Magnesium–Air Batteries: Manufacturing, Processing, Performance, and Applications
Abstract
:1. Introduction
2. Working Principles of Mg–Air Batteries
Battery Components
3. Manufacturing of Mg–Air Batteries
3.1. Creating Mg Anodes
3.2. Designing Cathodes
3.3. Mixing the Electrolyte
4. Properties and Performance of Mg–Air Batteries
4.1. Energy Storage
4.2. Energy Discharge
4.3. Efficiency of Mg–Air Batteries
5. Applications of Mg–Air Batteries
5.1. Portable Devices
5.2. Vehicles and Transportation
5.3. Remote Power Sources
6. Challenges and Future Developments
6.1. Large-Scale Production
6.2. Enhancing Performance
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koohi-Fayegh, S.; Rosen, M.A. A Review of Energy Storage Types, Applications and Recent Developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Jose, S.A.; Stoll, J.L.; Smith, T.; Jackson, C.; Dieleman, T.; Leath, E.; Eastwood, N.; Menezes, P.L. Critical Review of Lithium Recovery Methods: Advancements, Challenges, and Future Directions. Processes 2024, 12, 2203. [Google Scholar] [CrossRef]
- Ralls, A.M.; Leong, K.; Clayton, J.; Fuelling, P.; Mercer, C.; Navarro, V.; Menezes, P.L. The Role of Lithium-Ion Batteries in the Growing Trend of Electric Vehicles. Materials 2023, 16, 6063. [Google Scholar] [CrossRef]
- Durmus, Y.E.; Zhang, H.; Baakes, F.; Desmaizieres, G.; Hayun, H.; Yang, L.; Kolek, M.; Küpers, V.; Janek, J.; Mandler, D.; et al. Side by Side Battery Technologies with Lithium-Ion Based Batteries. Adv. Energy Mater. 2020, 10, 2000089. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Ren, W.; Zhang, D.; Yang, Y.; Yang, J.; Wang, J.; Zeng, X.; NuLi, Y. Challenges and Prospects of Mg-Air Batteries: A Review. Energy Mater. 2022, 2, 200024. [Google Scholar] [CrossRef]
- Yoo, Y.; Kim, I.; Lee, D.; Choi, W.Y.; Choi, J.; Jang, K.; Park, J.; Kang, D. Review of Contemporary Research on Inorganic CO2 Utilization via CO2 Conversion into Metal Carbonate-Based Materials. J. Ind. Eng. Chem. 2022, 116, 60–74. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J. Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Lett. 2017, 2, 1370–1377. [Google Scholar] [CrossRef]
- Whittingham, S. (Invited) Metal-Air Batteries: A Reality Check. ECS Meet. Abstr. 2012, MA2012-02, 1099. [Google Scholar] [CrossRef]
- Nguyen, D.K.; On, V.V.; Hoat, D.M.; Rivas-Silva, J.F.; Cocoletzi, G.H. Structural, Electronic, Magnetic and Optical Properties of CaO Induced by Oxygen Incorporation Effects: A First-Principles Study. Phys. Lett. A 2021, 397, 127241. [Google Scholar] [CrossRef]
- Nourozi, B.; Aminian, A.; Fili, N.; Zangeneh, Y.; Boochani, A.; Darabi, P. The Electronic and Optical Properties of MgO Mono-Layer: Based on GGA-mBJ. Results Phys. 2019, 12, 2038–2043. [Google Scholar] [CrossRef]
- Song, K.; Agyeman, D.A.; Park, M.; Yang, J.; Kang, Y.-M. High-Energy-Density Metal–Oxygen Batteries: Lithium–Oxygen Batteries vs Sodium–Oxygen Batteries. Adv. Mater. 2017, 29, 1606572. [Google Scholar] [CrossRef] [PubMed]
- Filatova, E.O.; Konashuk, A.S. Interpretation of the Changing the Band Gap of Al2O3 Depending on Its Crystalline Form: Connection with Different Local Symmetries. J. Phys. Chem. C 2015, 119, 20755–20761. [Google Scholar] [CrossRef]
- Paul, S. Materials and Electrochemistry: Present and Future Battery. J. Electrochem. Sci. Technol. 2016, 7, 115–131. [Google Scholar] [CrossRef]
- Yaqoob, L.; Noor, T.; Iqbal, N. An Overview of Metal-Air Batteries, Current Progress, and Future Perspectives. J. Energy Storage 2022, 56, 106075. [Google Scholar] [CrossRef]
- Magnesium Compounds Statistics and Information|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/magnesium-compounds-statistics-and-information (accessed on 28 October 2024).
