Experimental and Numerical Study on the Combustion and Emission Characteristics of Diesel and Ammonia in Dual Direct Injection Mode in an RCEM
Abstract
:1. Introduction
2. Experimental Setup and Model Establishment
2.1. Experimental Setup
2.2. Experimental Parameters
2.3. Numerical Modal
2.3.1. Spray Model
2.3.2. Combustion Model
3. Results and Discussion
3.1. Effects of Injection Strategy
3.1.1. Effects of Ammonia Injection Pressure
3.1.2. Effects of Ammonia Nozzle Hole Diameter
3.2. Effects of Compression Ratio
Coupling Effects of Ammonia Injection Pressure
4. Conclusions
- With the same ammonia injection nozzle hole diameter, minor increases in ammonia injection pressure have an insignificant impact on the emissions of unburned ammonia, HC, NO, and N2O;
- Under the same ammonia injection pressure, increasing the nozzle hole diameter significantly reduces unburned ammonia emissions. However, it also leads to a noticeable increase in HC and N2O emissions, with no significant impact on NO emissions;
- Increasing the compression ratio promotes diesel combustion but has no significant impact on ammonia combustion. The benefit of increasing the compression ratio is that it could reduce emissions of unburned ammonia, HC, and N2O, but it would increase NO emissions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATDC | After top dead center |
ASOAI | After the start of ammonia injection |
°CA | Crank Angle |
CR | Compression ratio |
CVC | Constant volume chamber |
CA10 | The duration from the start of diesel injection to the accumulation of 10% heat release |
CA50 | The duration from the start of diesel injection to the accumulation of 50% heat release |
CA90 | The duration from the start of diesel injection to the accumulation of 90% heat release |
Da | Diameter of the ammonia nozzle hole |
GHG | Greenhouse gas |
HPDF | High-pressure dual fuel |
Pd | Diesel injection pressure |
Pa | Ammonia injection pressure |
Ptdc | Pressure at TDC |
Pcvc | Pressure in CVC |
Pcvc-a | Ammonia injection pressure for CVC |
RCEM | Rapid compression and expansion machine |
TDC | Top dead center |
Tin | Air intake temperature |
Tcvc | Environment temperature in CVC |
Δt | Injection interval |
Δtd | Diesel injection pulse width |
Δta | Ammonia injection pulse width |
Δtcvc | Ammonia injection pulse width for CVC |
References
- Zhang, X.L.; Tian, J.P.; Yang, H.E.; Shi, S.; Zhou, Q.X.; Yin, S.; Ye, M.Y.; Shu, D.Y.; Cui, Z.C. Exploring the effects of ambient and diesel injection parameters on ignition and combustion characteristics of premixed ammonia ignited by diesel through a rapid compression and expansion machine. Energy 2025, 318, 134764. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Wang, S.X.; Guiberti, T.F.; Roberts, W.L. Review on the recent advances on ammonia combustion from the fundamentals to the applications. Fuel Commun. 2022, 10, 100053. [Google Scholar] [CrossRef]
- Berwal, P.; Kumar, S.; Khandelwal, B. A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion. J. Energy Inst. 2021, 99, 273–298. [Google Scholar] [CrossRef]
- Chai, W.S.; Bao, Y.L.; Jin, P.F.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sust. Energ. Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Lesmana, H.; Zhang, Z.Z.; Li, X.M.; Zhu, M.M.; Xu, W.Q.; Zhang, D.K. NH3 as a Transport Fuel in Internal Combustion Engines: A Technical Review. J. Energ. Resour. Technol. 2019, 141, 070703. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy. 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Gray, J.T.; Dimitroff, E.; Meckel, N.T.; Quillian, R.D. Ammonia Fuel—Engine Compatibility and Combustion; SAE Technical Paper 660156; SAE International: Warrendale, PA, USA, 1966. [Google Scholar] [CrossRef]
