Graphene and Cerium Oxide Nanocomposites: Pioneering Photocatalysts for Organic Dye Degradation from Wastewater
Abstract
:1. Introduction
1.1. Methods of Wastewater Treatment
1.2. Cerium Oxide for Photocatalysis
1.3. Graphene and Its Derivatives for Photocatalysis
2. Photocatalytic Wastewater Treatment Using CeO2-Graphene Oxide Based Composites
3. Photocatalytic Wastewater Treatment Using CeO2-rGO Based Composites
4. Reactor Design
4.1. Reactor Type and Configuration
4.2. Catalyst Immobilization vs. Suspension
4.3. Energy Efficiency and Light Utilization
4.4. Hydrodynamics and Mass Transfer
4.5. Economic and Scalability Considerations
5. Challenges and Future Scope
5.1. Environmental Challenges
5.2. Integration with Emerging Technologies
5.3. Potential for Scaling up and Commercialization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GO | graphene oxide |
rGO | reduced graphene oxide |
CV | crystal violet |
MB | methylene blue |
AO | acid orange |
MBT | 2-mereaptobenzothiazole |
MWCNT | multi-walled carbon nanotube |
RB | rose Bengal |
CR | Congo red |
ROS | reactive oxygen species |
TMX | tamoxifen |
DOX | doxorubicin |
PAM | polyacrylamide |
BY | brilliant yellow |
MO | methyl orange |
RhB | rhodamine B |
NIR | near infra-red |
TC | tetracycline |
CTX | cefotaxime |
NPs | nanoparticles |
ANN | artificial neural network |
PS | polystyrene |
FESEM | field emission scanning electron microscopy |
TEM | high resolution transmission electron microscopy |
HRTEM | high resolution transmission electron microscopy |
reactive blue | 160 RR160 |
VO | oxygen vacancy |
e− | electrons |
h+ | holes |
CIP | ciprofloxacin |
k | rate constant |
References
- Bhatia, S.C. Pollution Control in Textile Industry, 1st ed.; WPI Publishing: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Liu, Q. Pollution and Treatment of Dye Waste-Water. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 052001. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Azimi, S.C.; Shirini, F.; Pendashteh, A.R. Advanced Oxidation Process as a Green Technology for Dyes Removal from Wastewater: A Review. Iran. J. Chem. Chem. Eng. 2021, 40, 1467–1489. [Google Scholar] [CrossRef]
- Mashuri, S.I.S.; Ibrahim, M.L.; Kasim, M.F.; Mastuli, M.S.; Rashid, U.; Abdullah, A.H.; Islam, A.; Mijan, N.A.; Tan, Y.H.; Mansir, N.; et al. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts 2020, 10, 1260. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Uysal, B.Ö.; Pekcan, Ö.; Erim, F.B. Efficient Photocatalytic Degradation of Methylene Blue Dye from Aqueous Solution with Cerium Oxide Nanoparticles and Graphene Oxide-Doped Polyacrylamide. ACS Omega 2023, 8, 13004–13015. [Google Scholar] [CrossRef]
- ANajafidoust, A.; Allahyari, S.; Rahemi, N.; Tasbihi, M. Uniform coating of TiO2 nanoparticles using biotemplates for photocatalytic wastewater treatment. Ceram. Int. 2020, 46, 4707–4719. [Google Scholar] [CrossRef]
- Goutam, S.P.; Saxena, G.; Singh, V.; Yadav, A.K.; Bharagava, R.N.; Thapa, K.B. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J. 2018, 336, 386–396. [Google Scholar] [CrossRef]
- MAl-Mamun, M.; Kader, S.; Islam, M.; Khan, M. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Jenifer, A.; Sastri, M.S.; Sriram, S. Photocatalytic dye degradation of V2O5 Nanoparticles—An experimental and DFT analysis. Optik 2021, 243, 167148. [Google Scholar] [CrossRef]
- Ashery, M.H.; Elnouby, M.; El-Maghraby, E.M.; Elsehly, E.M. Structural control of V2O5 nanoparticles via a thermal decomposition method for prospective photocatalytic applications. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 12. [Google Scholar] [CrossRef]
