Entropy Generation Modeling in Dynamic Local Thermal Non-Equilibrium Systems Using Neural Networks
Abstract
:1. Introduction
2. Formulation
- Case 1: The left-side edge moves in the negative direction of the Y-axis, and the top edge moves in the positive direction of the X-axis ().
- Case 2: The left-side edge moves in the positive direction of the Y-axis, and the top edge moves in the negative direction of the X-axis ().
- Case 3: Both edges move in the positive direction of their respective axes (.
- Case 4: Both edges move in the negative direction of their respective axes (.
- The flow is laminar and steady.
- The density of the nanofluid is constant.
- Water serves as the host liquid and copper is used as the nanoparticle additive.
- The porous medium within the enclosure creates a thermal non-equilibrium (TNE) state, where a temperature difference exists between the fluid and the medium.
- is the Reynolds coefficient.
- is the Prandtl coefficient.
- is the heat transport parameter.
- is the heat generation parameter.
- is the temperature conductivity ratio.
3. Numerical Solution
4. Results and Discussion
- The heat generation increases the driving temperature difference.
- The Rayleigh number amplifies the effect of buoyancy forces, resulting in a stronger, more dynamic convective flow.
- The system transitions from conduction-dominated to convection-dominated heat transfer, making the convective mode the primary mechanism of energy transport.
5. ANN Analysis
6. Conclusions
- In Case 1, the movement of the top wall was dominant compared to the movement of the left-side wall, and the irreversibility of the solid phase concentrated near the right-side fixed edge.
- For all cases, heat generation caused improvements in the convection situation.
- An increase in the Darcy parameter caused diminishing flow while the heat transfer rates were improved.
- In Case 2: , the minimum values of the solid phase Nusselt number occurred at the center of the wall.
- Case 3: provided the highest heat transfer rates.
- In testing the flow through a porous medium, the results indicate that the LTNEM is more physically realistic compared to the LTEM.
- Using the ANN model, a best-fit model for the proposed factors and successful training with minimal errors were obtained.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Specific heat | Velocity vector | ||
Darcy parameter | Dimension velocity components | ||
Diameter of solid | Dimensionless velocity components | ||
Diameter of fluid | Cartesian coordinates | ||
Gravitational acceleration | Dimensionless coordinates | ||
Grashof number | Greek symbols | ||
H | Dimensionless height of the cavity | Thermal diffusivity | |
Heat transport parameter | Thermal expansion coefficient | ||
Permeability | Porosity | ||
Thermal conductivity | Solid volume fraction | ||
Thermal conductivity of pure fluid | Viscosity | ||
Temperature conductivity ratio | Kinematic viscosity | ||
Width of the cavity | Density | ||
Nusselt number | Dimension temperature | ||
Pressure | Capacity ratio | ||
Heat generation parameter | Stream function | ||
Prandtl number | Subscripts | ||
Reynolds number | Hot, cold | ||
Entropy generation due to the heat transfer | Liquid | ||
Entropy generation due to the fluid friction | s | Medium phase | |
Temperature | Porous medium |
References
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media; Dover Publications: Mineola, NY, USA, 1972. [Google Scholar]
- Vafai, K. (Ed.) Handbook of Porous Media; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ingham, D.B.; Pop, I. (Eds.) Transport Phenomena in Porous Media; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Kaviany, M. Principles of Heat Transfer in Porous Media; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Choi SU, S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Developments and Applications of Non-Newtonian Flows; Siginer, D.A., Wang, H.P., Eds.; ASME: New York City, NY, USA, 1995; pp. 99–105. [Google Scholar]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571–581. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Ho, C.J.; Chen, M.W.; Li, Z.W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effect due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf. 2008, 51, 4506–4516. [Google Scholar] [CrossRef]
- Talebi, F.; Mahmoudi, A.H.; Shahi, M. Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int. Commun. Heat Mass Transf. 2010, 37, 79–90. [Google Scholar] [CrossRef]
