Lithofacies Identification by an Intelligent Fusion Algorithm for Production Numerical Simulation: A Case Study on Deep Shale Gas Reservoirs in Southern Sichuan Basin, China
Abstract
1. Introduction
2. Geological Setting
3. Methodology
3.1. Polar Lights Optimizer
3.2. Newton-Weighted Oversampling Method
3.3. Heterogeneous Fusion Model
3.3.1. Stacking Ensemble Learning Framework
3.3.2. Intelligent Lithofacies Identification Heterogeneous Fusion Model
4. Results and Discussion
4.1. Model Performance
4.2. Comparative Experiments
4.2.1. Performance Comparison of SRLCL with Different Sampling Methods
4.2.2. Performance Comparison of SRLCL with Different Optimization Algorithms
4.2.3. Interpretability Analysis of SRLCL Model
4.3. Case Validation and Application
4.3.1. Test Well Validation
4.3.2. Production Performance Simulation Based on Geological Model
5. Conclusions
- (1)
- The NWO method effectively addresses the issues of sparse data and class imbalance in deep shale gas reservoir lithofacies, increasing identification accuracy by over 40% compared to non-resampled data and by more than 6% compared to conventional resampling techniques. The PLO algorithm further optimizes model efficiency and accuracy, enabling the SRLCL model to achieve optimal performance after only 152 iterations—a 33.6% reduction in iteration count accompanied by a 7% improvement in accuracy.
- (2)
- Based on the Stacking ensemble learning framework, the SRLCL model overcomes the limitations of traditional single-model and homogeneous ensemble approaches, fully leveraging the complementary advantages of heterogeneous algorithms in characterizing multi-level features of well-logging data. The overall lithofacies identification accuracy of the SRLCL model reaches 93%.
- (3)
- Among the base learners in the SRLCL model, LightGBM and RF demonstrate outstanding feature selection and interaction capabilities, contributing the most; CNN and SVM follow, responsible for local feature extraction and classification boundary optimization, respectively; although LSTM underperforms overall, its unique ability to capture sequential features provides important supplementary value to the model.
- (4)
- Using lithofacies control to construct the geological model enables fine characterization and representation of deep shale reservoirs in the X block. Integrated with numerical simulation technology, the model facilitates integrated simulation of fractured horizontal well production in deep shale gas reservoirs. The predicted cumulative gas production shows an error of only 6.18% compared to actual data, indicating closer alignment with real formation conditions. Furthermore, the 15-year cumulative gas production forecast reaches 1.402 × 108 m3, demonstrating favorable development potential.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hota, R.N.; Maejima, W.; Maejima, W. Comparative Study of Cyclicity of Lithofacies in Lower Gondwana Formations of Talchir Basin, Orissa, India; A Statistical Analysis of Subsurface Logs. Gondwana Res. 2004, 7, 353–362. [Google Scholar] [CrossRef]
- Lin, B.; Jin, Y.; Cao, Q.; Meng, H.; Pang, H.; Wei, S. Developing a Large Language Model for Oil- and Gas-Related Rock Mechanics: Progress and Challenges. Nat. Gas Ind. B 2025, 12, 110–122. [Google Scholar] [CrossRef]