- Chen, X.; Ali, I.; Song, L.; Song, P.; Zhang, Y.; Maria, S.; Nazmus, S.; Yang, W.; Dhakal, H.N.; Li, H.; et al. A Review on Recent Advancement of Nano-Structured-Fiber-Based Metal-Air Batteries and Future Perspective. Renew. Sustain. Energy Rev. 2020, 134, 110085. [Google Scholar] [CrossRef]
- Chawla, N. Recent Advances in Air-Battery Chemistries. Mater. Today Chem. 2019, 12, 324–331. [Google Scholar] [CrossRef]
- Shao, Y.; Guo, Z.H.; Yang, K.; Jia, L.; Pu, X. Interface Barrier Layers to Suppress Side Redox Reactions of High-Voltage Hydrogel Iontronics. Adv. Mater. Technol. 2023, 8, 2300398. [Google Scholar] [CrossRef]
- Pourshaban, E.; Banerjee, A.; Karkhanis, M.U.; Deshpande, A.; Ghosh, C.; Kim, H.; Mastrangelo, C.H. Eye Tear Activated Mg-Air Battery Driven by Natural Eye Blinking for Smart Contact Lenses. Adv. Mater. Technol. 2023, 8, 2200518. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Zhang, Y.; Wang, X.; Li, H.; Feng, F.; Wang, K.; Zhang, G.; Sun, S.; Zhang, Y. Approaches to Construct High-Performance Mg–Air Batteries: From Mechanism to Materials Design. J. Mater. Chem. A 2023, 11, 7924–7948. [Google Scholar] [CrossRef]
- Li, C.-S.; Sun, Y.; Gebert, F.; Chou, S.-L. Current Progress on Rechargeable Magnesium–Air Battery. Adv. Energy Mater. 2017, 7, 1700869. [Google Scholar] [CrossRef]
- Smith, J.G.; Naruse, J.; Hiramatsu, H.; Siegel, D.J. Intrinsic Conductivity in Magnesium–Oxygen Battery Discharge Products: MgO and MgO2. Chem. Mater. 2017, 29, 3152–3163. [Google Scholar] [CrossRef]
- Ma, J.; Hu, P.; Jia, X.; Zhang, C.; Wang, G. Organic/Inorganic Double Solutions for Magnesium–Air Batteries. RSC Adv. 2021, 11, 7502–7510. [Google Scholar] [CrossRef]
- Ng, K.L.; Shu, K.; Azimi, G. A Rechargeable Mg|O2 Battery. iScience 2022, 25, 104711. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; He, E.; Wang, L.; Ye, T.; Lu, J.; Jiao, Y.; Wang, J.; Gao, R.; Peng, H.; et al. High-Energy-Density Magnesium-Air Battery Based on Dual-Layer Gel Electrolyte. Angew. Chem. Int. Ed. 2021, 60, 15317–15322. [Google Scholar] [CrossRef]
- Bella, F.; De Luca, S.; Fagiolari, L.; Versaci, D.; Amici, J.; Francia, C.; Bodoardo, S. An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables. Nanomaterials 2021, 11, 810. [Google Scholar] [CrossRef]
- Liu, Q.; Pan, Z.; Wang, E.; An, L.; Sun, G. Aqueous Metal-Air Batteries: Fundamentals and Applications. Energy Storage Mater. 2020, 27, 478–505. [Google Scholar] [CrossRef]
- Wang, L.; Snihirova, D.; Deng, M.; Vaghefinazari, B.; Xu, W.; Höche, D.; Lamaka, S.V.; Zheludkevich, M.L. Sustainable Aqueous Metal-Air Batteries: An Insight into Electrolyte System. Energy Storage Mater. 2022, 52, 573–597. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Z. Higher-Voltage Asymmetric-Electrolyte Metal-Air Batteries. Joule 2021, 5, 1325–1327. [Google Scholar] [CrossRef]
- Richey, F.W.; McCloskey, B.D.; Luntz, A.C. Mg Anode Corrosion in Aqueous Electrolytes and Implications for Mg-Air Batteries. J. Electrochem. Soc. 2016, 163, A958. [Google Scholar] [CrossRef]
