Denoising Method of a Power Quality Signal Based on Parameter Coordination of Membership Function in Fuzzy Logic Theory
Abstract
:1. Introduction
- (1)
- For the signal sequence of power quality, seven masks are designed to make the best use of the signal sequence information;
- (2)
- Based on fuzzy logic theory, the corresponding membership degrees are calculated for the seven masks, and the average value of all points in these masks is used as the input of fuzzy logic theory;
- (3)
- The boundary parameters of membership function in fuzzy logic theory are designed harmoniously to achieve the maximum utilization of the power signal;
- (4)
- Experimental simulation is carried out to verify the effectiveness of the proposed method.
2. Power Quality Signal Denoising
2.1. Systematic Noise
2.2. Mean Filtering and Median Filtering Methods
3. The Designed Structure of a Discrete Digital Sequence Mask Based on Fuzzy Theory
4. The Fuzzification Process and Parameter Coordination of FL Theory
4.1. The Fuzzification Process
4.2. Parameter Coordination
- (1)
- Coordinated design of parameters Ai and Bi in the membership function
- (2)
- Coordinated design of parameters Ci and Di in the membership function
- (1)
- Input basic data;
- (2)
- Fuzzy processing of accurate data and conversion into fuzzy data;
- (3)
- The fuzzy data set is mapped to a specific output fuzzy set through fuzzy rules;
- (4)
- Deal with the fuzzy set, and the fuzzy conclusion is transformed into specific precise values.
5. Numerical Test and Analysis
5.1. Comparison of Voltage Sag Signal Processing
5.2. Comparison of Voltage Interruption Signal Processing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, H.; Zeng, X.; Yu, K.; Zhou, Z. A Fault Identification Method for Animal Electric Shocks Considering Unstable Contact Situations in Low-Voltage Distribution Grids. IEEE Trans. Ind. Inform. 2025. [Google Scholar] [CrossRef]
- Ge, Y.; Hu, H.; Huang, Y.; Wang, K.; Chen, J.; He, Z. Quadratic Sensitivity Models for Flexible Power Quality Improvement in AC Electrified Railways. IEEE Trans. Power Electron. 2023, 38, 2844–2849. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Luo, Z.; Li, H.; Zhao, Y.; Wang, T.; Sun, Y. Power Supply Reliability Enhancement for Low-Voltage Distribution Area with Power Quality Improvement Function. IEEE Access 2022, 10, 130619–130631. [Google Scholar] [CrossRef]
- Lai, J.; Chen, M.; Dai, X.; Zhao, N. Energy Management Strategy Adopting Power Transfer Device Considering Power Quality Improvement and Regenerative Braking Energy Utilization for Double-Modes Traction System. CPSS Trans. Power Electron. Appl. 2022, 7, 103–111. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Wu, H.; Zhang, L.; Zhu, J.; Xing, Y. Quasi-Two-Stage Multifunctional Photovoltaic Inverter with Power Quality Control and Enhanced Conversion Efficiency. IEEE Trans. Power Electron. 2020, 35, 7073–7085. [Google Scholar] [CrossRef]
- Heenkenda, A.; Elsanabary, A.; Seyedmahmoudian, M.; Mekhilef, S.; Stojcevski, A.; Aziz, N.F.A. Unified Power Quality Conditioners Based Different Structural Arrangements: A Comprehensive Review. IEEE Access 2023, 11, 43435–43457. [Google Scholar] [CrossRef]
- Ray, P.; Ray, P.K.; Dash, S.K. Power Quality Enhancement and Power Flow Analysis of a PV Integrated UPQC System in a Distribution Network. IEEE Trans. Ind. Appl. 2022, 58, 201–211. [Google Scholar] [CrossRef]
- de Vasconcelos, F.M.; Rocha, C.H.S.; Almeida, C.F.M.; Pereira, D.D.S.; Rosa, L.H.L.; Kagan, N. Methodology for Inspection Scheduling in Power Distribution Networks Based on Power Quality Indexes. IEEE Trans. Power Deliv. 2021, 36, 1211–1221. [Google Scholar] [CrossRef]