- Karthik, K.; Nikolova, M.P.; Phuruangrat, A.; Pushpa, S.; Revathi, V.; Subbulakshmi, M. Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater. Res. Innov. 2020, 24, 229–234. [Google Scholar] [CrossRef]
- Kumar, J.P.; Ramgopal, G.; Vidya, Y.; Anantharaju, K.; Prasad, B.D.; Sharma, S.; Prashantha, S.; Premkumar, H.; Nagabhushana, H. Bio-inspired synthesis of Y2O3: Eu3+ red nanophosphor for eco-friendly photocatalysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 149–160. [Google Scholar] [CrossRef]
- Magdalane, C.M.; Kaviyarasu, K.; Vijaya, J.J.; Siddhardha, B.; Jeyaraj, B.; Kennedy, J.; Maaza, M. Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine—B dye for textile engineering application. J. Alloys Compd. 2017, 727, 1324–1337. [Google Scholar] [CrossRef]
- Atran, A.A.; Ibrahim, F.A.; Awwad, N.S.; Abd-Rabboh, H.S.M.; Hamdy, M.S. Remarkable enhancement in the photocatalytic activity of porous CeO2 nanoparticles through nickel doping for wastewater treatment. J. Mater. Sci. Mater. Electron. 2023, 34, 2082. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, P.; Singh, D.; Umar, A.; Kumar, R. Chemical and Pathogenic Cleanup of Wastewater Using Surface-Functionalized CeO2 Nanoparticles. ACS Sustain. Chem. Eng. 2017, 5, 6803–6816. [Google Scholar] [CrossRef]
- Kusmierek, E. A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts 2020, 10, 1435. [Google Scholar] [CrossRef]
- Phor, L.; Trabelsi, Y.; Anurag; Malik, J.; Kumari, H.; Kumar, A.; Chahal, S. CeO2 microspheres/Ni0.5Zn0.5Fe2O4/MWCNT ternary hybrid composites for ultrasonic-enhanced photocatalytic wastewater treatment. Ceram. Int. 2024, 50, 35600–35608. [Google Scholar] [CrossRef]
- Ankita, A.; Chahal, S.; Singh, S.; Kumar, S.; Kumar, P. Europium-doped cerium oxide nanoparticles: Investigating oxygen vacancies and their role in enhanced photocatalytic and magnetic properties. Environ. Sci. Pollut. Res. 2023, 31, 1276–1287. [Google Scholar] [CrossRef]
- Phor, L.; Ankush; Suman; Malik, J.; Sharma, S.; Sonia; Chaudhary, V.; Rani, G.M.; Kumar, A.; Kumar, P.; et al. Magnetically separable NiZn-ferrite/CeO2 nanorods/CNT ternary composites for photocatalytic removal of organic pollutants. J. Mol. Liq. 2023, 390, 123064. [Google Scholar] [CrossRef]
- Chahal, S.; Kumar, A.; Kumar, P. Erbium-doped oxygen deficient cerium oxide: Bi-functional material in the field of spintronics and photocatalysis. Appl. Nanosci. 2020, 10, 1721–1733. [Google Scholar] [CrossRef]
- Chahal, S.; Rani, N.; Kumar, A.; Kumar, P. UV-irradiated photocatalytic performance of yttrium doped ceria for hazardous Rose Bengal dye. Appl. Surf. Sci. 2019, 493, 87–93. [Google Scholar] [CrossRef]
- Lahive, E.; Jurkschat, K.; Shaw, B.J.; Handy, R.D.; Spurgeon, D.J.; Svendsen, C. Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: Subtle effects. Environ. Chem. 2014, 11, 268. [Google Scholar] [CrossRef]
- Chahal, S.; Singh, S.; Kumar, A.; Kumar, P. Oxygen-deficient lanthanum doped cerium oxide nanoparticles for potential applications in spintronics and photocatalysis. Vacuum 2020, 177, 109395. [Google Scholar] [CrossRef]
- Chahal, S.; Phor, L.; Singh, S.; Singh, A.; Malik, J.; Goel, P.; Kumar, A.; Kumar, S.; Ankita; Kumar, P. An efficient and unique method for the growth of spindle shaped Mg-doped cerium oxide nanorods for photodegradation of p-Nitrophenol. Ceram. Int. 2022, 48, 28961–28968. [Google Scholar] [CrossRef]