- Chen, Z.M.; He, H.B.; Wu, J.; Wang, L.; Lou, H.; Zhao, P.Y.; Wang, T.; Zhang, H.; Chen, H. An experimental study the cross spray and combustion characteristics diesel and ammonia in a constant volume combustion chamber. Energy 2024, 293, 130733. [Google Scholar] [CrossRef]
- Gross, C.W.; Kong, S.C. Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures. Fuel 2013, 103, 1069–1079. [Google Scholar] [CrossRef]
- Zhang, X.L.; Tian, J.P.; Cui, Z.C.; Xiong, S.Y.; Yin, S.; Wang, Q.; Long, W. Visualization study on the effects of pre-chamber jet ignition and methane addition on the combustion characteristics of ammonia/air mixtures. Fuel 2023, 338, 127204. [Google Scholar] [CrossRef]
- Zhou, Q.X.; Tian, J.P.; Zhang, X.L.; Cui, Z.C.; Ye, M.Y.; Wang, Q.; Yang, H.; Shu, D. Investigation of the ammonia-methane-air laminar burning characteristics at high temperatures and pressures. Fuel 2024, 365, 130987. [Google Scholar] [CrossRef]
- Wang, Z.H.; Han, X.L.; He, Y.; Zhu, R.F.; Zhu, Y.Q.; Zhou, Z.J.; Cen, K. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combust. Flame 2021, 229, 111392. [Google Scholar] [CrossRef]
- Yang, H.E.; Tian, J.P.; Cui, Z.C.; Ye, M.Y.; Zhang, X.L.; Zhou, Q.X.; Wei, K.; Wang, J. Experimental and numerical study of combustion characteristics of ammonia/ethanol mixture under high temperature and pressure. Fuel 2024, 367, 131350. [Google Scholar] [CrossRef]
- Ichikawa, A.; Hayakawa, A.; Kitagawa, Y.; Somarathne, K.D.K.A.; Kudo, T.; Kobayashi, H. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. Int. J. Hydrogen Energy 2015, 40, 9570–9578. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Lamoureux, N.; Contino, F.; Rousselle, C.M. Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures. Fuel 2020, 263, 116653. [Google Scholar] [CrossRef]
- Abdelhameed, E.; Tashima, H. Experimental study on the effects of methane-hydrogen jet as direct injected fuel in marine diesel engine. Energy 2023, 267, 126569. [Google Scholar] [CrossRef]
- Sanli, A.; Yılmaz, I.T.; Gümüş, M. Assessment of combustion and exhaust emissions in a common-rail diesel engine fueled with methane and hydrogen/methane mixtures under different compression ratio. Int. J. Hydrogen Energy 2020, 45, 3263–3283. [Google Scholar] [CrossRef]
- Ruina, L.; Feifan, L.; Daihai, Y.; Quan, H.; Hua, Y.; Yang, M.; Shuai, L. Study on the formation and ignition law of ignition core in ammonia atmosphere diesel cylinder. Fuel 2024, 365, 131257. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, W.; Zhang, R.; Wei, H.Q.; Jiaying, P. Flame characteristics and abnormal combustion of ammonia-diesel dual-fuel engine with considering ammonia energy fractions. Appl. Therm. Eng. 2024, 245, 122858. [Google Scholar] [CrossRef]
- Liu, J.H.; Liu, J.L. Experimental investigation of the effect of ammonia substitution ratio on an ammonia-diesel dual-fuel engine performance. J. Clean Prod. 2024, 434, 140274. [Google Scholar] [CrossRef]
- Qian, Y.; Pei, X.Z.; Zheng, L.; Mi, S.J.; Ju, D.H.; Zhou, D.Z.; Huang, L.; Lu, X. Improving thermal efficiency of an ammonia-diesel dual-fuel compression ignition engine with the addition of premixed low-proportion hydrogen. Int. J. Hydrogen Energy 2024, 58, 707–716. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Zhong, W.J.; Jiang, P.; Xu, M.; Guo, B.T. Optical diagnostics in impact of ammonia energy ratio and diesel split ratio on combustion process and flame propagation in an Ammonia-Diesel Dual-Fuel engine. Fuel 2024, 364, 131074. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.H.; Elbanna, A.M.; Dong, S.J.; Wang, S.D.; Ouyang, W.H.; Zhang, C.; Cheng, X. On ammonia/diesel dual-fuel combustion in optical engine. Fuel 2024, 367, 131452. [Google Scholar] [CrossRef]
