Fault Classification and Precise Fault Location Detection in 400 kV High-Voltage Power Transmission Lines Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Distance Protection Relays
Distance Protection Relay Fault Locator Working Principle
3. Types of Machine Learning Algorithms Used for Classification and Regression
3.1. Linear Regression
3.2. Logistic Regression
3.3. Gaussian Process
3.4. K-Nearest Neighbors
3.5. Ensemble Methods
3.6. Neural Networks
3.7. Decision Trees
3.8. Naive Bayes
3.9. Support Vector Machine
4. Implementation and Performance Review
4.1. Preparing Dataset for ML Algorithms
- Fault detection;
- Fault phase detection;
- Fault location detection.
4.2. Performance Criteria for Precise Fault Location
4.2.1. Mean Absolute Error
4.2.2. Mean Squared Error
4.2.3. Root Mean Squared Error
4.3. Findings
4.3.1. Fault Detection
4.3.2. Faulty Phase Detection
4.3.3. Fault Location Detection
For Phase-to-Phase and Three-Phase Faults
For Phase-to-Ground Faults
Evaluation of the Overall Performance of the Algorithms Used
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable energy in the sustainable development of electrical power sector: A review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Belu, R. Smart Grid Fundamentals: Energy Generation, Transmission and Distribution; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Jiang, J.; Chuang, C.; Wang, Y.; Hung, C.; Wang, J.; Lee, C.; Member, S.; Hsiao, Y. A hybrid framework for fault detection, classification, and location—Part I: Concept, structure and methodology. IEEE Trans. Power Deliv. 2011, 26, 1988–1998. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.; Goswami, P.; Pentayya, P.; Kazi, F. Analysis of Mumbai Grid Failure Restoration on Oct 12, 2020: Challenges and Lessons Learnt. IEEE Trans. Power Syst. 2022, 37, 4555–4567. [Google Scholar] [CrossRef]
- Fadhel, A.; Tarlochan, S.; Rajiv, V. Performance Comparison of Distance Protection Schemes for Shunt-FACTS Compensated Transmission Lines. IEEE Trans. Power Deliv. 2007, 22, 2116–2125. [Google Scholar] [CrossRef]
- Stefanidou-Voziki, P.; Sapountzoglou, N.; Raison, B.; Dominguez-Garcia, J. A review of fault location and classification methods in distribution grids. Electr. Power Syst. Res. 2022, 209, 108031. [Google Scholar] [CrossRef]
- Vaish, R.; Dwivedi, U.; Tewari, S.; Tripathi, S. Machine learning applications in power system fault diagnosis: Research advancements and perspectives. Eng. Appl. Artif. Intell. 2021, 106, 104504. [Google Scholar] [CrossRef]
- Ertugrul, O.F.; Kurt, M.B. A fast and accurate fault detection approach in power transmission lines by modular neural network and discrete wavelet transform. Comput. Sci. Appl. 2014, 1, 152–157. [Google Scholar]
- Sowah RA Dzabeng, N.A.; Ofoli, A.R.; Acakpovi, A.; Koumadi, K.M.; Ocrah, J.; Martin, D. Design of power distribution network fault data collector for fault detection, location and classification using machine learning. In Proceedings of the IEEE 7th International Conference on Science & Technology (ICAST), Accra, Ghana, 22–24 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Hosseini, K. Short circuit fault classification and location in transmission lines using a combination of wavelet transform and support vector machines. Int. J. Electr. Eng. Inform. 2015, 7, 353. [Google Scholar]