- Chatterjee, M.; Mondal, M.; Sukul, T.; Mal, S.; Ghosh, K.; Das, S.; Pradhan, S.K. Superior photocatalytic performance and photo disinfection of bacteria of solvothermally synthesized mesoporous La-doped CeO2 under simulated visible light irradiation for wastewater treatment. J. Alloys Compd. 2023, 942, 169135. [Google Scholar] [CrossRef]
- Madaan, V.; Kumar, K. Remediation of industrial pollutants in wastewater by photocatalytic treatment with Gadolinium doped CeO2 with composition GdxCe1-xO2 (0 < x < 0.1). J. Phys. Chem. Solids 2023, 178, 111344. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Geçim, B.; Erim, F.B. Green synthesis of cerium oxide nanoparticles from turmeric and kinds of honey: Characterisations, antioxidant and photocatalytic dye degradation activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 2022, 13, 015016. [Google Scholar] [CrossRef]
- Kaygusuz, H.; Erim, F.B. Biopolymer-assisted green synthesis of functional cerium oxide nanoparticles. Chem. Pap. 2020, 74, 2357–2363. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, J.; Chai, Y.; Liu, Q.; Ren, J.; Liu, X.; Dai, W.-L. CeO2 nanorod/g-C3N4 /N-rGO composite: Enhanced visible-light-driven photocatalytic performance and the role of N-rGO as electronic transfer media. Dalton Trans. 2015, 44, 11223–11234. [Google Scholar] [CrossRef] [PubMed]
- Pham, C.V.; Krueger, M.; Eck, M.; Weber, S.; Erdem, E. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment. Appl. Phys. Lett. 2014, 104, 132102. [Google Scholar] [CrossRef]
- He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. 2012, 3, 1764–1772. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- Khan, M.; Assal, M.E.; Tahir, M.N.; Khan, M.; Ashraf, M.; Hatshan, M.R.; Khan, M.; Varala, R.; Badawi, N.M.; Adil, S.F. Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation. J. Saudi Chem. Soc. 2022, 26, 101544. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-Warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef]
- Quezada-Rentería, J.; Cházaro-Ruiz, L.; Rangel-Mendez, J. Synthesis of reduced graphene oxide (rGO) films onto carbon steel by cathodic electrophoretic deposition: Anticorrosive coating. Carbon 2017, 122, 266–275. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, P.; Shi, X.; Ling, T.; Zeng, W.; Chen, A.; Yang, W.; Zhou, Z. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. ACS Nano 2019, 13, 9595–9606. [Google Scholar] [CrossRef] [PubMed]
- Jana, A.; Scheer, E.; Polarz, S. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 2017, 8, 688–714. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, S.; Thangavel, S.; Raghavan, N.; Krishnamoorthy, K.; Venugopal, G. Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures. J. Alloys Compd. 2016, 665, 107–112. [Google Scholar] [CrossRef]
- Mills, A.; O’rourke, C.; Moore, K. Powder semiconductor photocatalysis in aqueous solution: An overview of kinetics-based reaction mechanisms. J. Photochem. Photobiol. A Chem. 2015, 310, 66–105. [Google Scholar] [CrossRef]
- Yi, G.; Zhang, X.; Fan, H.; Li, P.; Zhang, Z.; Wu, Y.; Chen, L.; Zhang, C.; Zhang, Y.; Sun, Q. Cobalt Doped TiO2/rGO Nanocomposites as Highly Efficient Photocatalyst for Water Purification. Biomed. J. Sci. Tech. Res. 2021, 37, 29249–29257. [Google Scholar] [CrossRef]
- Iqbal, R.M.A.; Akhtar, T.; Sitara, E.; Nasir, H.; Fazal, A.; Rafique, U.; Ullah, S.; Mehmood, A. Development of Ag0.04ZrO2/rGO heterojunction, as an efficient visible light photocatalyst for degradation of methyl orange. Sci. Rep. 2022, 12, 12308. [Google Scholar] [CrossRef]
- Doluel, E.C.; Kartal, U.; Dikici, T.; Yurddaskal, M. Effect of Ag Content on Photocatalytic Activity of Ag@TiO2/rGO Hybrid Photocatalysts. J. Electron. Mater. 2020, 49, 3849–3859. [Google Scholar] [CrossRef]