- Wang, B.B.; Wang, H.C.; Hu, D.; Yang, C.L.; Duan, B.Y.; Wang, Y.Y. Effect of different ammonia mixing methods for diesel ignition on combustion and emission performance of high pressure common rail engine. J. Energy Inst. 2023, 111, 101402. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Li, T.; Wang, N.; Wang, X.R.; Chen, R.; Li, S.Y. Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation. Renew. Sust. Energ. Rev. 2023, 173, 113108. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Z.; Tan, F.S.; Wang, Y. CFD investigation the combustion characteristic of ammonia in low-speed marine engine under different combustion modes. Fuel 2023, 351, 128906. [Google Scholar] [CrossRef]
- Scharl, V.; Sattelmayer, T. Ignition and combustion characteristics of diesel piloted ammonia injections. Fuel Commun. 2022, 11, 10068. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Long, W.Q.; Dong, P.B.; Tian, H.; Tian, J.P.; Li, B.; Wang, Y. Performance characteristics of a two-stroke low speed engine applying ammonia/diesel dual direct injection strategy. Fuel 2023, 332, 126086. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Long, W.Q.; Cui, Z.C.; Dong, P.B.; Tian, J.P.; Tian, H.; Meng, X. Visualization study on the ignition and diffusion combustion process of liquid phase ammonia spray ignited by diesel jet in a constant volume vessel. Energy Convers. Manag. 2024, 299, 117889. [Google Scholar] [CrossRef]
- Nadimi, E.; Przybyła, G.; Lewandowski, M.T.; Adamczyk, W. Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine. J. Energy Inst. 2023, 107, 101158. [Google Scholar] [CrossRef]
- Xu, L.L.; Xu, S.J.; Bai, X.S.; Repo, J.A.; Hautala, S.; Hyvönen, J. Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine. Renew. Sust. Energy Rev. 2023, 185, 113631. [Google Scholar] [CrossRef]
- Zheng, L.; Mi, S.J.; Li, H.M.; Tan, X.X.; Qian, Y.; Feng, M.Z.; Lu, X. Experimental study on the combustion and emission characteristics of ammonia-diesel dual fuel engine under high ammonia energy ratio conditions. J. Energy Inst. 2024, 114, 101557. [Google Scholar] [CrossRef]
- Okumus, F.; Kanberoğlu, B.; Gonca, G.; Kökkülünk, G.; Aydın, Z.; Kaya, C. The effects of ammonia addition on the emission and performance characteristics of a diesel engine with variable compression ratio and injection timing. Int. J. Hydrogen Energy 2024, 64, 186–195. [Google Scholar] [CrossRef]
- Nie, X.X.; Bi, Y.H.; Shen, L.Z.; Lei, J.L.; Wan, M.D.; Wang, Z.J.; Liu, S.; Huang, F. Combustion and emission characteristics of ammonia-diesel dual fuel engine at different altitudes. Fuel 2024, 371, 132072. [Google Scholar] [CrossRef]
- Bjørgen, K.O.P.; Emberson, D.R.; Løvås, T. Combustion of liquid ammonia and diesel in a compression ignition engine operated in high-pressure dual fuel mode. Fuel 2024, 360, 130269. [Google Scholar] [CrossRef]
- Tian, J.P.; Zhang, X.L.; Cui, Z.C.; Ye, M.Y.; Wang, Y.; Xu, T.C.; Dong, P. Visualization study on ammonia/diesel dual direct injection combustion characteristics and interaction between sprays. Energy Convers. Manag. 2024, 299, 117857. [Google Scholar] [CrossRef]
- CONVERGE, Version 3.0; Convergent Science: Madison, WI, USA, 2020.