- Mohamed, S.R.; Friedrich, S.; Friedrich, B. Refining Principles and Technical Methodologies to Produce Ultra-Pure Magnesium for High-Tech Applications. Metals 2019, 9, 85. [Google Scholar] [CrossRef]
- Atrens, A. 1—Revolutionising Biodegradable Biomaterials—Significance of Magnesium and Its Alloys. In Surface Modification of Magnesium and its Alloys for Biomedical Applications; Narayanan, T.S.N.S., Park, I.-S., Lee, M.-H., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 3–28. ISBN 978-1-78242-077-4. [Google Scholar]
- Chen, X.; Jia, Y.; Shi, Z.; Le, Q.; Li, J.; Zhang, M.; Liu, M.; Atrens, A. Understanding the Discharge Behavior of an Ultra-High-Purity Mg Anode for Mg–Air Primary Batteries. J. Mater. Chem. A 2021, 9, 21387–21401. [Google Scholar] [CrossRef]
- Schloffer, D.; Bozorgi, S.; Sherstnev, P.; Lenardt, C.; Gollas, B. Manufacturing and Characterization of Magnesium Alloy Foils for Use as Anode Materials in Rechargeable Magnesium Ion Batteries. J. Power Sources 2017, 367, 138–144. [Google Scholar] [CrossRef]
- Yim, T.; Woo, S.-G.; Lim, S.-H.; Yoo, J.-Y.; Cho, W.; Park, M.-S.; Han, Y.-K.; Kim, Y.-J.; Yu, J. Magnesium Anode Pretreatment Using a Titanium Complex for Magnesium Battery. ACS Sustain. Chem. Eng. 2017, 5, 5733–5739. [Google Scholar] [CrossRef]
- Tang, K.; Du, A.; Dong, S.; Cui, Z.; Liu, X.; Lu, C.; Zhao, J.; Zhou, X.; Cui, G. A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt. Adv. Mater. 2020, 32, 1904987. [Google Scholar] [CrossRef]
- Lefebvre, L.-P.; Banhart, J.; Dunand, D.C. Porous Metals and Metallic Foams: Current Status and Recent Developments. Adv. Eng. Mater. 2008, 10, 775–787. [Google Scholar] [CrossRef]
- Ratsoma, M.S.; Poho, B.L.O.; Makgopa, K.; Raju, K.; Modibane, K.D.; Jafta, C.J.; Oyedotun, K.O. Application of Nickel Foam in Electrochemical Systems: A Review. J. Electron. Mater. 2023, 52, 2264–2291. [Google Scholar] [CrossRef]
- Sang, H.; Kenny, L.D.; Jin, I. Process for Producing Shaped Slabs of Particle Stabilized Foamed Metal. U.S. Patent No. 5,334,236, 2 August 1994. [Google Scholar]
- Banhart, J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001, 46, 559–632. [Google Scholar] [CrossRef]
- Babjak, J.; Ettel, V.A.; Paserin, V. Method of Forming Nickel Foam. U.S. Patent US-4957543-A, 18 September 1990. [Google Scholar]
- Chang, J.; Yang, Y. Recent Advances in Zinc–Air Batteries: Self-Standing Inorganic Nanoporous Metal Films as Air Cathodes. Chem. Commun. 2023, 59, 5823–5838. [Google Scholar] [CrossRef]
- Salado, M.; Lizundia, E. Advances, Challenges, and Environmental Impacts in Metal–Air Battery Electrolytes. Mater. Today Energy 2022, 28, 101064. [Google Scholar] [CrossRef]
- Snihirova, D.; Wang, L.; Lamaka, S.V.; Wang, C.; Deng, M.; Vaghefinazari, B.; Höche, D.; Zheludkevich, M.L. Synergistic Mixture of Electrolyte Additives: A Route to a High-Efficiency Mg–Air Battery. J. Phys. Chem. Lett. 2020, 11, 8790–8798. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, W.; Luo, S.; Zhao, X.; Kwok, H.Y.H.; Xu, X.; Leung, D.Y.C. High-Performance Solid-State Metal-Air Batteries with an Innovative Dual-Gel Electrolyte. Int. J. Hydrogen Energy 2022, 47, 15024–15034. [Google Scholar] [CrossRef]
- Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond. Chem. Soc. Rev. 2019, 48, 1272–1341. [Google Scholar] [CrossRef] [PubMed]
- Mejame, P.P.M.; Jung, D.-Y.; Lee, H.; Lee, D.S.; Lim, S.-R. Effect of Technological Developments for Smartphone Lithium Battery on Metal-Derived Resource Depletion and Toxicity Potentials. Resour. Conserv. Recycl. 2020, 158, 104797. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Mohamed, A.; Ayob, A. Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges. Renew. Sustain. Energy Rev. 2017, 69, 771–789. [Google Scholar] [CrossRef]
- Li, T.; Huang, M.; Bai, X.; Wang, Y.-X. Metal–Air Batteries: A Review on Current Status and Future Applications. Prog. Nat. Sci. Mater. Int. 2023, 33, 151–171. [Google Scholar] [CrossRef]
- Akbar, F. Weight Optimisation of Electric Vehicle through Hybrid Structural Batteries. Int. J. Automot. Mech. Eng. 2020, 17, 8310–8325. [Google Scholar] [CrossRef]
- Panwar, N.G.; Singh, S.; Garg, A.; Gupta, A.K.; Gao, L. Recent Advancements in Battery Management System for Li-Ion Batteries of Electric Vehicles: Future Role of Digital Twin, Cyber-Physical Systems, Battery Swapping Technology, and Nondestructive Testing. Energy Technol. 2021, 9, 2000984. [Google Scholar] [CrossRef]
- Alharbi, A.F.; Abahussain, A.A.M.; Nazir, M.H.; Zaidi, S.Z.J. A High-Energy-Density Magnesium-Air Battery with Nanostructured Polymeric Electrodes. Polymers 2022, 14, 3187. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Zhang, J.; Song, J.; Huang, J.; Xu, W.; Yan, Y.; Yu, K. Synthesis of Ag-La0.8Sr0.2MnO3 (LSM-Ag) Composite Powder and Its Application in Magnesium Air Battery. Metals 2021, 11, 633. [Google Scholar] [CrossRef]
- Xiao, B.; Song, G.-L.; Zheng, D.; Cao, F. A Corrosion Resistant Die-Cast Mg-9Al-1Zn Anode with Superior Discharge Performance for Mg-Air Battery. Mater. Des. 2020, 194, 108931. [Google Scholar] [CrossRef]
- Gu, X.-J.; Cheng, W.-L.; Cheng, S.-M.; Yu, H.; Wang, Z.-F.; Wang, H.-X.; Wang, L.-F. Discharge Behavior of Mg–Sn–Zn–Ag Alloys with Different Sn Contents as Anodes for Mg-Air Batteries. J. Electrochem. Soc. 2020, 167, 020501. [Google Scholar] [CrossRef]
- Huang, D.; Bu, T.; Song, G.-L.; Ying, T.; Yuan, Y.; Zheng, D.-J.; Cao, F. High Anodic-Efficiency and Energy-Density Magnesium-Air Battery with Modified Az31 Anode. J. Alloys Compd. 2023, 960, 170592. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.; Zhang, J.; Wang, L.; Liu, S.; Li, Z.; Wei, Z.; Dong, H.; Zhang, X. New Strategy for Mg-Air Battery Voltage-Efficiency Synergy by Engineering Protective Film with Cation Vacancies on Mg Anode Surface. J. Mater. Sci. Technol. 2025, 213, 24–41. [Google Scholar] [CrossRef]
- Xiong, H.; Zhu, H.; Luo, J.; Yu, K.; Shi, C.; Fang, H.; Zhang, Y. Effects of Heat Treatment on the Discharge Behavior of Mg-6wt.% Al-1wt.% Sn Alloy as Anode For Magnesium-Air Batteries. J. Mater. Eng. Perform. 2017, 26, 2901–2911. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, C.; Feng, Y.; Wang, R.; Wang, N. Microstructure and Electrochemical Corrosion Behavior of Extruded Mg–Al–Pb–La Alloy as Anode for Seawater-Activated Battery. Mater. Des. 2017, 124, 24–33. [Google Scholar] [CrossRef]