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, P.; Fu, Y.; Wang, K.; Mou, Y. Types of Lithofacies in the Lower Cambrian Marine Shale of the Northern Guizhou Region and Their Suitability for Shale Gas Exploration. Nat. Gas Ind. B 2024, 11, 469–481. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.; Lu, Y. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Chen, Z.Q.; Ogg, J.G.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S.; et al. Organic-Matter-Rich Shales of China. Earth-Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Wang, K. Risk Prediction of Gas Hydrate Formation in Wellbores and Subsea Gathering Systems of Deep-Water Turbidite Reservoirs: Case Analysis from the South China Sea. Reserv. Sci. 2025, 1, 52–72. [Google Scholar] [CrossRef]
- Wang, G.; Carr, T.R.; Ju, Y.; Li, C. Identifying Organic-Rich Marcellus Shale Lithofacies by Support Vector Machine Classifier in the Appalachian Basin. Comput. Geosci. 2014, 64, 52–60. [Google Scholar] [CrossRef]
- Zheng, D.; Hou, M.; Chen, A.; Zhong, H.; Qi, Z.; Ren, Q.; You, J.; Wang, H.; Ma, C. Application of Machine Learning in the Identification of Fluvial-Lacustrine Lithofacies from Well Logs: A Case Study from Sichuan Basin, China. J. Pet. Sci. Eng. 2022, 215, 110610. [Google Scholar] [CrossRef]
- Al-Anazi, A.; Gates, I.D. A Support Vector Machine Algorithm to Classify Lithofacies and Model Permeability in Heterogeneous Reservoirs. Eng. Geol. 2010, 114, 267–277. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Carr, T.R.; Pal, M. Comparison of Supervised and Unsupervised Approaches for Mudstone Lithofacies Classification: Case Studies from the Bakken and Mahantango-Marcellus Shale, USA. J. Nat. Gas Sci. Eng. 2016, 33, 1119–1133. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhou, L.; Chen, X.H.; Li, J.Y. Lithofacies Identification Using Support Vector Machine Based on Local Deep Multi-Kernel Learning. Pet. Sci. 2020, 17, 954–966. [Google Scholar] [CrossRef]
- Gao, K.; Jiao, S. Research on Lithology Identification Based on Multi-Sensor Hybrid Domain Information Fusion and Support Vector Machine. Earth Sci. Inform. 2022, 15, 1101–1113. [Google Scholar] [CrossRef]
- Wu, J.; Ansari, U. From CO2 Sequestration to Hydrogen Storage: Further Utilization of Depleted Gas Reservoirs. Reserv. Sci. 2025, 1, 19–35. [Google Scholar] [CrossRef]
- Banerjee, A.; Mukherjee, B.; Sain, K. Machine Learning Assisted Model Based Petrographic Classification: A Case Study from Bokaro Coal Field. Acta Geod. Geophys. 2024, 59, 463–490. [Google Scholar] [CrossRef]
- Wang, P.; Chen, X.; Wang, B.; Li, J.; Dai, H. An Improved Method for Lithology Identification Based on a Hidden Markov Model and Random Forests. Geophysics 2020, 85, IM27–IM36. [Google Scholar] [CrossRef]
- Merembayev, T.; Kurmangaliyev, D.; Bekbauov, B.; Amanbek, Y. A Comparison of Machine Learning Algorithms in Predicting Lithofacies: Case Studies from Norway and Kazakhstan. Energies 2021, 14, 1896. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, D.; Bao, Z. Carbonate Lithofacies Identification Using an Improved Light Gradient Boosting Machine and Conventional Logs: A Demonstration Using Pre-Salt Lacustrine Reservoirs, Santos Basin. Carbonates Evaporites 2021, 36, 79. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, R.; Zhai, S.; Li, N.; Li, C. Lithofacies Identification of Shale Formation Based on Mineral Content Regression Using LightGBM Algorithm: A Case Study in the Luzhou Block, South Sichuan Basin, China. Energy Sci. Eng. 2023, 11, 4256–4272. [Google Scholar] [CrossRef]
