Pre-Sowing Seed Treatments with Cold Atmospheric Plasma for the Control of Seedling Blights of Winter Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Pathosystems
2.2. Inoculum Production and Inoculation Technique
2.3. Plasma Treatment of Seeds
- (1)
- Microwave plasma torch with input power 16 W and treatment time 40 s.
- (2)
- Microwave plasma torch with input power 11 W and treatment time 60 s.
- (3)
- Microwave plasma torch with input power 11 W treatment time 90 s and 11 W for 120 s with ice cooling.
- (4)
- Underwater diaphragm discharge treatment in the container with applied voltage of 5 kV electrode, denoted by “+”, or grounded electrode, denoted by “−”.
2.4. Sowing and Cultivation
2.5. Type, Time and Frequency of Assessment
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chamswarng, C.; Cook, R.J. Identification and comperative pathogenicity of Pythium species from wheat roots and wheat-field soils in the Pacific Northwest. Phytopathology 1985, 75, 821–827. [Google Scholar] [CrossRef]
- Cook, R.J.; Sitton, J.W.; Haglund, W.A. Influence of soil treatments on growth and yield of wheat and implications for control of Pythium root rot. Phytopathology 1987, 77, 1192–1198. [Google Scholar] [CrossRef]
- Miedaner, T. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 1997, 116, 201–220. [Google Scholar] [CrossRef]
- Smiley, R.W.; Gourlie, J.A.; Easley, S.A.; Patterson, L.M. Pathogenicity of Fungi Associated with the Wheat Crown Rot Complex in Oregon and Washington. Plant Dis. 2005, 89, 949–957. [Google Scholar] [CrossRef]
- Bockus, W.W.; Bowden, R.L.; Hunger, R.M.; Morrill, W.L.; Murray, T.D.; Smiley, R.W. Diseases Caused by Fungi and Fungus-Like Organisms. In Compendium of Wheat Diseases and Pests, 3rd ed.; Amer Phytopathological Society: Saint Paul, MI, USA, 2010; pp. 15–86. [Google Scholar]
- Al-Yamani, A.R. Wheat Root Rot in West Central Morocco and Effects of Fusarium culmorum and Helminthosporium sativum Seed and Soil-Borne Inoculum on Root Rot Development, Plant Emergence and Crop Yield; University Microfilmis International: Ann Arbor, MI, USA, 1990; 135p. [Google Scholar]
- Smiley, R.; Gourlie, J.; Easley, S.; Patterson, L.; Whittaker, R. Crop Damage Estimates for Crown Rot of Wheat and Barley. Plant disease in the Pacific Northwest. Plant Dis. 2005, 89, 595–604. [Google Scholar] [CrossRef]
- Alisaac, E.; Mahlein, A.-K. Fusarium Head Blight on Wheat: Biology, Modern Detection and Diagnosis and Integrated Disease Management. Toxins 2023, 15, 192. [Google Scholar] [CrossRef]
- Yanashkov, I.; Avramov, Z.; Vatchev, T.Z. Soilborne fungal pathogens of small grain cereal crops in Bulgaria: Species composition and distribution. Bulg. J. Crop Sci. 2017, 54, 10–23. [Google Scholar]
- Yanashkov, I.; Vatchev, T.Z. Influence of the attack by major causal agents of root and lower stem rot on structural elements of wheat yield. Bulg. J. Crop Sci. 2018, 55, 22–32. [Google Scholar]
- Nedyalkova, S.; Stoyanova, Z.; Rodeva, R. Fungal pathogens causing leaf spotting diseases of durum wheat in Bulgaria during the period 2010–2012. Sci. Technol. 2013, 3, 254–258. [Google Scholar]