- Ma, J.; Liu, C.; Qin, C.; Jia, X.; Zhang, C.; Ren, F.; Wang, G. Effect of Different Water-Soluble Graphene: (Polystyrene Sulfonate, Titanate Coupling Agent and Glucose)/Reduced Graphene Oxide on the Performance of Magnesium-Air Batteries. J. Electrochem. Soc. 2022, 169, 020524. [Google Scholar] [CrossRef]
- Riedel, S.; Wang, L.; Fichtner, M.; Zhao-Karger, Z. Recent Advances in Electrolytes for Magnesium Batteries: Bridging the Gap between Chemistry and Electrochemistry. Chem.—Eur. J. 2024, 30, e202402754. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Li, W.; Adair, K.R.; Li, J.; Sun, X. A Comprehensive Review on Recent Progress in Aluminum–Air Batteries. Green Energy Environ. 2017, 2, 246–277. [Google Scholar] [CrossRef]
- Alemu, M.A.; Getie, M.Z.; Worku, A.K. Advancement of Electrically Rechargeable Multivalent Metal-Air Batteries for Future Mobility. Ionics 2023, 29, 3421–3435. [Google Scholar] [CrossRef]
- Ahuja, D.; Kalpna, V.; Varshney, P.K. Metal Air Battery: A Sustainable and Low Cost Material for Energy Storage. J. Phys. Conf. Ser. 2021, 1913, 012065. [Google Scholar] [CrossRef]
- Cremades, L.V.; Canals Casals, L. Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative. Energies 2022, 15, 9149. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, J.; Xu, H.; Liu, J.; Chen, Y. Optimal Vehicle Size and Driving Condition for Extended-Range Electric Vehicles in China: A Life Cycle Perspective. PLoS ONE 2020, 15, e0241967. [Google Scholar] [CrossRef] [PubMed]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Tlili, F.; Fourati, L.C.; Ayed, S.; Ouni, B. Investigation on Vulnerabilities, Threats and Attacks Prohibiting UAVs Charging and Depleting UAVs Batteries: Assessments & Countermeasures. Ad. Hoc. Netw. 2022, 129, 102805. [Google Scholar] [CrossRef]
- Lai, K.; Zhang, L. Sizing and Siting of Energy Storage Systems in a Military-Based Vehicle-to-Grid Microgrid. IEEE Trans. Ind. Appl. 2021, 57, 1909–1919. [Google Scholar] [CrossRef]
- Technology and Science for the Ships of the Future|IOS Press. Available online: https://www.iospress.com/catalog/books/technology-and-science-for-the-ships-of-the-future-0 (accessed on 29 October 2024).
- Nie, Y.; Xu, H.; Hu, Y.; Ye, X. Energy Router for Emergency Energy Supply in Urban Cities: A Review. Power Electron. Drives 2022, 7, 246–266. [Google Scholar] [CrossRef]
- Okundamiya, M.; Ojieabu, C. Optimum Design, Simulation and Performance Analysis of a Micro-Power System for Electricity Supply to Remote Sites. J. Commun. Technol. Electron. Comput. Sci. 2017, 12, 6–12. [Google Scholar]
- Cho, D.; Valenzuela, J. Optimization of Residential Off-Grid PV-Battery Systems. Sol. Energy 2020, 208, 766–777. [Google Scholar] [CrossRef]
- Stenzel, P.; Kannengießer, T.; Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Emergency Power Supply from Photovoltaic Battery Systems in Private Households in Case of a Blackout—A Scenario Analysis. Energy Procedia 2018, 155, 165–178. [Google Scholar] [CrossRef]
