Hydrogen 5.0: Interdisciplinary Development of a Proof-of-Concept Smart System for Green Hydrogen Leak Detection
Abstract
:1. Introduction
2. Brief Literature Review
2.1. Technologies for Hydrogen Leak Detection
2.1.1. Mechanical Sensors
2.1.2. Catalytic/Pellistors
2.1.3. Thermoelectric Sensors
2.1.4. Chemiresistive Sensors
2.1.5. Photoresistive Sensors
2.1.6. Optical Sensors
2.2. Industry 4.0/5.0 in Hydrogen Systems
2.3. Legal Frameworks of Chile and Spain
2.3.1. Specific Laws in Chile
2.3.2. Specific Laws in Spain
3. Materials and Methods
3.1. Technical Development
3.1.1. Characterization of the Hydrogen Leak Detection with Colorimetric Tape
3.1.2. Simulation of the Leaks Following the Characterization
3.1.3. Dynamic Email Alert Integrated with a Language Model
3.1.4. Hardware Comparison for IoT Hydrogen Leak Detection Prototype
3.2. Legal Responsibilities
4. Results
4.1. Proof of Concept
4.1.1. Qualitative Characterization of Hydrogen Leaks with Colorimetric Tape
4.1.2. Quantitative Characterization of Hydrogen Leaks with Colorimetric Tape
4.1.3. Visual Simulation of the Hydrogen Leaks Following Characterization
4.1.4. Proof-of-Concept Implementation
4.2. Estimation of Modernization for Hydrogen Leak Detection Systems
5. Discussion
5.1. Technical Aspects
5.2. Legal Aspects
5.2.1. Hydrogen Regulation as a Contaminant
5.2.2. Opportunities for Hydrogen 5.0: Legal Frameworks of Chile and Spain
5.2.3. Malfunction of the System: Legal Liabilities in Chile and Spain
5.2.4. Regulation of Smart Systems
6. Conclusions
- A software sensor, as an example of Industry 4.0 technologies, was developed at the proof-of-concept level, integrating a computer vision algorithm with a hydrogen leak detection tape to bridge the physical and digital aspects of the system. The visual sensor processed images to detect tape color changes within a given period, triggering email alerts if changes fell below a defined threshold.
- An Industry 5.0 proof of concept was demonstrated through an Emailbot for dynamic email notifications, enabling collaboration in human language with operators while enhancing the sustainability and resilience of hydrogen-monitoring systems. A comparison of an Arduino, Raspberry Pi, and HP i7 laptop was performed to determine the appropriate hardware for cost-effective system implementation. The results indicate that the Raspberry Pi provided sufficient capabilities for processing large images and sending email alerts, integrating ChatGPT to humanize the alert data in the message.
- A legal analysis that focused on Chile and Spain revealed that there are no legal restrictions preventing companies from adopting Industry 4.0/5.0 technologies. On the contrary, in Chile, environmental protection laws have already incorporated recent technologies to establish environmental standards for industrial process operations. However, companies and technology developers must consider both contractual and extracontractual liabilities, as costly unforeseen obligations may arise if the systems fail. Even if not explicitly stated in the contract, in the event of a system malfunction, companies would be subject to an obligation of means regarding potential harm to human operators, whereas environmental damage would impose an obligation of result, carrying stricter legal and economic consequences.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo-Giraldo, S.; Barbaray, R. The Industrial Management of SMEs in the Era of Industry 4.0. Int. J. Prod. Res. 2018, 56, 1118–1136. [Google Scholar] [CrossRef]
- Alarcon, C.; Shene, C. Fermentation 4.0, a Case Study on Computer Vision, Soft Sensor, Connectivity, and Control Applied to the Fermentation of a Thraustochytrid. Comput. Ind. 2021, 128, 103431. [Google Scholar] [CrossRef]