- Khan, M.A.; Asad, B.; Vaimann, T.; Kallaste, A.; Pomarnacki, R.; Hyunh, V.K. Improved fault classification and location in power transmission networks using vae-generated synthetic data and machine learning algorithms. Machines 2023, 11, 963. [Google Scholar] [CrossRef]
- Budak, S.; Akbal, B. Fault location estimation by using machine learning methods in mixed transmission lines. Eur. J. Sci. Technol. 2020, 245–250. [Google Scholar] [CrossRef]
- Mukherjee, A.; Kundu, P.K.; Das, A. Transmission line faults in power system and the different algorithms for identification, classification and location a brief review of methods. J. Inst. Eng. India Ser. B 2021, 102, 855–877. [Google Scholar] [CrossRef]
- Patel, B.; Bera, P.; Saha, B. Wavelet packet entropy and RBFNN based fault detection, classification and location on HVAC transmission line. Electr. Power Compon. Syst. 2018, 46, 15–26. [Google Scholar] [CrossRef]
- Saravanababu, K.; Balakrishnan, P.; Sathiyasekar, K. Transmission line fault detection, classification and location using wavelet transform. Int. J. Eng. Adv. Technol. 2019, 8, 1770–1775. [Google Scholar] [CrossRef]
- Linh, H. Integration of neural network and distance relay to improve the fault location on transmission lines. Turk. J. Electr. Eng. Comput. Sci. 2023, 31, 566–580. [Google Scholar] [CrossRef]
- Takagi, T.; Yamakoshi, Y.; Yamaura, M.; Kondou, R.; Matsushima, T. Development of a new type fault locator using the one-terminal voltage and current data. IEEE Trans. Power Appl. Syst. 1982, PAS-101, 2892–2898. [Google Scholar] [CrossRef]
- Siemens Distance and Line Differential Protection Breaker Management for 1-Pole and 3-Pole Tripping 7SA87, 7SD87, 7SL87, 7VK87. 2020 Manual. Available online: https://support.industry.siemens.com/cs/attachments/109742440/SIP5_7SA-SD-SL-VK-87_V09.90_Manual_C011-Q_en.pdf (accessed on 6 February 2025).
- Nhan, N.; Van, L. Fault identification, classification, and location on transmission lines using combined machine learning methods. Int. J. Eng. Technol. Innov. 2022, 12, 91–109. [Google Scholar] [CrossRef]
- Kumari, S.; Mishra, A.; Singhal, A.; Dahiya, V.; Gupta, M.; Gawre, S.K. Fault detection in transmission line using ANN. In Proceedings of the IEEE International Students Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 18–19 February 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Farshad, M.; Sadeh, J. Accurate single-phase fault-location method for transmission lines based on k-nearest neighbor algorithm using one-end voltage. IEEE Trans. Power Deliv. 2012, 27, 2360–2367. [Google Scholar] [CrossRef]
- He, Z.; Fu, L.; Lin, S.; Bo, Z.; Member, S. Fault detection and classification in EHV transmission line based on wavelet singular entropy. IEEE Trans. Power Deliv. 2010, 25, 2156–2163. [Google Scholar] [CrossRef]
- Kawady, T.A.; Elkalashy, N.I.; Ibrahim, A.E.; Taalab, A.-M.I. Arcing fault identification using combined Gabor Transform-neural network for transmission lines. Int. J. Electr. Power Energy Syst. 2014, 61, 248–258. [Google Scholar] [CrossRef]
- Ekici, S.; Yildirim, S.; Poyraz, M. Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition. Expert Syst. Appl. 2008, 34, 2937–2944. [Google Scholar] [CrossRef]
- Parsi, M.; Crossley, P.; Dragotti, P.L.; Cole, D. Wavelet based fault location on power transmission lines using real-world travelling wave data. Electr. Power Syst. Res. 2020, 186, 106261. [Google Scholar] [CrossRef]