- Yanashkov, I.; Gilardi, G.; Vatchev, T. Soilborne fungal diseases of small grain cereal crops. Bulg. J. Crop Sci. 2016, 53, 3–21. [Google Scholar]
- Ingram, D.M.; Cook, R.J. Pathogenicity of four Pythium species to wheat, barley, peas and lentils. Plant Pathol. 1990, 39, 110–117. [Google Scholar] [CrossRef]
- Paulitz, T.C.; Adams, K. Composition and distribution of Pythium communities in wheat fields in eastern Washington State. Phytopathology 2003, 93, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Snyder, W.C.; Hansen, H.N. The species concept in Fusarium. Am. J. Bot. 1940, 27, 64–67. [Google Scholar] [CrossRef]
- Wildermuth, G.B.; McNamara, R.B. Susceptibility of winter and summer crops to root and crown infection by Bipolaris sorokiniana. Plant Pathol. 1987, 36, 481–491. [Google Scholar] [CrossRef]
- Allen, T.W.; Martinez, A.; Burpee, L.L. Pythium blight of turfgrass. In The Plant Health Instructor; University of Georgia: Griffin, GA, USA, 2004. [Google Scholar] [CrossRef]
- Fucuri, R.; Campbell, G.S.; Cook, R.J. Factors influencing the incidence of embryo infection by Pythium spp. during germination of wheat seeds in soils. Phytopathology 1994, 84, 695–702. [Google Scholar]
- Meier, A.; Birzele, B.; Oerke ECSteiner, U.; Krämer, J.; Dehne, H.W. Significance of different inoculum sources for the Fusarium infection of wheat ears. Mycotoxin Res. 2001, 17, 71–75. [Google Scholar] [CrossRef]
- Burlakoti, R.R.; Shrestha, S.M.; Sharma, R.C. Impact of seed-borne inoculum, irrigation, and cropping pattern on propagation of Bipolaris sorokiniana and epidemiology of foliar blight and common root rot in spring wheat. J. Plant Pathol. 2013, 95, 571–578. [Google Scholar]
- Ayesha, M.S.; Suryanarayanan, T.S.; Nataraja, K.N.; Prasad, S.R.; Shaanker, R.U. Seed Treatment With Systemic Fungicides: Time for Review. Front. Plant Sci. 2021, 12, 654512. [Google Scholar] [CrossRef]
- Wielogorska, E.; Ahmed, Y.; Meneely, J.; Graham, W.G.; Elliott, C.T.; Gilmore, B.F. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem. 2019, 301, 125281. [Google Scholar] [CrossRef]
- Pojić, M.; Tiwari, U. Introduction to Cereal Processing: Innovative Processing Techniques. In Innovative Processing Technologies for Healthy Grains; Tiwari, U., Pojić, M., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2020; pp. 9–35. Print ISBN: 9781119470168, Online ISBN: 9781119470182. [Google Scholar] [CrossRef]
- Ďurčányová, S.; Slováková, Ľ.; Klas, M.; Tomeková, J.; Ďurina, P.; Stupavská, M.; Kováčik, D.; Zahoranová, A. Efficacy Comparison of Three Atmospheric Pressure Plasma Sources for Soybean Seed Treatment: Plasma Characteristics, Seed Properties, Germination. Plasma Chem. Plasma Process 2023, 43, 1863–1885. [Google Scholar] [CrossRef]
- Čechová, L.; Marinova, P.; Benova, E.; Topalova, Y.; Yotinov, I.; Todorova, Y.; Šimoníková, L.; Novotný, K.; Buday, J.; Modlitbová, P.; et al. Plasma treatment of water and wastewater as a promising approach to promote plant growth. J. Phys. D Appl. Phys. 2025, 58, 115204. [Google Scholar] [CrossRef]