- Alonso, A.M.D.S.; Arenas, L.D.O.; Bonaldo, J.P.; Olímpio Filho, J.D.A.; Marafão, F.P.; Paredes, H.K.M. Power Quality Improvement in Commercial and Industrial Sites: An Integrated Approach Mitigating Power Oscillations. IEEE Access 2024, 12, 50872–50884. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Z.; Xi, Y.; Wu, G.; Peng, W.; Mu, L. Accurate Fault Location Method for Multiple Faults in Transmission Networks Using Travelling Waves. IEEE Trans. Ind. Inform. 2024, 20, 8717–8728. [Google Scholar] [CrossRef]
- Zhao, T.; Cao, H.; Dian, S. A Self-Organized Method for a Hierarchical Fuzzy Logic System Based on a Fuzzy Autoencoder. IEEE Trans. Fuzzy Syst. 2022, 30, 5104–5115. [Google Scholar] [CrossRef]
- Nguyen, L.A.; Nguyen, N.T. Logical Characterizations of Crisp Bisimulations in Fuzzy Description Logics. IEEE Trans. Fuzzy Syst. 2023, 31, 1294–1304. [Google Scholar] [CrossRef]
- Badia, G.; Noguera, C. A 0–1 Law in Mathematical Fuzzy Logic. IEEE Trans. Fuzzy Syst. 2022, 30, 3833–3840. [Google Scholar] [CrossRef]
- Singh, D.J.; Verma, N.K.; Ghosh, A.K.; Malagaudanavar, A. An Approach Towards the Design of Interval Type-3 T–S Fuzzy System. IEEE Trans. Fuzzy Syst. 2022, 30, 3880–3893. [Google Scholar] [CrossRef]
- Kamthan, S.; Singh, H. Hierarchical Fuzzy Logic for Multi-Input Multi-Output Systems. IEEE Access 2020, 8, 206966–206981. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, T.; Lim, E.; López-Benítez, M.; Ma, F.; Yu, L. A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities. IEEE Access 2022, 10, 58869–58903. [Google Scholar] [CrossRef]
- Zhen, P.; Zhang, B.; Chen, Z.; Guo, D.; Ma, W. Spectrum Sensing Method Based on Wavelet Transform and Residual Network. IEEE Wirel. Commun. Lett. 2022, 11, 2517–2521. [Google Scholar] [CrossRef]
- Mukherjee, N.; Chattopadhyaya, A.; Chattopadhyay, S.; Sengupta, S. Discrete-Wavelet-Transform and Stockwell-Transform-Based Statistical Parameters Estimation for Fault Analysis in Grid-Connected Wind Power System. IEEE Syst. J. 2020, 14, 4320–4328. [Google Scholar] [CrossRef]
- Singh, G.; Chiluveru, S.R.; Raman, B.; Tripathy, M.; Kaushik, B.K. Novel Architecture for Lifting Discrete Wavelet Packet Transform with Arbitrary Tree Structure. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1490–1494. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, W.; Li, C.; Aslam, W. Sensitivity of Low-Voltage Variable-Frequency Devices to Voltage Sags. IEEE Access 2019, 7, 2068–2079. [Google Scholar] [CrossRef]
- Shi, J.; Chen, G.; Zhao, Y.; Tao, R. Synchrosqueezed Fractional Wavelet Transform: A New High-Resolution Time-Frequency Representation. IEEE Trans. Signal Process. 2023, 71, 264–278. [Google Scholar] [CrossRef]
- Gyanendra; Chiluveru, S.R.; Raman, B.; Tripathy, M.; Kaushik, B.K. Memory Efficient Architecture for Lifting-Based Discrete Wavelet Packet Transform. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1373–1377. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, J.; Wang, D. Synchrosqueezing Optimal Basic Wavelet Transform and Its Application on Sedimentary Cycle Division. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Li, M.; Xu, R.; Chen, Q. A Partial Order OWA Operator for Solving the OWA Weighing Dilemma. IEEE Access 2023, 11, 55435–55441. [Google Scholar] [CrossRef]
- Onar, S.; Ersoy, B.A.; Hila, K.; Davvaz, B. T-Fuzzy Subhypernear-Modulesin. Fuzzy Inf. Eng. 2023, 15, 162–182. [Google Scholar] [CrossRef]
- She, R.; Qian, H.; Wang, Z. A New ACD-OMP Accelerator with Clustered Computing Look-Ahead. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 1449–1453. [Google Scholar] [CrossRef]