- Breque, M.; De Nul, L.; Petridis, A. Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry; Publications Office of the European Union: Luxembourg, 2021; ISBN 9789276253082. [Google Scholar]
- Alves, J.; Lima, T.M.; Gaspar, P.D. Is Industry 5.0 a Human-Centred Approach? A Systematic Review. Processes 2023, 11, 193. [Google Scholar] [CrossRef]
- Wagner, B. Liable, but Not in Control? Ensuring Meaningful Human Agency in Automated Decision-Making Systems. Policy Internet 2019, 11, 104–122. [Google Scholar] [CrossRef]
- Contissa, G.; Laukyte, M.; Sartor, G.; Schebesta, H.; Masutti, A.; Lanzi, P.; Marti, P.; Tomasello, P. Liability and Automation: Issues and Challenges for Socio-Technical Systems. J. Aerosp. Oper. 2013, 2, 79–98. [Google Scholar] [CrossRef]
- Vladeck, D.C. Machines Without Principals: Liability Rules and Artificial Intelligence Intelligence; HeinOnline: Buffalo, NY, USA, 2014; Volume 89. [Google Scholar]
- Park, J.; Seager, T.P.; Rao, P.S.C.; Convertino, M.; Linkov, I. Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems. Risk Anal. 2013, 33, 356–367. [Google Scholar] [CrossRef]
- Preuveneers, D.; Ilie-Zudor, E. The Intelligent Industry of the Future: A Survey on Emerging Trends, Research Challenges and Opportunities in Industry 4.0. J. Ambient. Intell. Smart Environ. 2017, 9, 287–298. [Google Scholar] [CrossRef]
- Dincer, I. Green Methods for Hydrogen Production. Int. J. Hydrogen Energy 2012, 37, 1954–1971. [Google Scholar] [CrossRef]
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-Samari, A.; Abdulateef, J.; Sameen, A.Z.; Jaszczur, M. Renewable Energy-to-Green Hydrogen: A Review of Main Resources, Routes, Processes, and Evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- He, X.; Wang, F.; Wallington, T.J.; Shen, W.; Melaina, M.W.; Kim, H.C.; De Kleine, R.; Lin, T.; Zhang, S.; Keoleian, G.A.; et al. Well-to-Wheels Emissions, Costs, and Feedstock Potentials for Light-Duty Hydrogen Fuel Cell Vehicles in China in 2017 and 2030. Renew. Sustain. Energy Rev. 2021, 137, 110477. [Google Scholar] [CrossRef]
- Vitse, F.; Cooper, M.; Botte, G.G. On the Use of Ammonia Electrolysis for Hydrogen Production. J. Power Sources 2005, 142, 18–26. [Google Scholar] [CrossRef]
- Khan, M.A.; Al-Attas, T.; Roy, S.; Rahman, M.M.; Ghaffour, N.; Thangadurai, V.; Larter, S.; Hu, J.; Ajayan, P.M.; Kibria, M.G. Seawater Electrolysis for Hydrogen Production: A Solution Looking for a Problem? Energy Environ. Sci. 2021, 14, 4831–4839. [Google Scholar] [CrossRef]
- Warwick, N.; Griffiths, P.; Keeble, J.; Archibald, A.; Pyle, J. Atmospheric Implications of Increased Hydrogen Use; The National Archives: London, UK, 2022. [Google Scholar]
- Najjar, Y.S.H. Hydrogen Safety: The Road toward Green Technology. Int. J. Hydrogen Energy 2013, 38, 10716–10728. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.; Gao, Y.; Chen, W.; Liu, Z.; Liu, S.; Yang, Y.; Liang, C. Hydrogen Leakage Risk Analysis of Hydrogen Emergency Power Supply Vehicles Using the AET-RM Method. Int. J. Hydrogen Energy 2024, 79, 909–920. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen Storage: Recent Improvements and Industrial Perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Correa, M.; Barría, C.; Maluenda, B. Estrategia Nacional de Hidrógeno Verde; Ministerio de Energía: Santiago, Chile, 2020. [Google Scholar]
- Ministerio Para la Transición Ecológica y el Reto Demográfico (MITERD). Hoja de Ruta Del Hidrógeno: Una Apuesta Por El Hidrógeno Renovable; Ministerio Para la Transición Ecológica y el Reto Demográfico (MITERD): Madrid, Spain, 2020.