- Baig, N.; Ihsanullah; Sajid, M.; Saleh, T.A. Graphene-based adsorbents for the removal of toxic organic pollutants: A review. J. Environ. Manag. 2019, 244, 370–382. [Google Scholar] [CrossRef]
- Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 2019, 272, 102009. [Google Scholar] [CrossRef]
- Lu, K.-Q.; Li, Y.-H.; Tang, Z.-R.; Xu, Y.-J. Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Mater. Au 2021, 1, 37–54. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, Y.; Wu, Y.; Weng, Z.; Liu, S.; Liu, Z.; Lu, K.; Han, B. Recent Advances of CeO2-Based Composite Materials for Photocatalytic Applications. ChemSusChem 2024, 17, e202301778. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N.; Li, J. Cerium modified rod-like ZnO graphene complex and its photocatalytic properties under visible-light irradiation. Opt. Mater. 2020, 108, 110203. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A. Enhanced photocatalytic activity of rGO-CeO2 nanocomposites driven by sunlight. Mater. Sci. Eng. B 2017, 223, 98–108. [Google Scholar] [CrossRef]
- Naynava, S.K.; Lorestani, B.; Cheraghi, M.; Sobhanardakani, S.; Shahmoradi, B. Efficient Degradation of Diazinon Pesticide under Visible Light Irradiation Using CeO2 Functionalized Magnetite Graphene Oxide Heterojunction-Based Photocatalyst. Water Air Soil Pollut. 2024, 235, 274. [Google Scholar] [CrossRef]
- Siranjeevi, R.; Vasumathi, V.; Suganya, S.; Saravanan, A.; Usha, R.; Azhagurajan, M.; Jeyalakshmi, R. Evaluation of biosynthesized GO@CeO2 nanocomposites as a catalyst for UV-assisted degradation of organic dyes and phytotoxicity studies. Surf. Interfaces 2024, 44, 103748. [Google Scholar] [CrossRef]
- Zhu, Z.; Xing, X.; Qi, Q.; Shen, W.; Wu, H.; Li, D.; Li, B.; Liang, J.; Tang, X.; Zhao, J.; et al. Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chin. J. Struct. Chem. 2023, 42, 100194. [Google Scholar] [CrossRef]
- Chahal, S.; Phor, L.; Kumar, A.; Kumar, S.; Kumar, S.; Kumar, R.; Kumar, P. Enhanced photocatalytic degradation of organic dye by CeO2/CNT/GO hybrid nanocomposites under UV light for wastewater treatment. Environ. Sci. Pollut. Res. 2023, 30, 124964–124975. [Google Scholar] [CrossRef]
- Ganie, A.S.; Bashar, N.; Bano, S.; Hijazi, S.; Sultana, S.; Sabir, S.; Khan, M.Z. Development and application of redox active GO supported CeO2/In2O3 nanocomposite for photocatalytic degradation of toxic dyes and electrochemical detection of sulfamaxole. Surf. Interfaces 2023, 38, 102774. [Google Scholar] [CrossRef]
- Rashtchi, N.; Sobhanardakani, S.; Cheraghi, M.; Goodarzi, A.; Lorestani, B. High-efficient photocatalytic degradation of tamoxifen and doxorubicin by novel ternary heterogeneous GO@Fe3O4@CeO2 photocatalyst. Toxin Rev. 2023, 42, 701–708. [Google Scholar] [CrossRef]
- Iqbal, A.; Ahamad, T.; Qais, F.A.; Ahmad, N.; Shafi, A.; Ahmed, A.S.; Srivastava, S. Proficient visible-light-driven photocatalytic and anti-biofilm activity of biosynthesized CeO2-graphene oxide nanocomposites. Mater. Chem. Phys. 2023, 298, 127397. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Amin, K.M.; Ali, M.; Ali, Z.; Atif, M.; Ensinger, W.; Khalid, W. Synergetic effect of adsorption-photocatalysis by GO-CeO2. J. Environ. Chem. Eng. 2022, 10, 107078. [Google Scholar] [CrossRef]
- Karpuraranjith, M.; Chen, Y.; Manigandan, R.; Srinivas, K.; Rajaboopathi, S. Hierarchical Ultrathin Layered GO-ZnO@CeO2 Nanohybrids for Highly Efficient Methylene Blue Dye Degradation. Molecules 2022, 27, 8788. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Lei, X.; Gu, G.; Zou, R.; Wu, Q. Facile synthesis of CeO2-graphene oxide composites with enhanced visible-light photocatalytic performance. Mater. Sci. Eng. B 2019, 244, 49–55. [Google Scholar] [CrossRef]