- El-houari, H.; Allouhi, A.; Rehman, S.; Buker, M.S.; Kousksou, T.; Jamil, A.; Amrani, B.E. Feasibility Evaluation of a Hybrid Renewable Power Generation System for Sustainable Electricity Supply in a Moroccan Remote Site. J. Clean. Prod. 2020, 277, 123534. [Google Scholar] [CrossRef]
- Ghoreishi-Madiseh, S.A.; Kuyuk, A.F.; Kalantari, H.; Sasmito, A.P. Ice versus Battery Storage; a Case for Integration of Renewable Energy in Refrigeration Systems of Remote Sites. Energy Procedia 2019, 159, 60–65. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Blanchard, R.; Mekhilef, S.; Akinyele, D. Hybrid Renewable Energy Supply for Rural Healthcare Facilities: An Approach to Quality Healthcare Delivery. Sustain. Energy Technol. Assess. 2018, 30, 121–138. [Google Scholar] [CrossRef]
- Chang, Z.; Yang, Y.; Wang, X.; Li, M.; Fu, Z.; Wu, Y.; Holze, R. Hybrid System for Rechargeable Magnesium Battery with High Energy Density. Sci. Rep. 2015, 5, 11931. [Google Scholar] [CrossRef]
- Sheng, L.; Hao, Z.; Feng, J.; Du, W.; Gong, M.; Kang, L.; Shearing, P.R.; Brett, D.J.L.; Huang, Y.; Wang, F.R. Evaluation and Realization of Safer Mg-S Battery: The Decisive Role of the Electrolyte. Nano Energy 2021, 83, 105832. [Google Scholar] [CrossRef]
- Mohtadi, R.; Mizuno, F. Magnesium Batteries: Current State of the Art, Issues and Future Perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291–1311. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Fang, J. Recent Advances in Wearable Aqueous Metal-Air Batteries: From Configuration Design to Materials Fabrication. Adv. Mater. Technol. 2023, 8, 2201762. [Google Scholar] [CrossRef]
- Clark, S.; Latz, A.; Horstmann, B. A Review of Model-Based Design Tools for Metal-Air Batteries. Batteries 2018, 4, 5. [Google Scholar] [CrossRef]
- Orikasa, Y.; Masese, T.; Koyama, Y.; Mori, T.; Hattori, M.; Yamamoto, K.; Okado, T.; Huang, Z.-D.; Minato, T.; Tassel, C.; et al. High Energy Density Rechargeable Magnesium Battery Using Earth-Abundant and Non-Toxic Elements. Sci. Rep. 2014, 4, 5622. [Google Scholar] [CrossRef]
- Yeon, S.-H.; Shin, K.-H.; Jin, C.-S.; Park, S.-K.; Hwang, S.H.; Kim, D.H.; Jeon, M.-S.; Kim, S.-O.; Hong, D.; Choi, Y. Optimal and Systematic Design of Large-Scale Electrodes for Practical Li–Air Batteries. Electrochim. Acta 2023, 439, 141642. [Google Scholar] [CrossRef]
- Zhuk, A.; Belyaev, G.; Borodina, T.; Kiseleva, E.; Shkolnikov, E.; Tuganov, V.; Valiano, G.; Zakharov, V. Mg-Air Battery of Increased Power with Commercial Alloy Anodes. SSRN 2023. preprint. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Q.; Zhang, J. An Overview of Non-Noble Metal Electrocatalysts and Their Associated Air Cathodes for Mg-Air Batteries. Mater. Rep. Energy 2021, 1, 100002. [Google Scholar] [CrossRef]
- Tong, F.; Wei, S.; Chen, X.; Gao, W. Magnesium Alloys as Anodes for Neutral Aqueous Magnesium-Air Batteries. J. Magnes. Alloys 2021, 9, 1861–1883. [Google Scholar] [CrossRef]
- Kim, D.H.; Jang, K.-H.; Jang, K.; Shin, K.-S.; Kim, H.-S.; Kim, S.-O.; Kim, K.-B.; Chung, K.Y. Effect of Optimum Current-Collector Design on Electrochemical Performance of Mg-Air Primary Batteries for Large-Scale Energy Storage. Int. J. Energy Res. 2022, 46, 15837–15849. [Google Scholar] [CrossRef]