- World Energy Council. Working Paper National Hydrogen Strategies; World Energy Council: London, UK, 2021. [Google Scholar]
- Adeniyi, K.I.; Wan, H.H.; Deering, C.E.; Bernard, F.; Chisholm, M.A.; Marriott, R.A. High-Pressure Hydrogen Sulfide Experiments: How Did Our Safety Measures and Hazard Control Work during a Failure Event? Safety 2020, 6, 15. [Google Scholar] [CrossRef]
- Schmidt, H. Anatomy of an Incident: A Hydrogen Gas Leak Showcases the Need for Antifragile Safety Systems. J. Chem. Health Saf. 2019, 26, 36–39. [Google Scholar] [CrossRef]
- Kim, H.J. A Knowledge Based Infrared Camera System for Invisible Gas Detection Utilizing Image Processing Techniques. J. Ambient. Intell. Humaniz. Comput. 2019. [Google Scholar] [CrossRef]
- Hu, D.; Gao, P.; Cheng, Z.; Shen, Y.; He, R.; Yi, F.; Lu, M.; Wang, J.; Liu, S. Comprehensive Review of Hydrogen Leakage in Relation to Fuel Cell Vehicles and Hydrogen Refueling Stations: Status, Challenges, and Future Prospects. Energy Fuels 2024, 38, 4803–4835. [Google Scholar] [CrossRef]
- Rashid, T.R.; Phan, D.T.; Chung, G.S. A Flexible Hydrogen Sensor Based on Pd Nanoparticles Decorated ZnO Nanorods Grown on Polyimide Tape. Sens. Actuators B Chem. 2013, 185, 777–784. [Google Scholar] [CrossRef]
- Sisman, O.; Erkovan, M.; Kilinc, N. Hydrogen Sensors for Safety Applications. In Towards Hydrogen Infrastructure: Advances and Challenges in Preparing for the Hydrogen Economy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 275–314. ISBN 9780323955539. [Google Scholar]
- Li, H.; Li, Y.; Wang, K.; Lai, L.; Xu, X.; Sun, B.; Yang, Z.; Ding, G. Ultra-High Sensitive Micro-Chemo-Mechanical Hydrogen Sensor Integrated by Palladium-Based Driver and High-Performance Piezoresistor. Int. J. Hydrogen Energy 2021, 46, 1434–1445. [Google Scholar] [CrossRef]
- Gurusamy, J.T.; Putrino, G.; Jeffery, R.D.; Silva, K.K.M.B.D.; Martyniuk, M.; Keating, A.; Faraone, L. MEMS Based Hydrogen Sensing with Parts-per-Billion Resolution. Sens. Actuators B Chem. 2019, 281, 335–342. [Google Scholar] [CrossRef]
- Yavari, A.; Harrison, C.J.; Gorji, S.A.; Shafiei, M. Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants. Sensors 2024, 24, 3239. [Google Scholar] [CrossRef] [PubMed]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen Sensors—A Review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Koo, W.T.; Cho, H.J.; Kim, D.H.; Kim, Y.H.; Shin, H.; Penner, R.M.; Kim, I.D. Chemiresistive Hydrogen Sensors: Fundamentals, Recent Advances, and Challenges. ACS Nano 2020, 14, 14284–14322. [Google Scholar] [CrossRef] [PubMed]
- Nakagomi, S.; Sai, T.; Kokubun, Y. Hydrogen Gas Sensor with Self Temperature Compensation Based on β-Ga2O3 Thin Film. Sens. Actuators B Chem. 2013, 187, 413–419. [Google Scholar] [CrossRef]
- Villatoro, J.; Díez, A.; Cruz, J.L.; Andrés, M.V. Highly Sensitive Optical Hydrogen Sensor Using circular Pd-Coated Singlemode Tapered Fibre. Electron. Lett. 2001, 37, 1011–1012. [Google Scholar] [CrossRef]
- Sumida, S.; Okazaki, S.; Asakura, S.; Nakagawa, H.; Murayama, H.; Hasegawa, T. Distributed Hydrogen 1155 Determination with Fiber-Optic Sensor. Sens. Actuators B Chem. 2005, 108, 508–514. [Google Scholar]
- Frank, D. King Machenzie Optical Hydrogen Detector 2002. U.S. Patent US 2002/0171839 A1; United States Patent and Trademark Office (USPTO): Alexandria, VA, USA, 2002. [Google Scholar]