- Kashinath, L.; Namratha, K.; Byrappa, K. Microwave mediated synthesis and characterization of CeO2-GO hybrid composite for removal of chromium ions and its antibacterial efficiency. J. Environ. Sci. 2019, 76, 65–79. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, L. Graphene oxide (GO) doped CeO2 as potential enhancer of methyl orange degradation. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 344–350. [Google Scholar] [CrossRef]
- Channei, D.; Nakaruk, A.; Phanichphant, S. Influence of graphene oxide on photocatalytic enhancement of cerium dioxide. Mater. Lett. 2017, 209, 43–47. [Google Scholar] [CrossRef]
- Yin, D.; Zhao, F.; Zhang, L.; Zhang, X.; Liu, Y.; Zhang, T.; Wu, C.; Chen, D.; Chen, Z. Greatly enhanced photocatalytic activity of semiconductor CeO2 by integrating with upconversion nanocrystals and graphene. RSC Adv. 2016, 6, 103795–103802. [Google Scholar] [CrossRef]
- Huang, T.; Wu, J.; Zhao, Z.; Zeng, T.; Zhang, J.; Xu, A.; Zhou, X.; Qi, Y.; Ren, J.; Zhou, R.; et al. Synthesis and photocatalytic performance of CuO-CeO2/Graphene Oxide. Mater. Lett. 2016, 185, 503–506. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, M.; Liu, B.; Li, Q.; Liu, R.; Lv, H.; Lu, S.; Gong, C.; Zou, B.; Cui, T.; et al. Controlled Synthesis of CeO2 /Graphene Nanocomposites with Highly Enhanced Optical and Catalytic Properties. J. Phys. Chem. C 2012, 116, 11741–11745. [Google Scholar] [CrossRef]
- Dezfuli, A.S.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J. Mater. Chem. B 2015, 3, 2362–2370. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, A.K. In-situ synthesis of reduced graphene oxide decorated with highly dispersed ferromagnetic CdS nanoparticles for enhanced photocatalytic activity under UV irradiation. Mater. Chem. Phys. 2016, 171, 126–136. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv. 2014, 4, 3823–3851. [Google Scholar] [CrossRef]
- Fulzele, N.N.; Bhanvase, B.A.; Pandharipande, S.L. Sonochemically prepared rGO/Ag3PO4/CeO2 nanocomposite photocatalyst for effective visible light photocatalytic degradation of methylene dye and its prediction with ANN modelling. Mater. Chem. Phys. 2022, 292, 126809. [Google Scholar] [CrossRef]
- Ning, D.; Zhang, J.; Murali, A.; Lan, Y.; Chen, C.; Yang, S.; Zhang, W.; Li, J. Advancements in organic pollutant remediation: The role of nitrogen-doped rGO-CeO2 in photocatalytic efficiency enhancement, Colloids Surfaces A Physicochem. Eng. Asp. 2024, 685, 133282. [Google Scholar] [CrossRef]
- Tran, D.-T.; Ha, T.-H.; Vu, T.-P.; Nguyen, V.-N.; Pham, T.-D. Novel CeO2-V2O5/rGO tertiary photocatalyst for improved cefotaxime degradation using visible-light. Inorg. Chem. Commun. 2024, 161, 112044. [Google Scholar] [CrossRef]
- Vanasundari, K.; Ponnarasi, P.; Mahalakshmi, G. A green approach to synthesis of Ag-doped CeO2 nanorods embedded reduced graphene oxide nanocomposite for excellent photocatalytic and antimicrobial activity. Inorg. Chem. Commun. 2024, 165, 112523. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Rani, S.; Ansari, A.A.; Ahamed, M.; Ahmed, J.; Kumar, S.; Rana, A.U.H.S. Anchoring Ceria Nanoparticles on Reduced Graphene Oxide and Their Enhanced Photocatalytic and Electrochemical Activity for Environmental Remediation. J. Electron. Mater. 2024, 53, 930–944. [Google Scholar] [CrossRef]
- Sun, B.; Chen, W.; Zheng, W.; Zhang, H.; Liu, T.X.; Elmarakbi, A.; Fu, Y. In-situ controlled growth of ultrafine CeO2 nanoparticles on reduced graphene oxides for efficient photocatalytic degradation. J. Catal. 2023, 424, 106–120. [Google Scholar] [CrossRef]