- Price, E.; Einarsson, T. The performance of faulted phase selectors used in transmission line distance applications. In Proceedings of the 2008 61st Annual Conference for Protective Relay Engineers, College Station, TX, USA, 1–3 April 2008; pp. 484–490. [Google Scholar] [CrossRef]
- Panchenko, D. Section 14: Simple Linear Regression. In Statistics for Applications; Massachusetts Institute of Technology: MIT OpenCourseWare: Cambridge, MA, USA, 2006. [Google Scholar]
- Raja, H.A.; Kudelina, K.; Asad, B.; Vaimann, T.; Kallaste, A.; Rassõlkin, A.; Van Khang, H. Signal spectrum-based machine learning approach for fault prediction and maintenance of electrical machines. Energies 2022, 15, 9507. [Google Scholar] [CrossRef]
- Kumari, K.; Yadav, S. Linear regression analysis study. J. Pract. Cardiovasc. Sci. 2018, 4, 33–36. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci 2021, 2, 160. [Google Scholar] [CrossRef]
- Duan, L.C.; Dong, K. Adaptive compressive sensing and machine learning for power system fault classification. In Proceedings of the 2020 SoutheastCon, Raleigh, NC, USA, 28–29 March 2020; pp. 1–7. [Google Scholar]
- Vasconcelos, J.C.S.; Cordeiro, G.M.; Ortega, E.M.M.; de Rezende, É.M. A new regression model for bimodal data and applications in agriculture. J. Appl. Stat. 2020, 48, 349–372. [Google Scholar] [CrossRef]
- Sarkka, S.; Solin, A.; Hartikainen, J. Spatiotemporal learning via infinite-dimensional bayesian filtering and smoothing: A look at gaussian process regression through kalman filtering. IEEE Signal Process. Mag. 2013, 30, 51–61. [Google Scholar] [CrossRef]
- Cunningham, P.; Delany, S.J. k-Nearest neighbour classifiers-A tutorial. ACM Comput. Surv. 2021, 54, 128. [Google Scholar] [CrossRef]
- Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN model-based approach in classification. In On the Move to Meaningful Internet Systems, Proceedings of the OTM Confederated International Conferences CoopIS, DOA, and ODBASE 2003 Catania, Sicily, Italy, 3–7 November 2003; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; pp. 986–996. [Google Scholar]
- Atallah, D.M.; Badawy, M.; El-Sayed, A.; Ghoneim, M.A. Predicting kidney transplantation outcome based on hybrid feature selection and KNN classifier. Multimedia Tools Appl. 2019, 78, 20383–20407. [Google Scholar] [CrossRef]
- Shahid, M.H.B.; Azim, A. Ensemble method for fault detection & classification in transmission lines using ml. In Proceedings of the 2023 IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 17–20 April 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, M.-X. Approximation capabilities of neural networks on unbounded domains. arXiv 2019, arXiv:1910.09293. [Google Scholar]
- Chauhan, H.; Chauhan, A. Implementation of decision tree algorithm C4.5. Int. J. Sci. Res. Publ. 2013, 3, 1–3. [Google Scholar]
- Maydanchi, M.; Ziaei, A.; Basiri, M.; Azad, A.N.; Pouya, S.; Ziaei, M.; Haji, F.; Sargolzaei, S. Comparative study of decision tree, adaboost, random forest, naïve bayes, knn, and perceptron for heart disease prediction. In Proceedings of the 2023 SoutheastCon, Orlando, FL, USA, 1–16 April 2023; pp. 204–208. [Google Scholar] [CrossRef]
- Lewis, D.D. Naive (Bayes) at forty: The independence assumption in information retrieval. In Machine Learning: ECML-98, Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1398. [Google Scholar] [CrossRef]
- Amor, N.; Benferhat, S.; Elouedi, Z. Naive bayes vs. decision trees in intrusion detection systems. In Proceedings of the ACM Symposium on Applied Computing, Nicosia, Cyprus, 14–17 March 2004; pp. 420–424. [Google Scholar]
- Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of k-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning. Decis. Anal. J. 2022, 3, 100071. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support vector machines for classification. In Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015. [Google Scholar] [CrossRef]
- Ravikumar, B.; Thukaram, D. Application of support vector machines for fault diagnosis in power transmission system. IET Gener. Transm. Distrib. 2008, 2, 119–130. [Google Scholar] [CrossRef]
- Kim, J.-M.; Bae, J.; Adhikari, M.D.; Yum, S.-G. A study of deep learning algorithm usage in predicting building loss ratio due to typhoons the case of southern part of the Korean Peninsula. Front. Earth Sci. 2023, 11, 1136346. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (rmse) or mean absolute error (mae)?–Arguments against avoiding rmse in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Lin, Z. Comparative study of lstm and transformer for a-share stock price prediction. In Proceedings of the International Conference on Artificial Intelligence, Internet and Digital Economy, Chengdu, China, 21–23 April 2023. [Google Scholar]
Line length (km) | 178.231 | |
System frequency(Hz) | 50 | |
Current transformer ratio (A) | 3200/5 | |
Voltage transformer ratio (kV) | 400/0.1 | |
Conductor type | 954 (MCM) | 1272 (MCM) |
Conductor length (km) | 13.771 | 164.46 |
Positive sequence impedance (Ω) | 0.2908 + j3.2889 | 2.5641 + j42.4123 |
Zero sequence impedance (Ω) | 3.7811 + j13.8516 | 42.4437 + j164.0237 |
Positive sequence capacitance (μS) | 58.0141 | 736.2327 |
Zero sequence capacitance (μS) | 36.4573 | 422.0137 |
AR (Ωsec) | AX (Ωsec) | BR (Ωsec) | BX (Ωsec) | CR (Ωsec) | CX (Ωsec) | NR (Ωsec) | NX (Ωsec) | Fault Detection | Phase Detection | Location (km) |
---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.14 | 0.01 | 0.14 | 0.01 | 0.14 | 0.02 | 0.42 | 1 | 15 | 3.47 |
21.68 | 34.67 | 22.98 | 36.78 | 5.38 | 3.11 | 5.39 | 3.10 | 1 | 3 | 76.48 |
0.03 | 0.40 | 0.03 | 0.42 | 8.28 | 10.96 | 0.14 | 0.80 | 1 | 13 | 9.82 |
39.61 | 6.53 | 40.12 | 6.31 | 40.01 | 6.37 | 119.75 | 19.21 | 0 | - | - |
0.47 | 4.22 | 57.41 | 60.19 | 0.46 | 4.22 | 77.42 | 98.63 | 1 | 10 | 100.91 |
1.93 | 1.78 | 53.14 | 73.25 | 1.94 | 1.77 | 0.06 | 3.55 | 1 | 11 | 64.49 |
22.74 | 18.62 | 20.12 | 16.74 | 25.55 | 19.31 | 69.14 | 34.45 | 0 | - | - |
4.13 | 13.00 | 53.98 | 28.02 | 57.83 | 26.04 | 4.16 | 13.00 | 1 | 9 | 167.90 |
20.66 | 11.96 | 20.28 | 11.75 | 19.59 | 11.15 | 39.21 | 26.15 | 0 | - | - |
21.25 | 27.52 | 0.16 | 0.91 | 0.16 | 0.89 | 51.25 | 69.30 | 1 | 6 | 22.14 |
0.79 | 5.20 | 0.71 | 5.22 | 0.76 | 5.21 | 2.26 | 15.63 | 1 | 14 | 130.61 |
Model Type | MAE (Validation) | MSE (Validation) | RMSE (Validation) | MAE (Test) | MSE (Test) | RMSE (Test) |
---|---|---|---|---|---|---|
Interactions linear | 0.0066 | 0.0001 | 0.0083 | 0.0071 | 0.0001 | 0.0089 |
Gaussian process | 0.0069 | 0.0001 | 0.0087 | 0.0077 | 0.0001 | 0.0094 |
Neural network | 0.0088 | 0.0008 | 0.0289 | 0.0080 | 0.0001 | 0.0100 |
Ensemble | 0.4739 | 0.5730 | 0.7570 | 0.5126 | 0.5774 | 0.7599 |
Tree | 0.6414 | 0.7951 | 0.8917 | 0.7595 | 0.9837 | 0.9918 |
Model Type | Training Time (s) | Model Size (kB) | Prediction Speed (obs/s) |
---|---|---|---|
Interactions linear | 6.6421 | 8 | 26,000 |
Gaussian process | 5.2662 | 30 | 28,000 |
Neural network | 10.195 | 6 | 18,000 |