- Ando, M. Recent Advances in Optochemical Sensors for the Detection of H2, O2, O3, CO, CO2 and H2O in Air. TrAC Trends Anal. Chem. 2006, 25, 937–948. [Google Scholar] [CrossRef]
- Wang, C.; Mandelis, A.; Au-Ieong, K.P. Physical Mechanism of Reflectance Inversion in Hydrogen Gas Sensor with Pd/PVDF Structures. Sens. Actuators B Chem. 2001, 73, 100–105. [Google Scholar] [CrossRef]
- Bévenot, X.; Trouillet, A.; Veillas, C.; Gagnaire, H.; Clément, M. Hydrogen Leak Detection Using an Optical Fibre Sensor for Aerospace Applications. Sens. Actuators B Chem. 2000, 67, 57–67. [Google Scholar] [CrossRef]
- Lin, K.; Lu, Y.; Chen, J.; Zheng, R.; Wang, P.; Ming, H. Surface Plasmon Resonance Hydrogen Sensor Based on Metallic Grating with High Sensitivity. Opt. Express 2008, 16, 18599–18604. [Google Scholar] [CrossRef] [PubMed]
- Peres, R.S.; Jia, X.; Lee, J.; Sun, K.; Colombo, A.W.; Barata, J. Industrial Artificial Intelligence in Industry 4.0—Systematic Review, Challenges and Outlook. IEEE Access 2020, 8, 220121–220139. [Google Scholar] [CrossRef]
- Khemasuwan, D.; Sorensen, J.S.; Colt, H.G. Artificial Intelligence in Pulmonary Medicine: Computer Vision, Predictive Model and COVID-19. Eur. Respir. Rev. 2020, 29, 200181. [Google Scholar] [CrossRef] [PubMed]
- O’ Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Velasco Hernandez, G.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep Learning vs. Traditional Computer Vision. In Proceedings of the Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Las Vegas, NV, USA, 2–3 May 2019; Springer International Publishing: Cham, Switzerland, 2020; pp. 128–144. [Google Scholar]
- Villalba-Diez, J.; Schmidt, D.; Gevers, R.; Ordieres-Meré, J.; Buchwitz, M.; Wellbrock, W. Deep Learning for Industrial Computer Vision Quality Control in the Printing Industry 4.0. Sensors 2019, 19, 3987. [Google Scholar] [CrossRef]
- Liu, Y.; Han, T.; Ma, S.; Zhang, J.; Yang, Y.; Tian, J.; He, H.; Li, A.; He, M.; Liu, Z.; et al. Summary of ChatGPT-Related Research and Perspective Towards the Future of Large Language Models. Meta-Radiology 2023, 1, 100017. [Google Scholar] [CrossRef]
- Wang, F.Y.; Yang, J.; Wang, X.; Li, J.; Han, Q.L. Chat with ChatGPT on Industry 5.0: Learning and Decision-Making for Intelligent Industries. IEEE/CAA J. Autom. Sin. 2023, 10, 831–834. [Google Scholar] [CrossRef]
- Fragiacomo, P.; Piraino, F.; Genovese, M. Insights for Industry 4.0 Applications into a Hydrogen Advanced Mobility. Procedia Manuf. 2020, 42, 239–245. [Google Scholar] [CrossRef]
- Merryman, J.H.; Pérez-Perdomo, R. The Civil Law Tradition; Stanford University Press: Redwood City, CA, USA, 2018; ISBN 9781503607552. [Google Scholar]
- Baraona González, J. La Cultura Jurídica Chilena: Apuntes Históricos, Tendencias y Desafíos. Rev. Derecho Valpso. 2010, 35, 427–448. [Google Scholar] [CrossRef]
- Cordero Quinzacara, E. Los Principios y Reglas Que Estructuran el Ordenamiento Jurídico Chileno. Ius Praxis 2009, 15, 11–49. [Google Scholar] [CrossRef]
- Ministerio de Justicia. Decreto 1836/1974, de 31 de Mayo, Por el que se Sanciona con Fuerza de Ley el Texto Articulado del Título Preliminar del Código Civil; Ministerio de Justicia: Madrid, Spain, 1974.