- Krčma, F.; Tsonev, I.; Smejkalová, K.; Truchlá, D.; Kozáková, Z.; Zhekova, M.; Marinova, P.; Bogdanov, T.; Benovaet, E. Microwave micro torch generated in argon based mixtures for biomedical applications. J. Phys. D Appl. Phys. 2018, 51, 414001. [Google Scholar] [CrossRef]
- Benova, E.; Marinova, P.; Tafradjiiska-Hadjiolova, R.; Sabit, Z.; Bakalov, D.; Valchev, N.; Traikov, L.; Hikov, T.; Tsonev, I.; Bogdanov, T. Characteristics of 2.45 GHz Surface-Wave-Sustained Argon Discharge for Bio-Medical Applications. Appl. Sci. 2022, 12, 969. [Google Scholar] [CrossRef]
- Bozhanova, V.; Marinova, P.; Videva, M.; Nedjalkova, S.; Benova, E. Effect of Cold Plasma on the Germination and Seedling Growth of Durum Wheat Genotypes. Processes 2024, 12, 544. [Google Scholar] [CrossRef]
- Krcma, F.; Stara, Z.; Prochazkova, J. Diaphragm discharge in liquids: Fundamentals and applications. J. Phys. Conf. Ser. 2010, 207, 012010. [Google Scholar] [CrossRef]
- Stara, Z.; Krcma, F.; Prochazkova, J. Physical aspects of diaphragm discharge creation using constant DC high voltage in electrolyte solution. Acta Tech. CSAV 2008, 53, 277–286. [Google Scholar]
- Nacheva, L.; Milusheva, S.; Marinova, P.; Dimitrova, N.; Benova, E. Cold Atmospheric Plasma (CAP) Treatment of In Vitro Cultivated Plum Plantlets—A Possible Way to Improve Growth and Inactivate Plum Pox Virus (PPV). Processes 2024, 12, 1387. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, J.H.; Sun, D.W. Enhancement of wheat seed germination, seedling growth and nutritional properties of wheat plantlet juice by plasma activated water. J. Plant Growth Regul. 2023, 42, 2006–2022. [Google Scholar] [CrossRef]
- Lotfy, K.; Al-Harbi, N.A.; Abd El-Raheem, H. Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chem. Plasma Process 2019, 39, 897–912. [Google Scholar] [CrossRef]
- Benterrouche, L.; Benmounah, A.M.; Sahli, S.; Bousba, H.E.; Namous, W.S.; Belkerk, B.E.; Benabbas, M.T. Improvement of Germination and Seedling Growth of Durum Wheat Seed Using Surface Dielectric Barrier Discharge Plasma. In Proceedings of the 3rd International Conference on Advanced Electrical Engineering (ICAEE), Sidi-Bel-Abbes, Algeria, 5–7 November 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Motrescu, I.; Lungoci, C.; Calistru, A.E.; Luchian, C.E.; Gocan, T.M.; Rimbu, C.M.; Bulgariu, E.; Ciolan, M.A.; Jitareanu, G. Non-Thermal Plasma (NTP) Treatment of Alfalfa Seeds in Different Voltage Conditions Leads to Both Positive and Inhibitory Outcomes Related to Sprout Growth and Nutraceutical Properties. Plants 2024, 13, 1140. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Bourke, P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Process Polym. 2019, 16, 1800148. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Zhang, H.; Qu, G.; Wang, T.; Sun, Q.; Liang, D. Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci. Rep. 2017, 7, 16680. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, T.; Meng, Y.; Qu, G.; Sun, Q.; Liang, D.; Hu, S. Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chem. Plasma Process 2017, 37, 1621–1634. [Google Scholar] [CrossRef]
- Ahmed, N.; Yong, L.X.; Yang, J.H.C.; Siow, K.S. Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture. Plasma Chem. Plasma Process 2024, 45, 421–462. [Google Scholar] [CrossRef]