- Torabi, M.; Zhang, K.; Yang, G.; Wang, J.; Wu, P. Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model. Energy 2015, 82, 922–938. [Google Scholar] [CrossRef]
- Kim, S.J.; Hyun, J.M. A porous medium approach for the thermal analysis of heat transfer devices. In Transport Phenomena in Porous Media III; Ingham, D.B., Pop, I., Eds.; Pergamon: Oxford, UK, 2005; pp. 120–146. ISBN 9780080444901. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Rashed, Z.Z.; Al-Hanaya, A. Three dimensional melting case of phase change material composited with heat generating and local thermal non-equilibrium copper foam under the magnetic impacts. Appl. Therm. Eng. 2023, 219, 119662. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Raizha, Z.A. Role of sinusoidal/linearly inner heating on the irreversibility of mixed convection in split lid-driven chamfered enclosures filled with thermal non-equilibrium permeable medium. Int. J. Heat Fluid Flow 2025, 112, 109715. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Taylor & Francis: Abingdon, UK, 1980. [Google Scholar]
- Whitaker, S. The Method of Volume Averaging; Springer Science & Business Media: Berlin, Germany, 1999. [Google Scholar]
- Parhizi, M.; Torabi, M.; Jain, A. Local thermal non-equilibrium (LTNE) model for developed flow in porous media with spatially-varying Biot number. Int. J. Heat Mass Transf. 2021, 164, 120538. [Google Scholar] [CrossRef]
- Gandomkar, A.; Gray, K.E. Local thermal non-equilibrium in porous media with heat conduction. Int. J. Heat Mass Transf. 2018, 124, 1212–1216. [Google Scholar] [CrossRef]
- Badruddin, I.A. Numerical Analysis of Thermal Non-Equilibrium in Porous Medium Subjected to Internal Heating. Mathematics 2019, 7, 1085. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Raizha, Z.A.S.; Alsubaie, F. Artificial neural network and CBS-FEM techniques for mixed convection in lid-driven tank heated by triangular fins and filled with permeable medium: Two-energy equations model. J. Taiwan Inst. Chem. Eng. 2025, 167, 105850. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Kuznetsov, A.V.; Nield, D.A. The effects of local thermal non-equilibrium on convection in a porous medium. Int. J. Heat Mass Transf. 2010, 53, 315–321. [Google Scholar]
- Mahapatra, T.R.; Panda, S.; Das, P.K. Numerical investigation on mixed convection and entropy generation in a porous cavity. J. Therm. Sci. Eng. Appl. 2016, 8, 041008. [Google Scholar]
- Barletta, A.; Rees DA, S.; Storesletten, L. Mixed convection in porous media: Mathematical models and scale analysis. Transp. Porous Media 2018, 123, 317–343. [Google Scholar]
- Rashidi, M.M.; Chamkha, A.J.; Yang, Z. Entropy generation in porous cavities with thermal and flow boundary conditions. Numer. Heat Transf. Part A Appl. 2019, 76, 567–583. [Google Scholar]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2201. [Google Scholar] [CrossRef]
- Tayebi, T. Analysis of the local non-equilibria on the heat transfer and entropy generation during thermal natural convection in a non-Darcy porous medium. Int. Commun. Heat Mass Transf. 2022, 135, 106133. [Google Scholar] [CrossRef]
- Iwatsu, R.; Hyun, J.M.; Kuwahara, K. Mixed convection in a driven cavity with a stable vertical temperature gradient. Int. J. Heat Mass Transf. 1993, 36, 1601–1608. [Google Scholar] [CrossRef]
- Khanafer, K.M.; Chamkha, A.J. Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int. J. Heat Mass Transf. 1999, 31, 1354–1370. [Google Scholar] [CrossRef]
Property | ||||
---|---|---|---|---|
Water | 4179 | 997.1 | 0.6 | |
Copper | 383 | 8954 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.E.; Raizha, Z.A.S.; Morsy, Z.; Alsubaie, F.; Alshehry, N. Entropy Generation Modeling in Dynamic Local Thermal Non-Equilibrium Systems Using Neural Networks. Processes 2025, 13, 319. https://doi.org/10.3390/pr13020319
Ahmed SE, Raizha ZAS, Morsy Z, Alsubaie F, Alshehry N. Entropy Generation Modeling in Dynamic Local Thermal Non-Equilibrium Systems Using Neural Networks. Processes. 2025; 13(2):319. https://doi.org/10.3390/pr13020319
Chicago/Turabian StyleAhmed, Sameh E., Z. A. S. Raizha, Zeinab Morsy, Fatma Alsubaie, and Nouf Alshehry. 2025. "Entropy Generation Modeling in Dynamic Local Thermal Non-Equilibrium Systems Using Neural Networks" Processes 13, no. 2: 319. https://doi.org/10.3390/pr13020319
APA StyleAhmed, S. E., Raizha, Z. A. S., Morsy, Z., Alsubaie, F., & Alshehry, N. (2025). Entropy Generation Modeling in Dynamic Local Thermal Non-Equilibrium Systems Using Neural Networks. Processes, 13(2), 319. https://doi.org/10.3390/pr13020319