- Masferrer, A. Plurality of Laws, Legal Traditions and Codification in Spain. J. Civ. Law Stud. 2011, 4, 419. [Google Scholar]
- Rubio, F. El procedimiento legislativo en España. El lugar de la ley entre las fuentes del Derecho. Rev. Esp. Derecho Const. 1981, 16, 83–113. [Google Scholar]
- Williams, G.; Wilkins, J. Responsabilidad Civil Extracontractual: Doctrinas Derivadas del Resultado Daños del Tabaco; BCN: Valparaíso, Chile, 2014. [Google Scholar]
- Fuentes, G.M.P. La responsabilidad civil por daños al medio ambiente en el derecho comparado. Prolegómenos Derechos Valores 2009, 12, 35–42. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional de Chile. Ley 19.799: Sobre Documentos Electrónicos, Firma Electrónica y Servicios de Certificación de Dicha Firma; Biblioteca del Congreso Nacional de Chile: Valparaiso, Chile, 2002; pp. 1–12. Available online: https://bcn.cl/3lckg (accessed on 29 January 2025).
- Biblioteca del Congreso Nacional de Chile. Ley 19.300: Ley sobre Bases Generales del Medio Ambiente; Biblioteca del Congreso Nacional de Chile: Valparaiso, Chile, 1994; pp. 1–50. Available online: https://bcn.cl/2eph7 (accessed on 29 January 2025).
- Biblioteca del Congreso Nacional de Chile. Ley 20.285: Sobre Acceso a la Información Pública; Ministerio Secretaría General de la Presidencia; Biblioteca del Congreso Nacional de Chile: Valparaíso, Chile, 2008; pp. 1–28. Available online: https://bcn.cl/25bya (accessed on 29 January 2025).
- Biblioteca del Congreso Nacional de Chile. Ley 20.417: Ley que Crea el Ministerio del Medio Ambiente, el Servicio de Evaluación Ambiental y la Superintendencia del Medio Ambiente, Ministerio Secretaría General de la Presidencia; Biblioteca del Congreso Nacional de Chile: Valparaiso, Chile, 2010; Available online: https://bcn.cl/3l302 (accessed on 29 January 2025).
- Biblioteca del Congreso Nacional de Chile. Decreto Ley 2.222: Sustituye Ley de Navegación; Biblioteca del Congreso Nacional de Chile: Valparaiso, Chile, 1978. [Google Scholar]
- Jefatura del Estado. Ley 6/2020, de 11 de Noviembre, Reguladora de Determinados Aspectos de los Servicios Electrónicos de Confianza; Jefatura del Estado: Madrid, Spain, 2020. [Google Scholar]
- European Union. Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014 on Electronic Identification and Trust Services for Electronic Transactions in the Internal Market and Repealing Directive 1999/93/EC; European Union: Brussels, Belgium, 2014. [Google Scholar]
- Jefatura del Estado. Ley 34/2007, de 15 de Noviembre, de Calidad del Aire y Protección de la Atmósfera; Jefatura del Estado: Madrid, Spain, 2007. [Google Scholar]
- Ministerio de la Presidencia. Real Decreto 102/2011, de 28 de Enero, Relativo a la Mejora de la Calidad del Aire; Ministerio de la Presidencia: Madrid, Spain, 2011.