- Bartz, H.; Jerkovits, T.; Puchinger, S.; Rosenkilde, J. Fast Decoding of Codes in the Rank, Subspace, and Sum-Rank Metric. IEEE Trans. Inf. Theory 2021, 67, 5026–5050. [Google Scholar] [CrossRef]
Method | SNR (dB) |
---|---|
Ideal signal after adding noise | 20.3394 |
Traditional mean filtering method | 22.9976 |
Traditional median filtering method | 23.2964 |
Fuzzy mean filtering method | 24.3576 |
Fuzzy median filtering method | 25.1762 |
A 1 × 3 three-point template based on fuzzy logic parameter coordination | 25.3328 |
A 1 × 5 five-point template based on fuzzy logic parameter coordination | 26.1794 |
A 1 × 9 nine-point template based on fuzzy logic parameter coordination | 25.4561 |
The proposed method | 27.5183 |
Method | λ of Mutation Point 1 (%) | λ of Mutation Point 2 (%) |
---|---|---|
Ideal signal after adding noise | 30.7745 | 45.7658 |
Traditional mean filtering method | 29.3268 | 43.2896 |
Traditional median filtering method | 27.8357 | 37.5762 |
Fuzzy mean filtering method | 22.6638 | 32.2864 |
Fuzzy median filtering method | 17.8395 | 27.1775 |
A 1 × 3 three-point template based on fuzzy logic parameter coordination | 17.2465 | 26.5437 |
A 1 × 5 five-point template based on fuzzy logic parameter coordination | 16.4487 | 25.3398 |
A 1 × 9 nine-point template based on fuzzy logic parameter coordination | 17.2631 | 26.1742 |
The proposed method | 15.2283 | 24.3796 |
Method | SNR (dB) |
---|---|
Ideal signal after adding noise | 27.0157 |
Traditional mean filtering method | 27.8994 |
Traditional median filtering method | 28.4173 |
Fuzzy mean filtering method | 29.2576 |
Fuzzy median filtering method | 30.2865 |
A 1 × 3 three-point template based on fuzzy logic parameter coordination | 30.4677 |
A 1 × 5 five-point template based on fuzzy logic parameter coordination | 30.7342 |
A 1 × 9 nine-point template based on fuzzy logic parameter coordination | 30.2689 |
The proposed method | 31.2368 |
Method | λ of Mutation Point 1 (%) | λ of Mutation Point 2 (%) |
---|---|---|
Ideal signal after adding noise | 37.6824 | 41.3376 |
Traditional mean filtering method | 22.3765 | 25.5268 |
Traditional median filtering method | 15.5766 | 17.6627 |
Fuzzy mean filtering method | 12.4864 | 14.3892 |
Fuzzy median filtering method | 9.5573 | 10.1124 |
A 1 × 3 three-point template based on fuzzy logic parameter coordination | 9.1762 | 9.4354 |
A 1 × 5 five-point template based on fuzzy logic parameter coordination | 8.5467 | 8.8873 |
A 1 × 9 nine-point template based on fuzzy logic parameter coordination | 8.9972 | 9.2265 |
The proposed method | 7.3149 | 8.5567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Bai, H.; Zhang, Y.; Cen, B.; Zou, H. Denoising Method of a Power Quality Signal Based on Parameter Coordination of Membership Function in Fuzzy Logic Theory. Processes 2025, 13, 738. https://doi.org/10.3390/pr13030738
Yao R, Bai H, Zhang Y, Cen B, Zou H. Denoising Method of a Power Quality Signal Based on Parameter Coordination of Membership Function in Fuzzy Logic Theory. Processes. 2025; 13(3):738. https://doi.org/10.3390/pr13030738
Chicago/Turabian StyleYao, Ruotian, Hao Bai, Yifan Zhang, Baoyi Cen, and Hongbo Zou. 2025. "Denoising Method of a Power Quality Signal Based on Parameter Coordination of Membership Function in Fuzzy Logic Theory" Processes 13, no. 3: 738. https://doi.org/10.3390/pr13030738
APA StyleYao, R., Bai, H., Zhang, Y., Cen, B., & Zou, H. (2025). Denoising Method of a Power Quality Signal Based on Parameter Coordination of Membership Function in Fuzzy Logic Theory. Processes, 13(3), 738. https://doi.org/10.3390/pr13030738