Ensemble | 25.488 | 145 | 12,000 |
Tree | 17.909 | 11 | 42,000 |
Model Type | MAE (Validation) | MSE (Validation) | RMSE (Validation) | MAE (Test) | MSE (Test) | RMSE (Test) |
---|---|---|---|---|---|---|
Stepwise linear | 0.0308 | 0.0013 | 0.0365 | 0.0319 | 0.0014 | 0.0372 |
Gaussian process | 0.0308 | 0.0014 | 0.0369 | 0.0317 | 0.0014 | 0.0373 |
Neural network | 0.0308 | 0.0014 | 0.0369 | 0.0482 | 0.0220 | 0.1483 |
Ensemble | 0.4881 | 0.8337 | 0.9131 | 0.5492 | 1.7536 | 1.3242 |
Tree | 0.6233 | 0.9091 | 0.9535 | 0.6562 | 1.0033 | 1.0017 |
Model Type | Training Time (s) | Model Size (kB) | Prediction Speed (obs/s) |
---|---|---|---|
Stepwise linear | 5.6487 | 7 | 63,000 |
Gaussian process | 18.126 | 30 | 47,000 |
Neural network | 29.267 | 9 | 69,000 |
Ensemble | 10.276 | 145 | 16,000 |
Tree | 10.193 | 11 | 81,000 |
Real Fault Location (m) | Predicted Fault Location for Phase-to-Phase (m) System Short Circuit Current 10 kA | Predicted Fault Location for Phase-to-Ground (m) System Short Circuit Current 10 kA | Predicted Fault Location for Phase-to-Phase (m) System Short Circuit Current 20 kA | Predicted Fault Location for Phase-to-Ground (m) System Short Circuit Current 20 kA |
---|---|---|---|---|
10,000 | 9997 | 9976 | 10,002 | 9989 |
30,000 | 30,016 | 30,034 | 30,014 | 30,039 |
50,000 | 50,005 | 50,051 | 49,981 | 50,041 |
70,000 | 69,982 | 70,027 | 69,989 | 700,028 |
90,000 | 90,011 | 89,979 | 90,007 | 90,037 |
110,000 | 110,009 | 110,064 | 109,989 | 110,052 |
130,000 | 130,023 | 129,934 | 130,011 | 129,940 |
150,000 | 149,986 | 149,941 | 150,024 | 150,079 |
170,000 | 170,021 | 170,082 | 170,007 | 170,088 |
Real Fault Location (m) | Predicted Fault Location for Phase-to-Phase (m) Fault Arc Resistance 2 Ω | Predicted Fault Location for Phase-to-Ground (m) Fault Arc Resistance 2 Ω | Predicted Fault Location for Phase-to-Phase (m) Fault Arc Resistance 10 Ω | Predicted Fault Location for Phase-to-Ground (m) Fault Arc Resistance 10 Ω |
---|---|---|---|---|
10,000 | 10,001 | 10,009 | 10,002 | 9984 |
30,000 | 30,009 | 30,028 | 29,997 | 30,048 |
50,000 | 49,992 | 49,968 | 50,016 | 49,972 |
70,000 | 70,013 | 70,024 | 70,018 | 69,963 |
90,000 | 90,004 | 90,067 | 90,009 | 90,062 |
110,000 | 109,984 | 110,064 | 110,014 | 110,076 |
130,000 | 130,006 | 129,962 | 130,022 | 129,918 |
150,000 | 150,017 | 149,957 | 150,008 | 150,097 |
170,000 | 170,013 | 170,080 | 169,989 | 170,098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdemir, Ö.; Köker, R.; Pamuk, N. Fault Classification and Precise Fault Location Detection in 400 kV High-Voltage Power Transmission Lines Using Machine Learning Algorithms. Processes 2025, 13, 527. https://doi.org/10.3390/pr13020527
Özdemir Ö, Köker R, Pamuk N. Fault Classification and Precise Fault Location Detection in 400 kV High-Voltage Power Transmission Lines Using Machine Learning Algorithms. Processes. 2025; 13(2):527. https://doi.org/10.3390/pr13020527
Chicago/Turabian StyleÖzdemir, Ömer, Raşit Köker, and Nihat Pamuk. 2025. "Fault Classification and Precise Fault Location Detection in 400 kV High-Voltage Power Transmission Lines Using Machine Learning Algorithms" Processes 13, no. 2: 527. https://doi.org/10.3390/pr13020527
APA StyleÖzdemir, Ö., Köker, R., & Pamuk, N. (2025). Fault Classification and Precise Fault Location Detection in 400 kV High-Voltage Power Transmission Lines Using Machine Learning Algorithms. Processes, 13(2), 527. https://doi.org/10.3390/pr13020527