- Ye, B.; Zhao, Z.; Liu, H. Photocatalytic degradation of Estrone and Congo red by the magnetic antibacterial photocatalyst g-C3N4/CeO2/M-rGO under visible light and optimization by Box-Behnken statistical design (BBD). J. Mol. Struct. 2023, 1272, 134205. [Google Scholar] [CrossRef]
- Raja, A.; Son, N.; Kang, M. Direct Z-scheme ZnIn2S4 spheres and CeO2 nanorods decorated on reduced-graphene-oxide heterojunction photocatalysts for hydrogen evolution and photocatalytic degradation. Appl. Surf. Sci. 2023, 607, 155087. [Google Scholar] [CrossRef]
- Gomathi, A.; Prabhuraj, T.; Gokilapriya, S.; Vasanthi, G.; Maadeswaran, P.; Kumar, K.R. Design of ternary CeO2/Fe2O3/reduced graphene oxide-based hybrid nanocomposite for superior photocatalytic degradation material for organic dyes. Dye. Pigment. 2023, 218, 111473. [Google Scholar] [CrossRef]
- Alburaih, H.; Aadil, M.; Hassan, W.; Amaral, L.S.; Ejaz, S.R.; Aman, S.; Alsafari, I.A. Multifunctional Fe and Gd co-doped CeO2-RGO nanohybrid with excellent solar light mediated crystal violet degradation and bactericidal activity. Synth. Met. 2022, 287, 117093. [Google Scholar] [CrossRef]
- Yao, J.; Gao, Z.; Meng, Q.; He, G.; Chen, H. One-step synthesis of reduced graphene oxide based ceric dioxide modified with cadmium sulfide (CeO2/CdS/RGO) heterojunction with enhanced sunlight-driven photocatalytic activity. J. Colloid Interface Sci. 2021, 594, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Murali, A.; Sarswat, P.K.; Free, M.L. Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications. Environ. Sci. Pollut. Res. 2020, 27, 25042–25056. [Google Scholar] [CrossRef]
- Garg, D.; Matai, I.; Garg, A.; Sachdev, A. Tragacanth Hydrogel Integrated CeO2 @rGO Nanocomposite as Reusable Photocatalysts for Organic Dye Degradation. ChemistrySelect 2020, 5, 10663–10672. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Bakiro, M.; Aljasmi, F.I.A.; Albreiki, A.M.O.; Bayane, S.; Alzamly, A. Investigation of the band gap and photocatalytic properties of CeO2/rGO composites. Mol. Catal. 2020, 486, 110874. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, J.; Hong, L.; Yang, C.; Li, Y. Reduced graphene oxide@ceria nanocomposite-coated polymer microspheres as a highly active photocatalyst. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 161–170. [Google Scholar] [CrossRef]
- Seeharaj, P.; Kongmun, P.; Paiplod, P.; Prakobmit, S.; Sriwong, C.; Kim-Lohsoontorn, P.; Vittayakorn, N. Ultrasonically-assisted surface modified TiO2/rGO/CeO2 heterojunction photocatalysts for conversion of CO2 to methanol and ethanol. Ultrason. Sonochemistry 2019, 58, 104657. [Google Scholar] [CrossRef]
- Huang, J.; Chen, F.; Wang, H.; Yan, H. Enhanced photocatalytic activity of hybrid reduced graphene oxide–CeO2 hierarchical flower-like nanostructures. Res. Chem. Intermed. 2018, 44, 2729–2738. [Google Scholar] [CrossRef]
- Priyadharsan, A.; Vasanthakumar, V.; Karthikeyan, S.; Raj, V.; Shanavas, S.; Anbarasan, P. Multi-functional properties of ternary CeO2 /SnO2 /rGO nanocomposites: Visible light driven photocatalyst and heavy metal removal. J. Photochem. Photobiol. A Chem. 2017, 346, 32–45. [Google Scholar] [CrossRef]