- Kordas, L.; Pusz, W.; Czapka, T.; Kacprzyk, R. The Effect of Low-Temperature Plasma on Fungus Colonization of Winter Wheat Grain and Seed Quality. Pol. J. Environ. Stud. 2015, 24, 433–438. [Google Scholar]
- Todorova, Y.; Benova, E.; Marinova, P.; Yotinov, I.; Bogdanov, T.; Topalova, Y. Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes 2022, 10, 554. [Google Scholar] [CrossRef]
- Motyka-Pomagruk, A.; Dzimitrowicz, A.; Orlowski, J.; Babinska, W.; Terefinko, D.; Rychlowski, M.; Prusinski, M.; Pohl, P.; Lojkowska, E.; Jamroz, P.; et al. Implementation of a Non-Thermal Atmospheric Pressure Plasma for Eradication of Plant Pathogens from a Surface of Economically Important Seeds. Int. J. Mol. Sci. 2021, 22, 9256. [Google Scholar] [CrossRef]
- Rusu, B.-G.; Postolache, V.; Cara, I.-G.; Pohoata, V.; Mihaila, I.; Topala, I.; Jitareanu, G. Method of Fungal Wheat Seeds Dis-ease Inhibition Using Direct Exposure to Air Cold Plasma. Rom. J. Phys. 2018, 63, 905. [Google Scholar]
- Mravlje, J.; Regvar, M.; Vogel-Mikuš, K. Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. J. Fungi 2021, 7, 650. [Google Scholar] [CrossRef]
- Nedyalkova, S.; Bozhanova, V.; Benova, E.; Marinova, P.; Tsonev, I.; Bogdanov, T.; Koleva, M. Study on the effect of cold plasma on the germination and growth of durum wheat seeds contaminated with Fusarium graminearum. Int. J. Innov. Approaches Agric. Res. 2019, 3, 623–635. [Google Scholar] [CrossRef]
- Moisan, M.; Beaudry, C.; Leprince, P. A new HF device for the production of long plasma columns at a high electron density. Phys. Lett. A 1974, 50, 125–126. [Google Scholar] [CrossRef]
- Moisan, M.; Beaudry, C.; Leprince, P. A small microwave plasma source for long column production without magnetic field. IEEE Trans. Plasma Sci. 1975, 3, 55–59. [Google Scholar] [CrossRef]
- Moisan, M.; Leprince, P.; Beaudry, C.; Bloyet, E. Devices and Methods of Using HF Wave to Energize a Column of Gas Enclosed in an Insulating Casing. U.S. Patent No. 4049940, 20 September 1977. [Google Scholar]
- Moisan, M.; Nowakowska, H. Contribution of surface-wave (SW) sustained plasma columns to the modeling of RF and microwave discharges with new insight into some of their features. A survey of other types of SW discharges. Plasma Sources Sci. Technol. 2018, 27, 073001. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Gardiner, W.P. Statistics for the Biosciences: Data Analysis Using Minitab Software; Prentice Hall: London, UK, 1997. [Google Scholar]
- Duncan, D.B. New multiple range and multiple F tests. Biometrics 1955, 11, 1–11. [Google Scholar] [CrossRef]
- Saifutdinov, A.; Kustova, E. Simulation of filamentation dynamics of microwave discharge in nitrogen. Plasma Sources Sci. Technol. 2023, 32, 125010. [Google Scholar] [CrossRef]
- Popov, N.A. Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism. J. Phys. D Appl. Phys. 2011, 44, 285201. [Google Scholar] [CrossRef]
- Marinova, P.; Benova, E.; Topalova, Y.; Todorova, Y.; Bogdanov, T.; Zhekova, M.; Yotinov, I.; Krcma, F. Effects of Surface-Wave-Sustained Argon Plasma Torch Interaction with Liquids. Processes 2023, 11, 3313. [Google Scholar] [CrossRef]
