouba, T.; Lefebvre, J.M. Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int. J. Solids Struct. 2009, 46, 1716–1726. [Google Scholar] [CrossRef]
- Goudarzi, T.; Spring, D.W.; Paulino, G.H.; Lopez-Pamies, O. Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects. J. Mech. Phys. Solids 2015, 80, 37–67. [Google Scholar] [CrossRef]
- Basaran, C.; Nie, S.; Hutchins, C.S.; Ergun, H. Influence of interfacial bond strength on fatigue life and thermo-mechanical behavior of a particulate composite: An experimental study. Int. J. Damage Mech. 2008, 17, 123–147. [Google Scholar] [CrossRef]
- Lloyd, D.J. Aspects of fracture in particulate reinforced metal matrix composites. Acta Metall. Et Mater. 1991, 39, 59–71. [Google Scholar] [CrossRef]
- Habibnejad-Korayem, M.; Mahmudi, R.; Poole, W.J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2009, 519, 198–203. [Google Scholar] [CrossRef]
- Hori, M.; Nematnasser, S. Double-inclusion model and overall moduli of multiphase composites. Mech. Mater. 1993, 14, 189–206. [Google Scholar] [CrossRef]
- Hori, M.; Nematnasser, S. Double-inclusion model and overall moduli of multiphase composites. J. Eng. Mater. Technol.-Trans. ASME 1994, 116, 305–309. [Google Scholar] [CrossRef]
- Bian, L.C.; Wang, Q.; Meng, D.L.; Li, H.J. A modified micro-mechanics model for estimating effective elastic modulus of concrete. Constr. Build. Mater. 2012, 36, 572–577. [Google Scholar] [CrossRef]
- Tohgo, K.; Weng, G.J. A progressive damage mechanics in particle-reinforced metal-matrix composites under high triaxial tension. J. Eng. Mater. Technol.-Trans. ASME 1994, 116, 414–420. [Google Scholar] [CrossRef]
- Tsui, C.P.; Tang, C.Y.; Fan, J.P.; Xie, X.L. Prediction for initiation of debonding damage and tensile stress-strain relation of glass-bead-filled modified polyphenylene oxide. Int. J. Mech. Sci. 2004, 46, 1659–1674. [Google Scholar] [CrossRef]
- Shen, L.; Du, Q.G.; Wang, H.T.; Zhong, W.; Yang, Y.L. In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water glass. Polym. Int. 2004, 53, 1153–1160. [Google Scholar] [CrossRef]
- Wang, Z.D.; Lu, J.J.; Li, Y.; Fu, S.Y.; Jiang, S.Q.; Zhao, X.X. Studies on thermal and mechanical properties of PI/SiO2 nanocomposite films at low temperature. Compos. Part A-Appl. Sci. Manuf. 2006, 37, 74–79. [Google Scholar] [CrossRef]
- Nan, C.W.; Clarke, D.R. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater. 1996, 44, 3801–3811. [Google Scholar] [CrossRef]
- Meddad, A.; Fisa, B. Stress-strain behavior and tensile dilatometry of glass bead-filled polypropylene and polyamide 6. J. Appl. Polym. Sci. 1997, 64, 653–665. [Google Scholar] [CrossRef]
Em (GPa) | νm | Ep (GPa) | νp | dp (μm) | EI (GPa) | t (μm) |
---|---|---|---|---|---|---|
1.2 | 0.4 | 70 | 0.25 | 10 | 5 | 0.1 |
Em (GPa) | νm | Ep (GPa) | νp | dp (μm) | σy (MPa) | fp (%) |
---|---|---|---|---|---|---|
2 | 0.38 | 69 | 0.23 | 45 | 28 | 10 |
EI (GPa) | νI | tI (μm) | α | n |
---|---|---|---|---|
10 | 0.4 | 2 | 3/7 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Cheng, Y.; Zhao, H. Theoretical Analysis of the Effective Properties of Polymer-Based Composites Considering Particle-Size Effects and Damage Evolution. Processes 2025, 13, 871. https://doi.org/10.3390/pr13030871
Wang Z, Cheng Y, Zhao H. Theoretical Analysis of the Effective Properties of Polymer-Based Composites Considering Particle-Size Effects and Damage Evolution. Processes. 2025; 13(3):871. https://doi.org/10.3390/pr13030871
Chicago/Turabian StyleWang, Zelong, Yong Cheng, and Huichuan Zhao. 2025. "Theoretical Analysis of the Effective Properties of Polymer-Based Composites Considering Particle-Size Effects and Damage Evolution" Processes 13, no. 3: 871. https://doi.org/10.3390/pr13030871
APA StyleWang, Z., Cheng, Y., & Zhao, H. (2025). Theoretical Analysis of the Effective Properties of Polymer-Based Composites Considering Particle-Size Effects and Damage Evolution. Processes, 13(3), 871. https://doi.org/10.3390/pr13030871