- Shanavas, S.; Priyadharsan, A.; Vasanthakumar, V.; Arunkumar, A.; Anbarasan, P.; Bharathkumar, S. Mechanistic investigation of visible light driven novel La2CuO4/CeO2/rGO ternary hybrid nanocomposites for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol. A Chem. 2017, 340, 96–108. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, A.K.; Patrice, D.; Yadav, B.S.; Materny, A. One-step in situ synthesis of CeO2 nanoparticles grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation. Phys. Chem. Chem. Phys. 2016, 18, 11157–11167. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Reddy, D.A.; Islam, M.J.; Ma, R.; Kim, T.K. Self-assembly of CeO2 nanostructures/reduced graphene oxide composite aerogels for efficient photocatalytic degradation of organic pollutants in water. J. Alloys Compd. 2016, 688, 527–536. [Google Scholar] [CrossRef]
- Verma, R.; Samdarshi, S.K. In Situ Decorated Optimized CeO2 on Reduced Graphene Oxide with Enhanced Adsorptivity and Visible Light Photocatalytic Stability and Reusability. J. Phys. Chem. C 2016, 120, 22281–22290. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, W.; Zhang, D.; Li, S.; Ma, W.; Tong, Z.; Chen, J. CeO2 hollow nanospheres decorated reduced graphene oxide composite for efficient photocatalytic dye-degradation. Mater. Lett. 2014, 137, 229–232. [Google Scholar] [CrossRef]
- Huang, K.; Li, Y.; Lin, S.; Liang, C.; Xu, X.; Zhou, Y.; Fan, D.; Yang, H.; Lang, P.; Zhang, R.; et al. One-step synthesis of reduced graphene oxide–CeO2 nanocubes composites with enhanced photocatalytic activity. Mater. Lett. 2014, 124, 223–226. [Google Scholar] [CrossRef]
- Ji, Z.; Shen, X.; Li, M.; Zhou, H.; Zhu, G.; Chen, K. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties. Nanotechnology 2013, 24, 115603. [Google Scholar] [CrossRef]
- Leblebici, M.E.; Stefanidis, G.D.; Van Gerven, T. Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem. Eng. Process.-Process Intensif. 2015, 97, 106–111. [Google Scholar] [CrossRef]
- Sundar, K.P.; Kanmani, S. Progression of Photocatalytic reactors and it’s comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar] [CrossRef]
- Visan, A.; van Ommen, J.R.; Kreutzer, M.T.; Lammertink, R.G.H. Photocatalytic Reactor Design: Guidelines for Kinetic Investigation. Ind. Eng. Chem. Res. 2019, 58, 5349–5357. [Google Scholar] [CrossRef]
- Khan, M.; Fung, C.S.; Kumar, A.; Lo, I.M. Magnetically separable BiOBr/Fe3O4@SiO2 for visible-light-driven photocatalytic degradation of ibuprofen: Mechanistic investigation and prototype development. J. Hazard. Mater. 2019, 365, 733–743. [Google Scholar] [CrossRef]
- Badini, S.; Regondi, S.; Pugliese, R. Unleashing the Power of Artificial Intelligence in Materials Design. Materials 2023, 16, 5927. [Google Scholar] [CrossRef] [PubMed]
S. No. | Catalyst | Pollutant | Catalyst Dosage | Irradiation Source | Time (min) | Degradation (%) | Ref. |
---|---|---|---|---|---|---|---|
1. | GO@Fe3O4@ CeO2 | Diazinon (30 mg L−1) | 20 mg/100 mL | Xenon lamp (300 W) | 60 | 97.9 | [55] |
2. | GO@CeO2 | CV (20 mg L−1) | 20 mg/100 mL | Xenon lamp (400 W) | 90 | 85 | [56] |
3. | GO@CeO2 | MB (20 mg L−1) | 20 mg/100 mL | Xenon lamp (400 W) | 90 | 91.81 | [56] |
4. | GO@CeO2 | AO (20 mg L−1) | 20 mg/100 mL | Xenon lamp (400 W) | 90 | 87 | [56] |
5. | CeO2/N-GO/g-C3N4 | MBT (20 mg L−1) | 0.05 mg/100 mL | Xenon lamp (300 W) | 120 | 100 | [57] |
6. | CeO2/CNT/GO | RB (5 ppm) | 0.5 mg/mL | UV lamp (300 W) | 50 | 96.9 | [58] |
7. | 30% GO-CeO2 | MO (100 ppm) | 0.1 g/mL | Visible light (500 W) | 80 | 93.3 | [61] |
8. | CeO2/GO | MB (5 mg L–1) | 300 μL/mL | UV-A light (8 W) | 90 | 90 | [8] |
9. | GO-CeO2 | DOX (0.5 mM) | 1 mg/mL | LED light source power 9 W and 800 lumens | 420 | 99.8 | [62] |
10. | GO-ZnO@CeO2 | MB (10 ppm) | 0.5 mg/mL | 350 W Xenon lamp (UV filter cut off at 400 nm) | 90 | 96.6 | [63] |
11. | CeO2-GO (5 wt%) | MB (20 mg/L) | 0.1 g | 300 W Xe arc lamp (wavelength > 400 nm) | 240 | 81.1 | [64] |