Devices | Microwave Plasma Torch | Underwater Diaphragm Discharge |
---|---|---|
Plasma systems | Sairem Surfatron wave launcher, quartz discharge tube | Polycarbonate container divided into two parts |
Power supply type | Solid-state microwave generator (GMS 200 W, Sairem) | Lifetech DC power supply |
Input power | 11 W, 16 W | 50 W |
Voltage | 5 kV | |
Frequency | 2.45 GHz wave frequency | 15 kHz |
Type of treatment | Dry treatment/In water | In water |
Treatment volume | Variable | Two fixed chambers of 50 mL each |
Treatment times | 40, 60, 90 and 120 s | 5 min |
Variant | Device | Input Power/Voltage | Treatment Time |
---|---|---|---|
MW 16_40 | Microwave plasma torch | 16 W | 40 s |
MW 11_60 | Microwave plasma torch | 11 W | 60 s |
MW 11_90 | Microwave plasma torch | 11 W | 90 s |
MW 11_120 | Microwave plasma torch | 11 W | 120 s |
UW+ | Underwater diaphragm discharge | “+” 5 kV electrode | 5 min |
UW− | Underwater diaphragm discharge | “−” grounded electrode | 5 min |
Seed Contamination/Infestation | ||||||
---|---|---|---|---|---|---|
Treatment | F. culmorum | B. sorokiniana | P. ultimum | |||
DI (%) a | E (%) c | DI (%) | E (%) | DI (%) | E (%) | |
Untreated control | 87.7 a b | - | 76.5 a | - | 75.8 a | - |
MW 16_40 | 46.7 b | 46.8 | 37.5 b | 51.0 | 17.2 c | 77.3 |
UW+ | 32.5 c | 62.9 | 30.0 c | 60.8 | 47.7 b | 37.1 |
UW– | 30.8 c | 64.9 | 34.2 b | 55.3 | 47.5 b | 37.3 |
F = P = SE = LSD0.05 = | 288.95 0.00018 1.55724 4.59387 | 248.4 0.00034 1.36575 4.02897 | 171.99 0.00020 1.82688 5.38931 |
Seed Contamination/Infestation | ||||||
---|---|---|---|---|---|---|
Treatment | F. culmorum | B. sorokiniana | P. ultimum | |||
DI (%) a | E (%) c | DI (%) | E (%) | DI (%) | E (%) | |
Untreated control | 88.9 a b | - | 79.1 a | - | 79.1 a | - |
MW 11_60 | 48.5 b | 45.4 | 45.3 b | 42.7 | 50.0 b | 36.8 |
MW 11_90 | 49.6 b | 47.2 | 22.3 c | 71.8 | 26.4 c | 66.6 |
MW 11_120 | 23.8 c | 73.2 | 10.3 d | 87.0 | 14.3 d | 81.9 |
F = P = SE = LSD0.05 = | 349.62 0.000008 1.43963 4.17046 | 119.13 0.000003 2.77696 8.04454 | 201.93 0.000002 3.03787 3.53553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatchev, T.; Yanashkov, I.T.; Marinova, P.; Benova, E. Pre-Sowing Seed Treatments with Cold Atmospheric Plasma for the Control of Seedling Blights of Winter Wheat. Processes 2025, 13, 632. https://doi.org/10.3390/pr13030632
Vatchev T, Yanashkov IT, Marinova P, Benova E. Pre-Sowing Seed Treatments with Cold Atmospheric Plasma for the Control of Seedling Blights of Winter Wheat. Processes. 2025; 13(3):632. https://doi.org/10.3390/pr13030632
Chicago/Turabian StyleVatchev, Tzenko, Ivo Todorov Yanashkov, Plamena Marinova, and Evgenia Benova. 2025. "Pre-Sowing Seed Treatments with Cold Atmospheric Plasma for the Control of Seedling Blights of Winter Wheat" Processes 13, no. 3: 632. https://doi.org/10.3390/pr13030632
APA StyleVatchev, T., Yanashkov, I. T., Marinova, P., & Benova, E. (2025). Pre-Sowing Seed Treatments with Cold Atmospheric Plasma for the Control of Seedling Blights of Winter Wheat. Processes, 13(3), 632. https://doi.org/10.3390/pr13030632