- Jefatura del Estado. Ley 21/2013, de 9 de Diciembre, de Evaluación Ambiental; Jefatura del Estado: Madrid, Spain, 2013. [Google Scholar]
- Jefatura del Estado. Ley 22/2011, de 28 de Julio, de Residuos y Suelos Contaminados; Jefatura del Estado: Madrid, Spain, 2011. [Google Scholar]
- Jefatura del Estado. Ley 7/2021, de 20 de Mayo, de Cambio Climático y Transición Energética; Jefatura del Estado: Madrid, Spain, 2021. [Google Scholar]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Real Decreto 376/2022, de 17 de Mayo, por el Que se Regulan los Criterios de Sostenibilidad y de Reducción de las Emisiones de Gases de Efecto Invernadero de los Biocarburantes, Biolíquidos y Combustibles de Biomasa, así Como el Sistema de Garantías de Origen de los Gases Renovables; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2022.
- European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 Laying down Harmonised Rules on Artificial Intelligence and Amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act); Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Han, C.-H.; Hong, D.-W.; Han, S.-D.; Gwak, J.; Singh, K.C. Catalytic Combustion Type Hydrogen Gas Sensor Using TiO2 and UV-LED. Sens. Actuators B Chem. 2007, 125, 224–228. [Google Scholar] [CrossRef]
- Héder, M. From NASA to EU: The Evolution of the TRL Scale in Public Sector Innovation. Innov. J. 2017, 22, 3. [Google Scholar]
Hardware | Image Acquisition | Image Processing | Video Processing | Price USD * | ||
---|---|---|---|---|---|---|
Siemens S7-1200 | PLC | No | No | No | No | 399 |
Arduino | Microcontroller | Less than 20 × 20 px | No | No | No | 29 |
Raspberry Pi | Microcomputer | Yes, 600 × 800 px | Yes, ≈ 30 s | Yes | Yes | 74 |
HP Envy i7 | Computer | Yes, 600 × 800 px | Yes, ≈ 5 s | Yes | Yes | 1099 |
Type | Operating Principle/Device | T1.0 | T2.0 | T3.0 | T4.0 | T5.0 |
---|---|---|---|---|---|---|
Proof of concept presented in this work | Yes | Yes | ||||
Optical | [36,37,38,39,40] | No | ||||
Photoresistive | [34,71] | No | ||||
Chemiresistive | [32,33] | No | ||||
Electrochemical | [32] | No | ||||
Thermoelectric | [32] | No | ||||
Pellistor | [32] | No | ||||
Mechanical | [32] | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcon, C.; Alarcon, S.; Hoffer, A.; Pavez, B. Hydrogen 5.0: Interdisciplinary Development of a Proof-of-Concept Smart System for Green Hydrogen Leak Detection. Processes 2025, 13, 639. https://doi.org/10.3390/pr13030639
Alarcon C, Alarcon S, Hoffer A, Pavez B. Hydrogen 5.0: Interdisciplinary Development of a Proof-of-Concept Smart System for Green Hydrogen Leak Detection. Processes. 2025; 13(3):639. https://doi.org/10.3390/pr13030639
Chicago/Turabian StyleAlarcon, Claudio, Sofia Alarcon, Alvaro Hoffer, and Boris Pavez. 2025. "Hydrogen 5.0: Interdisciplinary Development of a Proof-of-Concept Smart System for Green Hydrogen Leak Detection" Processes 13, no. 3: 639. https://doi.org/10.3390/pr13030639
APA StyleAlarcon, C., Alarcon, S., Hoffer, A., & Pavez, B. (2025). Hydrogen 5.0: Interdisciplinary Development of a Proof-of-Concept Smart System for Green Hydrogen Leak Detection. Processes, 13(3), 639. https://doi.org/10.3390/pr13030639