- Wang, L.; Snihirova, D.; Deng, M.; Vaghefinazari, B.; Höche, D.; Lamaka, S.V.; Zheludkevich, M.L. Enhancement of Discharge Performance for Aqueous Mg-Air Batteries in 2,6-Dihydroxybenzoate-Containing Electrolyte. Chem. Eng. J. 2022, 429, 132369. [Google Scholar] [CrossRef]
- Ma, J.; Wang, G.; Li, Y.; Li, W.; Ren, F. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy. J. Mater. Eng. Perform. 2018, 27, 2247–2254. [Google Scholar] [CrossRef]
- Yu, J.; Li, B.-Q.; Zhao, C.-X.; Zhang, Q. Seawater Electrolyte-Based Metal–Air Batteries: From Strategies to Applications. Energy Environ. Sci 2020, 13, 3253–3268. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Yang, J.; Wang, X.; Zhu, L.; Zeng, W.; Wang, J.; Pan, F. CuMnO 2 Nanoflakes as Cathode Catalyst for Oxygen Reduction Reaction in Magnesium-Air Battery. J. Electrochem. Soc. 2021, 168, 100502. [Google Scholar] [CrossRef]
- Zhao, C.; Jin, Y.; Du, W.; Ji, C.; Du, X. Multi-Walled Carbon Nanotubes Supported Binary PdSn Nanocatalyst as Effective Catalytic Cathode for Mg-Air Battery. J. Electroanal. Chem. 2018, 826, 217–224. [Google Scholar] [CrossRef]
Metal Oxide | Bandgap (eV) | Potential (V) | Energy Density, Weight Basis (W h/kg) | Energy Density Volume Basis (W h/L) | Reference |
---|---|---|---|---|---|
CaO | 6.25 | 3.11 | 2972 | 9960 | [8,9] |
MgO | 7.8 | 3.03 | 4032 | 14,400 | [8,10] |
Li2O2 | 4.60 | 2.96 | 3456 | 7983 | [11] |
Li2O | 8.0 | 2.91 | 5216 | 10,501 | [11] |
Al2O3 | 7.6 | 2.75 | 4332 | 17,300 | [8,12] |
NaO2 | 1.09–1.11 | 2.27 | 1105 | 2431 | [11] |
Na2O | 2.94 | 1.95 | 1687 | 3828 | [11] |
Na2O2 | 4.4–5.8 | 2.33 | 1602 | 4493 | [11] |
ZnO | 650 | 1.68 | 1109 | 6220 | [8] |
Electrolyte | Average Discharge Potential (V vs. Ag/AgCl) | H2 Evolution During Discharge (µmol cm−2 min−1) | Inhibition Efficiency of HER (%) * | NO2− Evolution During Discharge (µmol cm−2 min−1) |
---|---|---|---|---|
3.5% NaCl | −1.52 ± 0.05 | 1.89 ± 0.62 | ||
3.5% NaCl + NO3− | −1.42 ± 0.01 | 1.00 ± 0.21 | 47 | 0.08 ± 0.002 |
3.5% NaCl + SAL | −1.16 ± 0.05 | 1.64 ± 0.29 | 13 | |
3.5% NaCl + MIX | −1.50 ± 0.02 | 0.43 ± 0.19 | 77 | 0.02 ± 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antony Jose, S.; Doering, E.; Klein, N.; Mena, E.I.; Owens, C.; Pronk, S.; Menezes, P.L. Magnesium–Air Batteries: Manufacturing, Processing, Performance, and Applications. Processes 2025, 13, 607. https://doi.org/10.3390/pr13030607
Antony Jose S, Doering E, Klein N, Mena EI, Owens C, Pronk S, Menezes PL. Magnesium–Air Batteries: Manufacturing, Processing, Performance, and Applications. Processes. 2025; 13(3):607. https://doi.org/10.3390/pr13030607
Chicago/Turabian StyleAntony Jose, Subin, Evan Doering, Noah Klein, Edgar Ignacio Mena, Chase Owens, Slade Pronk, and Pradeep L. Menezes. 2025. "Magnesium–Air Batteries: Manufacturing, Processing, Performance, and Applications" Processes 13, no. 3: 607. https://doi.org/10.3390/pr13030607
APA StyleAntony Jose, S., Doering, E., Klein, N., Mena, E. I., Owens, C., Pronk, S., & Menezes, P. L. (2025). Magnesium–Air Batteries: Manufacturing, Processing, Performance, and Applications. Processes, 13(3), 607. https://doi.org/10.3390/pr13030607