- Qian, H.; Geng, Y.; Wang, H. Lithology Identification Based on Ramified Structure Model Using Generative Adversarial Network for Imbalanced Data. Geoenergy Sci. Eng. 2024, 240, 213036. [Google Scholar] [CrossRef]
- Luo, H.; Lai, F.; Dong, Z. A Lithology Identification Method for Continental Shale Oil Reservoir Based on BP Neural Network. J. Geophys. Eng. 2018, 15, 895–908. [Google Scholar] [CrossRef]
- Cao, L.; Lv, M.; Li, C.; Sun, Q.; Wu, M.; Xu, C.; Dou, J. Effects of Crosslinking Agents and Reservoir Conditions on Hydraulic Fracture Propagation in Coal Reservoirs. Reserv. Sci. 2025, 1, 36–51. [Google Scholar] [CrossRef]
- Ameur-Zaimeche, O.; Zeddouri, A.; Heddam, S.; Boumezbeur, A.; Bouguessa, S. Lithofacies Prediction in Non-Cored Wells from the Sif Fatima Oil Field (Berkine Basin, Southern Algeria): A Comparative Study of Multilayer Perceptron Neural Network and Cluster Analysis-Based Approaches. J. Afr. Earth Sci. 2020, 166, 103826. [Google Scholar] [CrossRef]
- Feng, R. A Bayesian Approach in Machine Learning for Lithofacies Classification and Its Uncertainty Analysis. IEEE Geosci. Remote Sens. Lett. 2021, 18, 18–22. [Google Scholar] [CrossRef]
- Lin, J.; Li, H.; Liu, N.; Gao, J.; Li, Z. Automatic Lithology Identification by Applying LSTM to Logging Data: A Case Study in X Tight Rock Reservoirs. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1361–1365. [Google Scholar] [CrossRef]
- Xie, D.; Liu, Z.; Wang, F.; Song, Z. A Transformer and LSTM-Based Approach for Blind Well Lithology Prediction. Symmetry 2024, 16, 616. [Google Scholar] [CrossRef]
- Li, K.; Xi, Y.; Su, Z.; Zhu, J.; Wang, B. Research on Reservoir Lithology Prediction Method Based on Convolutional Recurrent Neural Network. Comput. Electr. Eng. 2021, 95, 107404. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, R.; Yang, L.; Yin, H.; Tang, W.; Liu, D.; Gu, Y.; Jiang, Y. Paleo-Environmental and Geological Characteristics of Wufeng-Longmaxi Marine Shale in Different Paleo-Geomorphological Units, Eastern Sichuan Basin, China. Nat. Gas Ind. B 2025, 12, 572–584. [Google Scholar] [CrossRef]
- Xiong, M.; Chen, L.; Gu, Z.; Chen, X.; Liu, B.; Lu, C.; Zhang, Z.; Wang, G. Pore Heterogeneity and Evolution of the Lower Silurian Longmaxi Shale Reservoir in the Southern Sichuan Basin: Responses to Sedimentary Environment. Nat. Gas Ind. B 2024, 11, 525–542. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L.; Chen, Y.; Chen, H. Polar Lights Optimizer: Algorithm and Applications in Image Segmentation and Feature Selection. Neurocomputing 2024, 607, 128427. [Google Scholar] [CrossRef]
- Tao, L.; Wang, Q.; Zhu, Z.; Yu, F.; Yin, X. NCLWO: Newton’s Cooling Law-Based Weighted Oversampling Algorithm for Imbalanced Datasets with Feature Noise. Neurocomputing 2024, 610, 128538. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked Generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]

















| Depth | GR | AC | CNL | DEN | TH | … | RT | RXO | Lithofacies | Count |
|---|---|---|---|---|---|---|---|---|---|---|
| (m) | (API) | (μs/m) | (%) | (g/cm3) | (ppm) | … | (Ω·m) | (Ω·m) | ||
| 3752 | 194.2 | 63 | 8.8 | 2.5 | 9.8 | … | 183.8 | 160.5 | I | 118 |
| 3755 | 197.3 | 68 | 7.9 | 2.5 | 9.4 | … | 181.6 | 157.9 | I | |