- Xu, L.L.; Chang, Y.C.; Treacy, M.; Zhou, Y.C.; Jia, M.; Bai, X.S. A skeletal chemical kinetic mechanism for ammonia/n-heptane combustion. Fuel 2023, 331, 125830. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Wang, H.; Guo, F. A comparative experimental study on emission characteristics and ammonia energy ratio of diesel generator operating in ammonia/diesel dual fuel mode by premixed and port injection. Process Saf. Environ. Prot. 2023, 176, 402–410. [Google Scholar] [CrossRef]
Variable | Ammonia Nozzle Hole Diameter (Da/mm) | Diesel Injection Pressure (Pd/MPa) |
---|---|---|
Digital pressure gauge | 0–4 MPa | ±0.4 |
K-type thermocouple | 40–1150 °C | ±0.75 |
Pressure sensor | 0–20 MPa | ±1 |
Charge amplifier | - | ±0.3 |
Number | Ammonia Nozzle Hole Diameter (Da/mm) | Diesel Injection Pressure (Pd/MPa) | Diesel Injection Pulse Width (Δtd/ms) | Ammonia Injection Pressure (Pa/MPa) | Ammonia Injection Pulse Width (Δta/ms) | Injection Interval (Δt/°CA) |
---|---|---|---|---|---|---|
1 | 0.21 | 40 | 2.89 | 85 | 3.28 | 1 |
2 | 0.21 | 40 | 2.89 | 75 | 3.55 | 1 |
3 | 0.21 | 40 | 2.89 | 65 | 3.77 | 1 |
4 | 0.32 | 40 | 2.89 | 65 | 1.9 | 1 |
Environment Temperature (Tcvc/K) | Environment Pressure (Pcvc/MPa) | Ammonia Injection Pressure (Pcvc-a/MPa) | Ammonia Injection Pulse Width (Δtcvc/ms) |
---|---|---|---|
500 | 2.5 | 75 | 3 |
B0 | C1 | B1 | Cτ | CRT | Cbl |
---|---|---|---|---|---|
0.6 | 0.188 | 40 | 0.1 | 0.1 | 15 |
TKE | TD | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.083 | 1.42 | 1.68 | −1 | 1.39 | 0.012 | 4.38 | 1.39 | 100 | 10,000 |
Number | Compression Ratio (CR) | Air Intake Temperature (Tin/K) | Air Intake Pressure (Pin/ MPa) | Ammonia Nozzle Hole Diameter (Da/mm) | Diesel Injection Pressure (Pd/ MPa) | Diesel Injection Pulse Width (Δtd/ms) | Ammonia Injection Pressure (Pa/MPa) | Ammonia Injection Pulse Width (Δta/ms) | Injection Interval (Δt/°CA) |
---|---|---|---|---|---|---|---|---|---|
1 | 7.66 | 500 | 0.38 | 0.21 | 40 | 2.89 | 85 | 3.28 | 1 |
2 | 10 | 500 | 0.38 | 0.21 | 40 | 2.89 | 85 | 3.28 | 1 |
3 | 13 | 500 | 0.38 | 0.21 | 40 | 2.89 | 85 | 3.28 | 1 |
4 | 17 | 500 | 0.38 | 0.21 | 40 | 2.89 | 85 | 3.28 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, D.; Tian, J.; Zhou, Q.; Zhang, X. Experimental and Numerical Study on the Combustion and Emission Characteristics of Diesel and Ammonia in Dual Direct Injection Mode in an RCEM. Processes 2025, 13, 751. https://doi.org/10.3390/pr13030751
She D, Tian J, Zhou Q, Zhang X. Experimental and Numerical Study on the Combustion and Emission Characteristics of Diesel and Ammonia in Dual Direct Injection Mode in an RCEM. Processes. 2025; 13(3):751. https://doi.org/10.3390/pr13030751
Chicago/Turabian StyleShe, Dongsheng, Jiangping Tian, Qingxing Zhou, and Xiaolei Zhang. 2025. "Experimental and Numerical Study on the Combustion and Emission Characteristics of Diesel and Ammonia in Dual Direct Injection Mode in an RCEM" Processes 13, no. 3: 751. https://doi.org/10.3390/pr13030751
APA StyleShe, D., Tian, J., Zhou, Q., & Zhang, X. (2025). Experimental and Numerical Study on the Combustion and Emission Characteristics of Diesel and Ammonia in Dual Direct Injection Mode in an RCEM. Processes, 13(3), 751. https://doi.org/10.3390/pr13030751