12. | CeO2-GO | BY (10 ppm) | - | UV light | 150 | ~82 | [65] |
13. | GO/CeO2 | MO | - | Visible light | 120 | 87 | [66] |
14. | CeO2/GO | MB (20 ppm) | - | Visible light three 54 W halogen lamps | 120 | 95 | [67] |
15. | CuO-CeO2/GO | MO (10 mg/L) | 5 mg/100 mL | 300 W Xe arc lamp (wavelength > 400 nm) | 150 | 97.8 | [69] |
16. | N-doped rGO-CeO2 | TC (10 mg/L) | 1 mg/4 mL | Xenon lamp | 150 | 77.93 | [75] |
17. | CeO2-V2O5/rGO | Cefotaxime (20 mg/L) | 1 g/L | Visible light | 150 | 99 | [76] |
18. | Ag@CeO2/rGO | MB (5 M) | 0.06 g/100 mL | UVA-light (11 W) | 60 | 100 | [77] |
19. | rGO/CeO2 | RhB (10 mg/L) | 0.5 mg/mL | Sun light | 100 | - | [78] |
20. | CeO2@rGO | RhB (15 mg/L) | - | UV light | 120 | 94.7 | [79] |
21. | g-C3N4/CeO2/M-rGO | Estrone (10 ppm) | 15 mg | Visible light | 90 | 74 | [80] |
22. | g-C3N4/CeO2/M-rGO | CR (10 ppm) | 5 mg | Visible light | 110 | 91 | [80] |
23. | ZnIn2S4/rGO/CeO2 | TC (20 mg/L) | 30 mg/L | 150 W Xe lamp (solar light) | 80 | 94.5 | [81] |
24. | CeO2/Fe2O3/r-GO | MB (10 mg/L) | 0.1 g/L | 500 W halogen lamp (visible light) | 100 | 90 | [82] |
25. | CeO2/Fe2O3/r-GO | MO (10 mg/L) | 0.1 g/L | 500 W halogen lamp (visible light) | 100 | 86 | [82] |
26. | Fe and Gd co-doped CeO2-RGO | CV | 10 mg/60 mL | solar light | 40 | 94.18 | [83] |
27. | rGO/Ag3PO4/CeO2 | MB (25 ppm) | 400 mg/L | Visible light | 20 | 99.02 | [74] |
28. | CeO2/CdS/RGO | Ciprofloxacin (40 mg/L) | 0.5 mg/mL | 800 W xenon lamp | 120 | 90 | [84] |
29. | CeO2@rGO-TG | MB | 2 mg | Sun light | 360 | 91 | [86] |
30. | CeO2@rGO-TG | CR | 2 mg | Sun light | 360 | 83 | [86] |
31. | PS/RGO@CeO2 | MB (5 mg/L) | 2.2 g/L | 45 W fluorescent lamp | 210 | 95.6 | [88] |
32. | rGO-CeO2 | MB (10−5 M) | 1 mg/mL | Sun light | 50 | 72 | [54] |
33. | CeO2/SnO2/rGO | MB | 0.5 g/100 mL | Sun light | 90 | 95 | [91] |
34. | La2CuO4/CeO2/rGO | Reactive Blue 160 (10 mg/L) | 2 mg/mL | Visible light | 150 | 95.7 | [92] |
35. | rGO-CeO2 | MB (1 mg/L) | 1 g/L | Sun light | 10 | 90 | [93] |
36. | CeO2/RGA | RhB (10 mg/L) | - | Sun light | 120 | 85 | [94] |
37. | rGO-CeO2 (1:2) | MO (1 mM) | 0.5 g/L | Sun light | 60 | 88.3 | [95] |
38. | CeO2 nanorods/g-C3N4/N-rGO | RhB (10 mg/L) | 1 mg/mL | Visible light | 100 | ~100 | [35] |
39. | CeO2/rGO | MO (30 mg/mL) | 1 mg/mL | UV light | 505 | 97 | [96] |
40. | RGO–CeO2 | MB (1 × 10−5 M) | 3 mg/8 mL | UV light | 90 | 87 | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phor, L.; Kumar, R.; Khanna, V.; Menon, S.V.; Singh, A.; Singh, M.; Singh, A.; Malik, J.; Chahal, S. Graphene and Cerium Oxide Nanocomposites: Pioneering Photocatalysts for Organic Dye Degradation from Wastewater. Processes 2025, 13, 720. https://doi.org/10.3390/pr13030720
Phor L, Kumar R, Khanna V, Menon SV, Singh A, Singh M, Singh A, Malik J, Chahal S. Graphene and Cerium Oxide Nanocomposites: Pioneering Photocatalysts for Organic Dye Degradation from Wastewater. Processes. 2025; 13(3):720. https://doi.org/10.3390/pr13030720
Chicago/Turabian StylePhor, Lakshita, Rinku Kumar, Virat Khanna, Soumya V. Menon, Amanvir Singh, Milan Singh, Amanpreet Singh, Jaideep Malik, and Surjeet Chahal. 2025. "Graphene and Cerium Oxide Nanocomposites: Pioneering Photocatalysts for Organic Dye Degradation from Wastewater" Processes 13, no. 3: 720. https://doi.org/10.3390/pr13030720
APA StylePhor, L., Kumar, R., Khanna, V., Menon, S. V., Singh, A., Singh, M., Singh, A., Malik, J., & Chahal, S. (2025). Graphene and Cerium Oxide Nanocomposites: Pioneering Photocatalysts for Organic Dye Degradation from Wastewater. Processes, 13(3), 720. https://doi.org/10.3390/pr13030720