| 3551 | 150.4 | 63.3 | 12.5 | 2.6 | 11.3 | … | 95.9 | 84.4 | II | 195 |
| 3559 | 146.3 | 61.8 | 11.9 | 2.5 | 10.9 | … | 94.2 | 86.3 | II | |
| 4251 | 125.9 | 58.6 | 8.2 | 2.6 | 7.8 | … | 80.8 | 62.5 | III | 43 |
| 4253 | 128.1 | 55.2 | 8.7 | 2.5 | 8.1 | … | 85.2 | 64.9 | III | |
| 4260 | 137.4 | 82 | 17.8 | 2.6 | 9.3 | … | 7.4 | 6.6 | IV | 400 |
| 4261 | 122.6 | 79.1 | 16.5 | 2.6 | 9.7 | … | 8.6 | 9.5 | IV | |
| 4263 | 162 | 72.9 | 15.3 | 2.6 | 20.3 | … | 20.7 | 18.4 | V | 154 |
| 4266 | 159.5 | 76.3 | 16.9 | 2.5 | 26.8 | … | 50.6 | 52.2 | V | |
| … | … | … | … | … | … | … | … | … | … | 910 |
| Algorithm | Hyperparameter | Best Value |
|---|---|---|
| SVM | C | 4.29 |
| kernel | rbf | |
| gamma | scale | |
| degree | 4 | |
| RF | max_depth | 40 |
| min_samples_split | 2 | |
| min_samples_leaf | 2 | |
| n_estimators | 125 | |
| criterion | gini | |
| LightGBM | n_estimators | 32 |
| learning_rate | 0.09 | |
| max_depth | 20 | |
| num_leaves | 68 | |
| CNN | epochs | 10 |
| batch_size | 20 | |
| filters | 48 | |
| kernel_size | 4 | |
| dropout_rate | 0.6 | |
| LSTM | epochs | 7 |
| batch_size | 21 | |
| units | 167 | |
| dropout_rate | 0.33 |
| Lithofacies Types | Code Name | Precision | Recall | F1-Score | Accuracy |
|---|---|---|---|---|---|
| Calcareous siliceous shale | I | 0.93 | 0.98 | 0.95 | 0.93 |
| Argillaceous siliceous shale | II | 1.00 | 0.72 | 0.84 | |
| Calcareous mixed shale | III | 0.99 | 0.98 | 0.98 | |
| Argillaceous mixed shale | IV | 0.93 | 1.00 | 0.96 | |
| Mixed shale | V | 0.83 | 1.00 | 0.91 | |
| Macro-average | 0.94 | 0.94 | 0.93 |
| Lithofacies Types | Precision | Recall | F1-Score | Accuracy |
|---|---|---|---|---|
| Calcareous siliceous shale | 0.96 | 0.95 | 0.98 | 0.91 |
| Argillaceous siliceous shale | 0.93 | 0.73 | 0.75 | |
| Calcareous mixed shale | 0.99 | 0.99 | 0.99 | |
| Argillaceous mixed shale | 0.89 | 0.97 | 0.93 | |
| Mixed shale | 0.82 | 0.96 | 0.88 | |
| Macro-average | 0.92 | 0.92 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wu, J.; Zhang, B.; Li, C.; Deng, F.; Chen, B.; Yang, C.; Yang, J.; Tong, K. Lithofacies Identification by an Intelligent Fusion Algorithm for Production Numerical Simulation: A Case Study on Deep Shale Gas Reservoirs in Southern Sichuan Basin, China. Processes 2025, 13, 4040. https://doi.org/10.3390/pr13124040
Liu Y, Wu J, Zhang B, Li C, Deng F, Chen B, Yang C, Yang J, Tong K. Lithofacies Identification by an Intelligent Fusion Algorithm for Production Numerical Simulation: A Case Study on Deep Shale Gas Reservoirs in Southern Sichuan Basin, China. Processes. 2025; 13(12):4040. https://doi.org/10.3390/pr13124040
Chicago/Turabian StyleLiu, Yi, Jin Wu, Boning Zhang, Chengyong Li, Feng Deng, Bingyi Chen, Chen Yang, Jing Yang, and Kai Tong. 2025. "Lithofacies Identification by an Intelligent Fusion Algorithm for Production Numerical Simulation: A Case Study on Deep Shale Gas Reservoirs in Southern Sichuan Basin, China" Processes 13, no. 12: 4040. https://doi.org/10.3390/pr13124040
APA StyleLiu, Y., Wu, J., Zhang, B., Li, C., Deng, F., Chen, B., Yang, C., Yang, J., & Tong, K. (2025). Lithofacies Identification by an Intelligent Fusion Algorithm for Production Numerical Simulation: A Case Study on Deep Shale Gas Reservoirs in Southern Sichuan Basin, China. Processes, 13(12), 4040. https://doi.org/10.3390/pr13124040
